
Integrating Timetabling and Crew

Scheduling at a Freight Railway Operator

Lukas Bach†, Twan Dollevoet‡∗, and Dennis Huisman‡?

†Cluster for Operations Research And Logistics,
Department of Economics and Business,

Aarhus University, Aarhus, Denmark

†Department of Applied Mathematics
SINTEF ICT, Oslo, Norway

Lukas.Bach@sintef.no

‡Erasmus Center for Optimization in Public Transport (ECOPT)
and Econometric Institute, Erasmus School of Economics,

Erasmus University Rotterdam, Rotterdam, the Netherlands
dollevoet@ese.eur.nl, huisman@ese.eur.nl

?Process quality & Innovation, Netherlands Railways,
Utrecht, the Netherlands

Abstract

We investigate to what degree we can integrate a Train Timetabling
/ Engine Scheduling Problem with a Crew Scheduling Problem. In the
Timetabling / Engine Scheduling Problem we determine for each de-
mand a specific time within its time window when the demand should
be serviced. Furthermore, we generate engine duties for the demands.
In our solution approach for the overall problem, we first obtain an
optimal solution for the Timetabling / Engine Scheduling Problem.
When solving the Crew Scheduling Problem, we then exploit the fact
that numerous optimal, and near optimal solutions exist for the pre-
vious problem. We consider all these solutions that can be obtained
from the optimal engine schedule by shifting the demands in time,
while keeping the order of demands in the engine duties intact. In
particular, in the crew scheduling stage it is allowed to re-time the
service of demands if the additional cost is outweighed by the crew
savings. This information is implemented in a mathematical model for
the Crew Scheduling Problem. The model is solved using a column
generation scheme. We perform computational experiments based on
a case at a freight railway operator, DB Schenker Rail Scandinavia,
and show that significant cost savings can be achieved.

∗Corresponding author

1

Final version is available at InformsPubsOnline : http://dx.dou.org/10.1287/trsc.2015.0648

Keywords: Railway Crew Planning, Vehicle and Crew Scheduling, Partial
Integration, Branch-and-Price

1 Introduction

In most European countries, freight trains are operated in between passenger
trains. Therefore, a joint timetable for all trains is constructed. In this
timetable, the arrival and departure times of the trains at all stations in the
network are specified. Furthermore, time-slots for freight trains are included.
Such a time-slot represents the right for a railway operator to drive from
one station to another at a specific time. Freight railway operators such
as DB Schenker Rail Scandinavia (DBSRS) have to request and pay for
these time-slots. The price for the time-slots may differ. Usually, time-slots
during the peak hours for passenger traffic (e.g. between 7 and 9am, and
4 and 6pm) are more expensive. Since the contracts between the operator
and its customers cover in general a period of one year, each week the same
time-slots are requested. The whole set of requested time-slots can be seen
as the timetable for the freight operator. This consists of a set of trips:
movements from A to B with given departure and arrival times.

The planning process of a freight railway operator consists of several
steps. The timetabling problem for the operator is to decide which time-
slots to request. Furthermore, the operator has to decide for each demand,
which time-slot is used to service it. By doing so, the departure and arrival
times for the demands are determined, as well. In the Engine Schedul-
ing Problem, engines are assigned to the different demands in accordance
with the timetable. Bach et al. (2015) solved an integrated version of the
Timetabling and Engine Scheduling Problem (TESP). That is, the time-
slots are not optimized first, but are still open and optimized together with
the engines.

In this paper, we seek to integrate the TESP with the Crew Scheduling
Problem (CSP). The overall goal is to investigate whether it is favorable
to leave some aspects of the earlier stages open to adjustments in the Crew
Scheduling phase. We seek to integrate by allowing changes to the timetable
when solving the CSP. We do this while keeping the solution to the TESP
feasible. Hence, we explore alternative feasible solutions. We then compare
this to a completely sequential approach, where we solve the CSP in a classic
approach without any link to the timetabling or engine scheduling phases.
The simple example below illustrates the possible advantages.

Example: In this example, the following time-slots are avail-
able.

2

A-B 1-2pm 5-6pm 9-10pm
B-C 3-4pm 7-8pm 11-12pm
C-B 1-2pm 5-6pm 9-10pm
B-A 3-4pm 7-8pm 11-12pm

These time-slots are depicted in Figure ??(a). The costs for
the time-slots starting at 5pm is 100 higher than for the other
time-slots. There are two demands from A to C. One of those
has to be transported from A at 1pm. The other can be either
transported at 5pm or at 9pm. Similarly, there are two demands
from C to A. The first one has to be transported from C at 1pm,
and the second one can be either transported at 5pm or 9pm.

The optimal solution of the TESP is depicted in Figure ??(b).
The time-slots at 1pm and 9pm are selected in both directions.
The first engine starts in A at 1pm, arrives at and departs from
B at 2pm and 3pm, respectively, and arrives in C at 4pm. Then
it returns at 9pm to A, arriving there at 12pm. Similarly, the
second engine starts in C at 1pm and returns in C at 12pm.

For the crew scheduling problem, this results in 8 tasks. Sup-
pose that the only labor rules are a maximum working time of 8
hours and the requirement that at the end of the duty each crew
member should be back at its base. There are only fixed cost,
which are 1,000 per duty. Given the solution to the TESP, the
optimal solution contains 4 duties. This solution is depicted in
Figure ??(c). The crew costs are 4,000.

However, the overall optimal solution contains only 2 duties.
This solution is depicted in Figure ??(d). It selects the more
expensive time-slots at 5pm instead of those at 9 pm. The re-
sulting cost increase is outweighed by the savings in crew costs.
The total costs are reduced by 1,800 (2*1000 - 2*100) in com-
parison to the sequential solution. In this specific example, the
crew and engine duties are equal.

The remainder of this paper is structured as follows. In Section 2, we
describe the problem and introduce case specific details, and in Section 3,
we review the relevant literature. In Section 4, we explain the integration
with the TESP and present our integrated model. We present the solution
method in Section 5. In Section 6, we discuss the results of our computa-
tional experiments. Finally, we present our conclusions and future research
directions in Section 7.

3

2 Problem Description

The demand in this model is strictly unit train demand: Any demand is
for a full train driving from an origin to a destination station. It is not
possible to aggregate demand. For each of these demands, we have a fixed
time window wherein the demand should be fulfilled. For the crew, a single
demand can be split into one or more tasks at relief points along the route.
In the case considered in this paper there is a maximum of 228 demands per
week.

A set of time-slots for freight operators are scheduled in the timetable
and represent the right to access the railway infrastructure between two
stations at a certain time. We use these time-slots to model what times
we can access the infrastructure. The time-slots are published with a time
resolution of 1 minute and are available about every half hour. It is thus
only possible to start usage of the tracks at discrete points in time.

We have a number of engines available and generate the same number
of engine duties, each containing a set of demands to perform during a
week. A specific engine can perform different engine duties from week to
week. This can lead to an engine starting and ending at different stations
in the beginning and end of the week. However, this must be balanced over
all engines. Furthermore, we distinguish between several types of engines.
Some demands can only be serviced by specific engines. For example, if a
certain track is not electrified, demands via that track cannot be serviced by
electrical engines. Each engine duty must satisfy the following constraints:
(1) It can only use tracks when allowed to do so by a time-slot. (2) There
must be a certain minimum time between the beginning of a demand and the
end time of the previous demand. This minimum time is input for the engine
scheduling problem and can be seen as a buffer time to improve robustness
of the schedule. (3) The engine type must be suitable for all demands in the
duty.

The network that we consider is from DBSRS and is spread over three
countries: Germany, Denmark and Sweden. The crew are divided into three
major groups separated by the country in which they are employed. This
means that they also have a different set of working regulations. For a
detailed description of the working regulations, we refer to Bach (2014).
Within each country, the crew are furthermore assigned to crew bases located
in their country. The crew should always end their duty at their home base,
but can travel anywhere otherwise allowed by the working regulations. If a
driver crosses a border, EU rules are enforced.

As part of any duty there is a set of mandatory tasks. These are sign-
on and sign-off tasks. In order to have a break, start, or end a duty, it
is necessary for crew to walk to/from a break room. This walking time
is dependent on the station used, and it is added to the duration of the
task. Furthermore, a maximum duty length, a minimal break length and

4

a maximum time without a break are considered. The cost of a duty is
modeled as a fixed part and variable part. The variable part consists of
a time-dependent cost, costs for night duties, and costs for cross-border
activities.

The crew scheduling problem then becomes to cover all crew tasks during
a week at the minimum cost using the crew from the three different countries.
In the integrated Timetabling, Engine and Crew Scheduling Problem, we
have to find simultaneously a schedule for the engines and the crew and
decide about the time-slots to request. The goal is to minimize overall costs
while satisfying all constraints of the individual problems discussed before.
In doing so, we make sure that the engine schedule and the crew schedule
are compatible: Both an engine and a crew member must be available at
the time when the demand is being served.

3 Literature

Many successful applications of Operations Research in the railway context
have been discussed in the literature over the last decades (see Kroon et al.
(2009) for an example). The Crew Scheduling Problem (CSP) is usually
solved when the timetable and the engine schedule have been determined.
In what follows, we review the recent literature on the CSP and on the
integration of earlier levels with the CSP. For more information on the other
scheduling levels, we refer to Caprara et al. (2007), Huisman et al. (2005),
or Lusby et al. (2011) and references therein. We also refer to Bach et al.
(2015) for more details on the Timetabling and Engine Scheduling Problem.

In the seminal study by Caprara et al. (1999), the CSP is modeled as
a set covering problem and solved by column generation. In this approach,
the columns represent feasible duties, and the rows correspond to the tasks
that have to be performed. The master problem is solved by Lagrangean
relaxation, while feasible duties are generated in the pricing problem by
solving a resource-constrained shortest path problem.

Recent studies on the CSP mainly focus on developing acceleration tech-
niques in order to solve large-scale problems. Elhallaoui et al. (2005) aggre-
gate multiple tasks into one and thereby reduce the size of both the master
and the pricing problems. By updating the aggregation dynamically, the
problem can still be solved to optimality.

Jütte and Thonemann (2012) divide the CSP into multiple regions and
price the assignment of trips to these regions. This procedure is imple-
mented by Jütte et al. (2011) for a real-world instance from DB Schenker.
The authors show that large-scale instances can be solved in a reasonable
computation time.

Several algorithms for the CSP have found their way to commercial deci-
sion support systems. PowerSolver is developed by Kwan and Kwan (2007)

5

and applied to several instances from the UK. Abbink et al. (2011) describe
LUCIA, a crew scheduling algorithm used by Netherlands Railways that can
solve instances with tens of thousands of tasks. LUCIA is based on an al-
gorithm for the crew rescheduling problem that was developed by Huisman
(2007).

All the algorithms described so far deal with crew planning, where com-
putation times of hours or days are acceptable. When disruptions occur in
the daily operations, crew duties should be rescheduled in real-time. Pot-
thoff et al. (2010) describe a method to reschedule duties within minutes
for a case of Netherlands Railways. Similarly, Rezanova and Ryan (2010)
develop a real-time crew rescheduling approach based on set partitioning
and test it on real-life instances from Denmark.

In this paper we apply the CSP to the case from DBSRS. A particular
difference is that we consider crew employed in different countries who thus
work under different working regulations. The crew considered work in Swe-
den, Denmark, or Germany. Papers considering train working regulations
related to these countries include Rezanova and Ryan (2010) for a Danish,
and Jütte et al. (2011) for a German setting.

Note that there are several papers (e.g. Freling et al. (2003)) where
different types of crew duties are taken into account. However, to the best of
our knowledge, no papers consider the dependency between the crew base,
the performed work (cross-border or not) and the applicable rules.

In Freling et al. (2003) the integration of single-depot Vehicle and Crew
Scheduling is studied. Huisman et al. (2005) extend their model to multiple
depots and focus on a sub/extraurban transit system. They show that due
to the integration significant cost savings can be achieved. This conclusion
is supported by Groot and Huisman (2008), Mesquita et al. (2009), and
Steinzen et al. (2010), among others. All these papers consider a full inte-
gration of the Vehicle and Crew Scheduling Problem, but the application is
focussed on transit scheduling.

Kliewer et al. (2012) extend the Vehicle and Crew Scheduling Problem
with the addition of time windows for trips. By allowing to shift trips
with up to 4 minutes in time, they achieve a further cost reduction. The
approach is based on an integrated model presented by Steinzen et al. (2010).
In contrast to our model, the authors represent the vehicle schedule as a
network flow. The solution methodology is tested on real-life data from
public bus transportation. A similar approach to re-timing in the CSP can
be seen in Veelenturf et al. (2012), where a Crew Rescheduling Problem at
Netherlands Railways is considered. Here, minor changes to the timetable
result in improved solutions.

Gintner et al. (2008) present a partial integration of Vehicle and Crew
Scheduling. The optimal vehicle flow can be decomposed into an optimal
vehicle schedule in a number of different ways. All these alternative solu-
tions to the Vehicle Scheduling Problem are implicitly explored in the crew

6

scheduling phase.
This paper also partially integrates timetabling and vehicle scheduling

with crew scheduling. In particular, our approach allows to change the
timetable when solving the CSP, but leaves the order of the demands in
the engine duties unchanged. Besides the work by Kliewer et al. (2012),
we are not aware of any other paper considering timetabling, vehicle, and
crew scheduling simultaneously. Kliewer et al. (2012) also allow some de-
gree of re-timing, but integrate the vehicle and crew scheduling problems
fully. Furthermore, in their model, small changes of up to 4 minutes in the
timetable are considered, where the changes we consider are much larger.
As a consequence, our duties might change more considerably if a demand
is re-timed. Furthermore, our model is for a railway system whereas their
model is for a public bus transit system. The most significant difference
with a bus transit system is that the access to the railway infrastructure has
to be considered, which means that re-timing is limited to selecting other
time-slots. Also, the costs of the time-slots are taken into account.

4 Mathematical Formulations

In order to assess the benefit of integrating the timetabling and the crew
scheduling phase, we are going to compare the integrated approach to the
sequential approach. In the sequential approach, we solve the CSP using
a fixed timetable that is found by the TESP. By comparing this to our
integrated approach, we can evaluate the possible quality improvements ob-
tained by integration. In this section, we first describe the central aspect
of our integrated approach. Then, we describe the TESP, the regular CSP
and our integrated model. The regular CSP assumes a fixed timetable as
input and is used in the sequential approach. Our integrated approach, on
the contrary, only needs the engine schedule from the TESP as input.

The following observation is central to our integrated methodology. Re-
call from Section 2 that a time window is associated with each demand that
has to be serviced. Furthermore, as described in the introduction, a train
can only be operated when a time-slot is available. As a consequence, for
each demand, a discrete set of departure options can be derived. To illus-
trate this using the example in Section 1, assume that the time window of
the second demand from A to C prescribes that the demand should arrive
at C between 6pm and 12pm. There are two trains from A arriving at C
within this time window. It follows that the demand should either depart
from A at 5pm, or at 9pm. A similar discrete set of departure options can be
derived for every demand. Instead of selecting one departure option for each
demand before optimizing the engine and crew schedules, we postpone the
decision for a specific departure option. All departure options are taken into
account when solving the TESP. Then, given the engine schedule that has

7

been found, the sets of departure options are reduced. These reduced sets
of departure options are considered when optimizing the crew. We explain
this in more detail in Section 4.3.

4.1 Timetabling and Engine Scheduling Problem

Both the TESP and the CSP are solved using a column generation approach.
The TESP selects the time-slots to request. It does this while generating
a set of weekly engine duties, that can be combined to cover all demands.
The engine duties do not necessarily start and end at the same station
but the complete schedule overall is balanced at each station. The TESP
is formulated and solved as in Bach et al. (2015). There are no decision
variables that explicitly define the selection of the time-slots. Instead, the
selected time-slots are extracted from the engine duties chosen in the model.

The TESP is formulated as a Set Partitioning Problem, with ΩE being
the set of engine duties, indexed by r, under consideration. D is a set of
all demands d. N is the set of all stations, indexed by n. S is a set of all
time-slots s. E is the set of engine types e. The parameter we denotes the
engine availability for engine type e.

The following parameters characterize an engine duty: Kr is the cost of
duty r. The parameter ηdr indicates whether demand d is covered by duty r.
In the engine duty, the demand is scheduled at a specific time. Therefore,
the time-slots that must be requested can be deduced from the engine duties
that are selected in the final solution. βnr is equal to 1 if a station n is used
in duty r as origin station. If it is used as destination station it is equal to
-1. If a station is used as both origin and destination or neither, βnr is equal
to 0, i.e., the duty is balanced with respect to this station. If time-slot s is
used by duty r, then γsr is equal to 1. We set δer equal to 1 if duty r is driven
by engine type e. Finally, we introduce the binary decision variable ur, that
indicates whether engine duty r is selected in the engine schedule (ur = 1)
or not (ur = 0). The integer program is formulated as follows:

8

min
∑
r∈ΩE

Krur (1)

s.t.,
∑
r∈ΩE

ηdrur = 1, ∀d ∈ D (2)

∑
r∈ΩE

δerβ
n
r ur = 0, ∀n ∈ N, e ∈ E (3)

∑
r∈ΩE

γsrur ≤ 1, ∀s ∈ S (4)

∑
r∈ΩE

δerur ≤ we, ∀e ∈ E (5)

ur ∈ {0, 1}, ∀r ∈ ΩE (6)

The objective function (1) minimizes the cost of the selected engine
duties. In constraints (2) we make sure that all demands are serviced by
the engines. To ensure a necessary balance between the starting and ending
stations of the engine duties, we have the balance constraints (3). These
constraints ensure that for each station n and engine type e, the number of
engines of type e departing from n equals the number of engines of type e
arriving there. In constraints (4) we ensure that each time-slot is used for
servicing at most one demand. Engine availability is ensured by constraints
(5). For details on the solution method for the TESP, we refer to Bach et al.
(2015).

4.2 Crew Scheduling Problem

The CSP is formulated as a Set Covering Problem, and solved by a column
generation approach in which we generate duties ad-hoc in a pricing problem.
The input for the CSP contains a set of demands d ∈ D. Each demand d
represents a set of wagons that must be transported from one station to
another. On this route there can be one or more relief points for the duties.
Thus d is split into one or more crew tasks. P is the set of all tasks, indexed
by p. ΩC is the set of all crew duties (columns) in the restricted master
problem, indexed by r. The cost of a duty r is given by cr; the parameter
αp
r indicates if crew task p is covered by duty r. We define the parameter
EDC as the engines’ driver capacity. For example, if EDC = 2, there can
be 1 engine driver and 1 deadheading driver in the engine. We introduce
the binary decision variable yr that indicates whether a crew duty r ∈ ΩC

is selected (yr = 1) or not (yr = 0). The integer program is formulated as
follows:

9

min
∑
r∈ΩC

cryr (7)

s.t., 1 ≤
∑
r∈ΩC

αp
ryr ≤ EDC, ∀p ∈ P (8)

yr ∈ {0, 1}, ∀r ∈ ΩC (9)

The objective function (7) minimizes the cost of the selected duties.
Constraints (8) ensure that all tasks are covered by at least one duty and
that at most two drivers are scheduled on each specific task.

4.3 The Integrated Crew Scheduling Problem

When solving the TESP as in Bach et al. (2015), we obtain a fixed departure
time for each demand and a set of engine duties. However, in this paragraph
we explain that there are a number of alternative feasible solutions. In the
integrated approach, we seek to explore these alternative solutions by al-
lowing re-timing of the individual demands when solving the CSP. When
re-timing the demands in the CSP, we make sure that the engine sched-
ule remains feasible. In particular, each engine duty will contain the same
demands in the same order. However, the precise departure times of the
demands might change.

In an optimal solution to the TESP, a demand is serviced at a point in
time within its time window, and by a specific engine duty. An engine duty
services one or more demands. There can be large time intervals between
two demands in a duty. As a consequence, it holds for some demands, that
the engine duty remains feasible if the departure time of that demand is
changed. We say that a demand can move freely within its time window if
all of its original departure options are still available. If the engine duties
contain much slack, this might hold for many demands. The departure times
of the other demands are either fixed completely or can only vary among a
restricted part of the original set of options. We will explain this in more
detail in the following paragraph.

In Figure 1, we depict a typical engine duty above the horizontal line.
Demands are indicated by numbered rectangles. The lines indicate the time
windows of the demands. In the current solution, there is a large time in-
terval between the end time of demand 2 and the start time of demand 4.
Within this time interval, only demand 3 has to be serviced. Therefore, it
is possible to re-time the service of demand 3 to another moment. As can
be seen in Figure 1, demand 3 can be serviced anywhere within its time
window, as long as demands 2 and 4 are fixed. Similarly, there is some time
between the end time of demand 4 and the start time of demand 5. For
demand 4, we cannot choose among all of the original departure options,

10

1 Demand
Time window
Reduced time window

1
2

3
4

5
6

Time1
2

3
4

5
6

Figure 1: Time window reduction: On top, original time windows are shown
for six demands in an engine duty. Below, for those demands, the reduced
windows are depicted with dotted lines.

but it is possible to select any earlier time-slot. In our integrated approach,
we allow changes to the exact timing of the demands when solving the CSP.
We do this in such a way, that the engine duty remains feasible. We now
explain how to do that.
To make sure that a feasible engine schedule still exists after solving the
CSP, we do not consider all departure options in the crew scheduling phase.
Instead, we define reduced time windows for all demands. We define these
reduced time windows in such a way, that whatever combination of depar-
ture options we choose within these reduced time windows, the engine duty
will always remain feasible. In the bottom of Figure 1, the reduced time
windows are depicted by dotted lines. We now explain how we determine
the reduced time windows. A time window remains unchanged if there is
no overlap with the time windows of the previous and next demand in the
engine duty. Otherwise we start from the departure option selected in the
optimal solution. This departure option is always included in the reduced
time window. We add the later departure options as long as they do not
overlap with the time window of the next demand. If the departure option
does overlap with the time window of the next demand, this departure op-
tion is not included in the reduced time window. Then, we consider earlier
departure options. We add earlier departure options as long as they do not
conflict with the departure option selected in the current TESP solution.
To summarize the procedure, the time windows are extended to the right
until the start of the next time window and to the left until the scheduled
end time of the previous demand.

We now allow to select any departure option from the reduced time
window when solving the CSP. By construction of the reduced time windows,

11

d′

p′1

p′2

d

p1

p2

d′′

p′′1

p′′2

A

B

C

Time3pm 5pm 7pm

Departure option

Figure 2: The alternative departure options d′ and d′′ and the corresponding
crew tasks for a specific demand d.

the engine duty will remain feasible whatever departure times are selected in
the CSP. A drawback of this approach is that less flexibility is available when
solving the CSP. Because only a part of the departure options are available
when solving the CSP, we say that the timetabling and crew scheduling phase
are partially integrated. From now on, we refer to the partially integrated
Crew Scheduling Problem as the I-CSP.

4.4 Formulation of I-CSP

As explained in the previous section, we allow to select any of the departure
options in the reduced time windows when solving the CSP. In contrast to
the TESP, in the CSP we do include explicit decision variables that indicate
which departure option is selected. In order to integrate the timetabling
aspect with the CSP, we must connect the timing of the demands with the
selected crew duties. We do this by taking the set of demands D. For each
d we take the discrete set of departure options in the reduced time window
and make a copy of d for each departure option. We assign these copies d′

to the set D′d. The set D′d now contains a copy for each departure option
of d, that is, for each time it is possible to start service of demand d. An
example is depicted in Figure 2. The departure of a demand d from A to
C is scheduled at 5pm. However, two more departure options are available
in the reduced time window: a departure at 3pm and a departure at 7pm.
These departures are depicted as d′ and d′′, respectively. For notational
convenience, we define D′ as the union of the sets D′d over d ∈ D. We
introduce the decision variable xd′ which is equal to 1 if the demand is
performed at the given time, 0 otherwise.

Each demand d corresponds to one or more tasks p. If we select a different
departure option for a demand d, we also have to cover the crew tasks at
different times. For each d′ we make a set of copies of the corresponding
crew tasks p, so we now have a p′ for each d′ ∈ D′d contained in a set P ′p for

12

all tasks p ∈ P . For the example in Figure 2, the demand d is decomposed
in two crew tasks p1 and p2. Similarly, the demand copies d′ and d′′ are
decomposed in two crew tasks.

We link the demand copies d′ ∈ D′ to the crew tasks, so that the time
chosen for service with the engine always corresponds to the time chosen for

the crew tasks. In order to do so, we define the parameter γp
′

r which is equal
to 1 if task copy p′ is used by crew duty r, and 0 otherwise. In contrast, the
parameter αp

r indicates whether duty r covers any copy of task p. Finally,
recall from Section 4.2 that EDC represents the number of drivers that can
be present on an engine. The integer program is formulated as follows.

min
∑
r∈ΩC

cryr +
∑
d′∈D′

cd′xd′ (10)

s.t.,
∑

d′∈D′d

xd′ = 1, ∀d ∈ D (11)

∑
d′∈Ms

xd′ ≤ 1, ∀s ∈ {S : |Ms| > 1} (12)

∑
r∈ΩC

αp
ryr ≥ 1, ∀p ∈ P (13)

EDCxdem(p′)−
∑
r∈ΩC

γp
′

r yr ≥ 0, ∀p′ ∈ P ′ (14)

yr ∈ {0, 1}, ∀r ∈ ΩC (15)

xd′ ∈ {0, 1}, ∀d′ ∈ D′ (16)

In the objective function (10), we minimize the sum of the crew costs
and the additional costs of the time-slots. Recall that the costs of the time-
slots are time-dependent. For example, time-slots in the peak hours might
be more expensive. Hence, it is necessary to introduce the additional costs
of choosing a more expensive time-slot. These additional costs are captured
by cd′ . Constraints (11) make sure that one departure option is selected for
all demands. Some demands use the same time-slots if serviced on specific
times. When allowing changes to the departure times of the demands, we
need to make sure that no more than one demand is using a time-slot.
For all s ∈ S, we let Ms be the set of demand copies d′ using the same
time-slot s. Constraints (12) ensure that no more than one of the demand
copies using the same time-slot is selected. Constraints (13) are the set
covering constraints and were also present in the CSP. They ensure that
each demand is covered by a crew duty. Finally, constraints (14) ensure
that xdem(p′) attains a positive value if a corresponding task copy is part of
a selected duty. This ensures that the departure option that is selected is
also the one that is covered by the crew duties.

13

A stronger bound can be achieved by adding the constraints in (17). The
parameter EDC in (14) is of a big M type. In the relaxation this allows for
fractional x variables. This indicates that tasks corresponding to the same
demand are serviced at different times. The following constraints ensure
that all tasks in a demand are serviced at least with the same fraction as
the corresponding demand.∑

r∈ΩC

γp
′

r yr − xdem(p′) ≥ 0, ∀p′ ∈ P ′ (17)

However, this is not part of our model as it also slows down the solution
process significantly.

4.5 Extension: Re-timing at intermediate stations

We explained in Section 2 that every demand should be serviced as a direct
train from its origin to its destination. This means that once a demand has
departed, it must get to its destination as fast as possible. In cases where
direct trains are not required, it might be possible to decrease costs even
further by re-timing demands at intermediate stations along their route. In
this way, demands can be scheduled more flexibly. Our model can handle
this situation, if one set of constraints is changed and one set of constraints
is added. First, the data must be adjusted. All demands must be cut at
intermediate stations where it is possible to park a train. By doing so,
a demand d is decomposed into a set of trips Td that must be performed
sequentially. We assume that all stations where trains can be parked are a
relief point for the crew. In this way, the trips decompose into one or more
crew tasks similarly as the demands did in Section 4.2. We define T as the
union over d ∈ D of the sets Td. Then, for all trips t ∈ T , a discrete set
of copies t′ must be generated. The copies t′ are similar to the copies d′ of
d. We define T ′t as the set of all copies t′ of trip t. Finally, in the master
problem, we must first select for each trip one of its copies. This means that
xd′ is replaced by xt′ and that (11) is replaced by∑

t′∈T ′t

xt′ = 1, ∀t ∈ T. (18)

Second, we must ensure that compatible copies are selected. We explain
this with the example in Figure 2. Here, for a demand d from A to C, two
alternative departure options are depicted. Assume now that it is allowed
to park the train at station B for some time. Then the demand d can be
decomposed similarly as the crew tasks. For each departure option d, there
are now 2 trips: t1 and t2. For each trip, we must select one of the copies.
It is now not required to select trips originating from the same demand. For
example, we can combine trip t′1 with trip t2. On the contrary, it is not

14

possible to combine trip t1 with trip t′2. When scheduling the crew, we must
ensure that the copies of t that are selected are compatible. We model this
by introducing a set C of incompatible copies. For each trip t′i, we define the
set C(t′i) as those trips t′i+1, that are incompatible with t′i. In the example,
we find C(t′′1) = {t′2, t2} and C(t1) = {t′2}. We now introduce the following
constraints in the master problem to make sure that compatible copies are
selected.

xt′ +
∑

t′′∈C(t′)

xt′′ ≤ 1 ∀t′ ∈ T ′. (19)

These constraints are similar to the ones used by Veelenturf et al. (2012)
in the Crew Rescheduling Problem to model the option of re-timing tasks.
Note that in general, a trip can decompose in more than one crew tasks. In
that case, Constraint (14) makes sure that the corresponding crew tasks are
compatible, too.

We refer to the Integrated Crew Scheduling Problem with re-timing at
Intermediate Stations as the I-CSP-IS.

5 Solution Approach

To establish a benchmark in order to see how much the solution to the CSP
can be improved by our integrated approach, we use our model in two ways.
First, for the benchmark, we fix the x variables - representing the chosen
timetable - to the solution provided by the TESP. This corresponds to the
sequential approach where we first solve the TESP and then the CSP. In
order to quantify the improvement obtained by integration, we compare the
solution value of the I-CSP to a lower bound on the sequential solution value.
In this way, we can be sure that the improvement stems from the integration,
and not from our inability to solve the CSP to optimality. Thus, we try to
increase the lower bound on the solution value of the sequential approach by
branching in a breadth first manner. The objective is to compare the cost
of this benchmark solution to the cost of the integrated approach. For the
comparison we use the total crew costs and the additional costs of choosing
sub-optimal time-slots in the integrated approach.

In the integrated approach we let the timetable variables x flow freely
within the reduced time windows. To reach an integer solution, we first
branch on the timetable variables, then we try to find an integer solution
for the crew by performing a depth first search while branching on the tasks
in the duties.

In this section, we will cover the graphs for the pricing problems, the
algorithm for finding the shortest path, and the branching approaches. For
more details on our implementation, we refer to Bach (2014).

15

5.1 Pricing Problem Splitting

The pricing problem for duty generation is modeled as a Shortest Path
Problem with Resource Constraints. The nodes in the graph are the tasks
that have to be performed. Two tasks a and b are connected by an arc if it is
possible for a crew member to perform task b directly after performing task
a. The network that we obtain in this way is cyclic. Abbink et al. (2011)
deal with this by splitting the pricing problem into days of the week. This
gives one pricing problem per day, beginning with the first time-period of
the day and ending at the latest plus the maximum work time allowed in a
duty. In this way all possible duties are captured, and the individual pricing
problems are now acyclic.

Furthermore, the pricing problems are split by nationality and depot,
such that any problem has a fixed start/end point and is governed by a
given set of labor rules. When drivers cross borders they must adhere to a
set of EU working rules. By solving a separate pricing problem where we
allow the drivers to cross borders, we still have a distinct set of working rules
that is independent of the decisions in that pricing problem. In a similar
fashion, we generate different pricing problems for generating night duties
and general duties. In total with the rules applied, we get about 350 pricing
problems.

5.2 Pricing Problem Graphs

In the pricing problem we solve a Shortest Path Problem with Resource
Constraints (SPPRC, see Feillet et al. (2004)) on multiple graphs, which are
generated as follows. The graphs consist of nodes representing tasks, each
node has a specific work time (wti) and drive time (dti) given. The arcs
connecting the nodes have work time (wtij) and drive time (dtij). They also
have a break time (btij) assigned, representing how long a break is possible
between two tasks. A parameter, break at end (beij), indicates whether a
break is at the end of an arc or in the beginning of it. If it is possible to place
the break in either end, two parallel arcs are introduced. These parameters
are important when calculating the time since break requirement.

For each individual pricing problem a graph is created with the nodes
that fall within the time frame, regulations, and the geography of the prob-
lem. For example, a task is represented by a node if it is reachable from
the depot within the maximum working time of the duty. If the problem
contains cross border activities, only tasks where it is possible to connect to
a cross border task are included. The same applies to night duties. Only
tasks that can be part of a night duty are included. For non-night duties
the opposite applies.

We define a cycle as a duty performing copies of the same task at two
different times. This is an infeasible duty, but it can be generated because

16

in the pricing problem we do not keep track of the copies that are selected in
the duty. To reduce the probability of cycles in the duties, the following rules
are enforced prescribing which nodes can be connected. If we do not allow
any node to connect to any other node that represents a copy of the same
node at a different time, we reduce the number of infeasible connections.
This can be expanded to disallow any connection from a node to any other
nodes deriving from the same engine demand but at an incompatible time.
Finally, we can remove connections that will not be feasible with respect
to the time-slots in the master problem. Constraints (12) indicate that at
most one demand can be serviced in each time-slot. Some copies of different
demands might use the same time-slot. In such cases, only one of these
demand copies can be chosen. Then, we do not allow connections between
the two demands. Equivalently, servicing tasks from different demands that
will use the same time-slot simultaneously, cannot be part of an integer
solution.

5.3 Branching

We branch in two stages, first for the timetable variables x, and second for
the duties y. To reach an integer timetable we fix one xd′ ,∀d′ ∈ D′d to 1 for
all d ∈ D. Our branching approach has two ways of fixing this. First, we
fix exactly one of the variables to 1 on the left branch and 0 on the right
branch. Second, we split the set D′d in two by the fractional values of the
xd′ variables, such that the fraction is balanced over both branches.

The branching procedure first checks whether any xd′ variables satisfy
0.8 ≤ xd′ < 1,∀d′ ∈ D′. If this is the case, we select the one closest to 1 for
branching. If none of the xd′ variables satisfy the criterion, the second rule
is applied. In the second rule the d ∈ D with the largest number of non-zero
variables xd′ , ∀d′ ∈ D′d is branched on.

To find integer solutions for the duties, we employ a classic follow-on
branching scheme based on Ryan-Foster branching (Ryan and Foster, 1981)
on the crew task. The implementation of this is similar to the implementa-
tion used in solving the TESP in Bach et al. (2015). The follow-on scheme
ensures that a task a is always performed immediately before a task b on
the left branch, and task b is never performed immediately after task a on
the right branch.

5.4 Exploration of the search tree

Implementing and solving the model gives some challenges: Finding an op-
timal solution to the I-CSP model in reasonable time is not possible. There-
fore, the problem is solved in two stages. First, the timetable related vari-
ables are fixed, and then we continue to variables from the crew phase. As
we will address later, the LP-relaxation for the CSP is very tight when the

17

timetable is fixed. On the contrary, if the timetable can be adjusted, the LP
relaxation is quite weak. Thus branching to get the fixed/integer timetable
takes a long time. This is the main reason why we do not solve the model
to optimality. Instead we branch on the timetable as described but add an
acceptance criterion for accepting a node. We either pick the 1-branch if the
new objective value is less than 0.01% worse than the predecessor. If this
criterion is not met, we choose the branch with the lowest objective value.
In this way we can reach a fixed/integer timetable in reasonable time and
then continue to solving the crew part of the problem. This part is solved
as for the pure CSP and is solvable in reasonable time as will be shown in
Section 6.2.

The solution method in itself is deterministic. However, as the pric-
ing problems are solved in parallel, columns are inserted in different or-
ders. This leads to different dual values and as a consequence, to different
columns being generated in the following iteration. When branching, differ-
ent branching decisions can be made due to having an alternative solution
to the LP-relaxation. Because the algorithm is terminated before we ex-
plore the entire search tree, we might obtain a different solution for multiple
repetitions with the same data. For the classical CSP the gap shows to
be very small and hence this is not a problem. For the I-CSP variants the
gap is larger and therefore we have performed multiple repetitions for each
instance to provide a fair comparison.

6 Computational Experiments and Results

Experiments have been carried out on an Intel Core i7 2.8 GHz and imple-
mented with C++ using ILOG CPLEX 12.4 as the mixed integer program-
ming solver, as a parallel algorithm using up to 8 threads.

In this section we describe the instances used. Then, we present results
for the pure Crew Scheduling Problem (CSP). Finally, we will compare these
results to those for the Integrated Crew Scheduling Problem (I-CSP) and
the Integrated Crew Scheduling Problem with re-timing at Intermediate
Stations (I-CSP-IS).

6.1 Instances

In Table 1, we report the main characteristics of the instances used to test
the algorithms. These are based on the instances and the results from Bach
et al. (2015). We have tested on three main groups of instances. The main
parameter is the number of demands, which is the size of the set D. The
second parameter is the number of engines used in the TESP solution. We
have two different test sets: one with 24 and one with 30 engines. Please
note that the engine duties are a fixed input to the I-CSP model and we
do not re-optimize the number of engines used. We distinguish between 3

18

Table 1: The main characteristics of the instances

Instance
TW Engine: Crew: Excl.
width Used |D| |D′| |P | |P ′| sets

CSP-90-24-s 6 24 90 650 462 3,424 637
CSP-90-30-s 6 30 90 772 462 3,947 713
CSP-90-30-ex3 9 30 90 1,032 462 5,287 779
CSP-180-24-s 6 24 180 1,131 956 6,059 1,118
CSP-180-30-s 6 30 180 1,312 956 6,903 1,265
CSP-180-30-ex3 9 30 180 1,779 956 9,712 1,586
CSP-228-24-s 6 24 228 1,511 1,214 7,905 1,555
CSP-228-30-s 6 30 228 1,745 1,214 9,104 1,711
CSP-228-30-ex3 9 30 228 2,295 1,214 12,355 2,024

engine types. If two test instances are equal in all parameters except in
the number of engines available, the same number of tasks is covered by a
different number of engine duties. If the number of engine duties decreases,
the engine duties contain more tasks on average. Thus, the engine duties
are more dense and the engines have a higher utilization. This leads to less
departure options in the reduced time windows. The set D′ contains the
different departure options for serving each demand.

The third parameter is the average width of a time window. In the
standard “s” instances it is 6 hours, and in the extended time window in-
stances “ex3”, the time windows are extended by 3 hours, to 9 hours in total.
The naming of the instances follows the convention CSP-“|D|”-“#Engines
used”-“TW width”. For each demand in D, as described earlier, we split
the demand into one or more tasks at relief points. The set P consists of all
these tasks. The set P ′ holds all the crew tasks at different times of service.
Finally, in the table we have the Exclusion sets, which are sets containing
more than one demand d′ that cannot be part of the same solution. The
instances are ordered first by |D| and second by |D′|. These parameters are
assumed to reflect the difficulty of an instance.

6.2 Computational Results

In Tables 2, we report results for the CSP. In this table the column headings
are interpreted as follows: The gap is the gap from the integer solution to
the lower bound for the crew phase (LB-C) or to the root relaxation for the
crew phase (Root-C). An * means that an optimal solution was found. We
also report computation times. Root-C is the time to solve the root node for
the crew phase. Int-C is the time it takes to reach an integer solution for the
crew. The column (Columns) states the total number of columns generated
at the root node and during branching. The column (Branch nodes) gives

19

the number of nodes explored in the branching tree.

Table 2: Crew Scheduling Problem

Instance
% Gap: Columns: Branch Time (seconds):

LB-C Root-C Root Branch nodes Root-C Int-C Total

CSP-90-24-s * 0.0174 5,552 807 23 15 20 26
CSP-90-30-s * 0.0153 5,304 378 7 17 23 23
CSP-90-30-ex3 * * 5,591 0 1 26 27 27
CSP-180-24-s 0.0538 0.0841 10,840 398,644 4,093 29 117 †
CSP-180-30-s * 0.0115 10,202 35,646 388 35 88 484
CSP-180-30-ex3 0.0661 0.0903 10,918 406,115 3,812 59 175 †
CSP-228-24-s 0.0047 0.0240 12,840 394,961 2,041 51 239 ‡
CSP-228-30-s 0.0436 0.0736 12,471 677,403 5,465 56 187 ‡
CSP-228-30-ex3 0.0644 0.0821 12,876 665,440 4,916 88 297 ‡
* indicate a zero gap, i.e., an optimal solution is found.
† is maximum computation time (3 hours) for medium sized instances (demand = 180).
‡ is maximum computation time (9 hours) for large sized instances (demand = 228).

From the table we can see that the model can be solved to proven opti-
mality in reasonable time for the small instances that can be solved in less
than 30 seconds. For the medium sized instances we can prove optimality for
one instance. In general we get integer solutions very fast. In the worst case
this is within 3 minutes. Considering the instances with |D| = 228, which
are real-life sized instances, we obtain feasible solutions for all of them within
5 minutes. These results indicate that the model scales rather well. This
is primarily due to the structure of the pricing problems that are split into
days. Thus, adding extra demands can at worst affect two consecutive days.
Hence, not all pricing problems increase in size when adding a demand.

Looking at the gaps, it can be seen that the root relaxation is a very
strong lower bound on the integer solution. The gaps are the total cost of the
integer solution compared to the total cost of the root / lower bound solution.

For the root of the CSP (Root-C) it is calculated as (‘Int−C′−‘Root−C′)
‘Root−C′ . The

worst (Root-C) gap is less than 0.1%, and the (LB-C) gap is in the worst
case further narrowed to less than 0.07% when branching. In all cases these
gaps are very small. We exploit this in the search tree exploration approach
of the I-CSP as described in Section 5.4. The CSP has an objective value
very close to the optimal value even with fractional crew schedules. Because
of this we assume that when branching on the timetable variables in the
I-CSP the objective value will be a good indication of the impact a branch
decision will have on the crew cost.

The results presented in Table 2 are used as benchmark solutions for
evaluating the quality of the I-CSP solutions.

In Table 3, we report results for the I-CSP. In this table, the column
headings are interpreted as follows: The gap is the gap from the integer
solution to the lower bound for the crew phase (LB-C), to the root relaxation
for the crew phase (Root-C), and to the root relaxation for the timetabling

20

Table 3: Integrated Crew Scheduling Problem

Instance
% Gap: % Saving: Time (seconds):

LB-C Root-C Root-TT Avg Min Max Root-TT Int-TT Int-C

CSP-90-24-s 0.011 0.046 14.444 10.1 9.16 11.09 344 1512 1536
CSP-90-30-s 0.013 0.059 14.929 12.63 11.87 13.23 494 2106 2154
CSP-90-30-ex3 0.047 0.079 15.388 12.89 12.26 13.84 1165 3218 3370
CSP-180-24-s 0.149 0.168 14.759 7.59 7.48 7.79 1103 5453 6033
CSP-180-30-s 0.146 0.157 15.526 8.38 8.02 8.64 1636 7430 7922
CSP-180-30-ex3 0.288 0.289 16.675 9.88 9.59 10.24 4810 14857 16722
CSP-228-24-s 0.188 0.195 15.544 7.11 6.28 7.62 2216 10442 11221
CSP-228-30-s 0.145 0.152 16.377 7.42 6.88 8.08 3655 14922 16664
CSP-228-30-ex3 0.212 0.219 17.633 9.12 8.58 9.74 9856 26140 26785

phase (Root-TT). For the computation times, Root-TT is the time to solve
the timetabling root node. Int-TT is the time to reach an integer timetable,
which is the same as solving the root node for the crew phase (denoted by
Root-C in Table 2). Int-C is the time it takes to reach an integer solution
for the crew. As described in Section 5.4, the table is based on multiple
runs for each of the test instances. The table shows 6 repetitions for each
instance.

Average

Min-Max

5%

10%

15%

C
S
P

-9
0-

24
-s

C
S
P

-9
0-

30
-s

C
S
P

-9
0-

30
-e

x3
C

S
P

-1
80

-2
4-

s
C

S
P

-1
80

-3
0-

s
C

S
P

-1
80

-3
0-

ex
3

C
S
P

-2
28

-2
4-

s
C

S
P

-2
28

-3
0-

s
C

S
P

-2
28

-3
0-

ex
3

Figure 3: Results of I-CSP

Table 3 and Figure 3 present the total cost reductions, i.e., crew savings
minus re-timing costs. The interval depicted for each instance in Figure 3
represents the minimum and maximum saving achieved. For all instances, a
significant cost reduction is achieved in both worst and best case. Compared
to the CSP, this cost reduction clearly shows that adjusting the timetable

21

at the CSP phase is an advantage. Observing Table 3, it is clear that the
cost reductions fluctuate for each instance, which is expected due to the
heuristic nature of the solution method. We believe that this lies within an
acceptable range. A longer computation time will lead to greater stability
as more alternative timetables can be explored. When comparing improve-
ments among different test instances, it should be noted that these are not
necessarily comparable. Consider a given timetable with engine schedules
and its CSP solution. In theory the timetable can be the timetable that
is also optimal for the CSP. In this case we would have a 0% improvement
for the I-CSP. This would not tell us anything about the quality of the I-
CSP method but rather that we were lucky to have the optimal timetable.
Thus, when evaluating the consistency of the method, we compare among
single instances. When evaluating the quality of the method, we note that
for all test instances we get significant improvements, which shows that the
method is useful.

From Table 3 it can be seen that improvements for the I-CSP are between
6.28% and 13.84%. The smallest and largest average improvement are 7.11%
and 12.89%, respectively. From the results it is clear that the I-CSP delivers
significant improvements compared to the benchmark cases. Observing the
data sets with 90 demands, it can be seen that the least flexible CSP-90-24-s
is also the one with the lowest average improvement, compared to CSP-90-
30-s and CSP-90-30-ex3. The tendency that the improvement is linked to
the degree of flexibility is also present for the instances with 180 and 228
demands. It is a tendency that strongly suggests that the improvements
found stem from the degree of flexibility.

Another tendency suggests a correlation between the number of demands
and the improvement. This can be explained by the complexity of the
underlying Timetable and Engine Scheduling Problem. Here the schedules
are less compact in the smaller instances, and thus there is more flexibility
to exploit when solving the I-CSP. It could also suggest that the method is
able to exploit the flexibility better on smaller instances. From Table 1 it
can be seen that there is more flexibility for each crew task and demand for
the smaller than the larger instances.

The I-CSP needs much more time than the CSP. The computation times
increase by a factor in the range of 45 to 126. Among the computation times
found in Tables 2 and Table 3, the longest computation time is about 7.5
hours. This should be seen in the context of this problem being solved once
per year in a planning process that leaves enough time for a computation
time of up to multiple days. The significant total cost reductions achieved,
justify the additional computation time.

To ensure that the stability of the method is consistent, we have tested
the I-CSP approach with further repetitions on selected instances CSP-228-
30-s and CSP-228-24-s. Here 12 repetitions have been performed without
changing the conclusions of Table 3.

22

Table 4: Integrated Crew Scheduling Problem with re-timing at Intermedi-
ate Stations

Instance
% Gap: % Time (seconds):

LB-C Root-C Root-TT Saving: Root-TT Int-TT Int-C

CSP-90-24-s 0.101 0.112 21.13 24.96 479 1655 1734
CSP-90-30-s 0.048 0.048 23.46 27.20 740 2310 2433
CSP-90-30-ex3 0.022 0.022 22.55 28.24 1790 3890 3929
CSP-180-24-s 0.028 0.032 14.06 31.30 715 11081 14521
CSP-180-30-s 0.191 0.193 19.05 29.59 1022 7255 14471
CSP-180-30-ex3 0.173 0.173 22.10 25.53 2779 39514 42257
CSP-228-24-s 0.198 0.198 19.28 24.40 1654 10345 14497
CSP-228-30-s 0.074 0.080 19.69 25.02 1830 26903 27406
CSP-228-30-ex3 0.288 0.288 22.95 24.74 4917 55797 57735

In Table 4 we represent results for the I-CSP with intermediate delays
allowed. Here only one repetition has been performed as we wish only to
show that this is indeed something the model is capable of solving. Also
we wish to show that there is a potential if re-timing the engines at inter-
mediate stations were allowed throughout the network. If we consider the
performance, we can see that there is in general a larger gap to the root re-
laxation of the timetable when compared to Table 3. This can be explained
by the increased number of timetable related variables. This number is re-
ported as |D′| in Table 1. The computation times are in general increased
with respect to those for the I-CSP. However, this is to be expected as we
increase the number of variables in the timetabling phase. The increase in
computation time is within an acceptable factor of less than 3. In Figure
4 we compare the total cost savings, where the top bar represents the cost
saving that can be achieved by allowing to re-time services at intermediate
stations. It can be seen that the cost savings are significantly larger when
allowing this re-timing at intermediate stations. Thus, there is a significant
potential compared to the standard I-CSP. This conclusion is quite con-
sistent over all instances and shows a potential of about a 15% additional
saving.

In Table 5 we compare some characteristics of the solution process for
both the I-CSP and the I-CSP-IS. First we have |D′|, the number of timetable
variables, that increases significantly due to the intermediate delays. This
change, has the biggest impact on the performance of the algorithm as it in-
creases the size of the master-problem significantly. The increase is roughly
a factor of 3. In both models a majority of the nodes in the branching tree
are explored during the timetabling phase, the same is valid for the columns.
The table also, in general, shows a significant increase in the number of nodes
explored in the I-CSP-IS. The I-CSP-IS is a more complex model to solve,
but our algorithm can solve it within reasonable time.

23

5%

10%

15%

20%

25%

30%

C
S
P

-9
0-

24
-s

C
S
P

-9
0-

30
-s

C
S
P

-9
0-

30
-e

x3
C

S
P

-1
80

-2
4-

s
C

S
P

-1
80

-3
0-

s
C

S
P

-1
80

-3
0-

ex
3

C
S
P

-2
28

-2
4-

s
C

S
P

-2
28

-3
0-

s
C

S
P

-2
28

-3
0-

ex
3

Avg. I-CSP

Avg. I-CSP-IS

Figure 4: Comparison of results of I-CSP and I-CSP-IS

7 Conclusions and Future Research

In this paper we set out to investigate to what extent the Crew Scheduling
Problem (CSP) can be integrated with the earlier planning stages at a freight
railway operator. We have presented a method for integration and a model
for the Integrated Crew Scheduling Problem (I-CSP). Furthermore, allowing
for wider re-timing possibilities, we also introduced the I-CSP with re-timing
at Intermediate Stations (I-CSP-IS). We have suggested a heuristic Branch-
and-Price approach to solve the I-CSP and the I-CSP-IS. The suggested
algorithm has been tested on a set of test instances derived from a real-life
case at a freight railway operator. The results from the I-CSP have been

Table 5: Problem size analysis

Instance
I-CSP I-CSP-IS

|D′| Nodes Columns |D′| Nodes Columns
TT Crew TT Crew TT Crew TT Crew

CSP-90-24-s 650 217 17 27,054 1,094 1,991 389 40 44,780 2,550
CSP-90-30-s 772 265 88 31,176 2,694 2,279 435 27 50,802 1,470
CSP-90-30-ex3 1,032 282 85 37,309 4,880 3,070 441 18 56,262 707
CSP-180-24-s 1,131 842 74 151,479 12,362 3,537 2,929 68 275,075 7,931
CSP-180-30-s 1,312 743 86 201,787 10,282 4,018 1,853 508 194,544 44,627
CSP-180-30-ex3 1,779 356 71 152,527 10,316 5,728 1,559 169 265,165 20,180
CSP-228-24-s 1,511 879 247 247,555 37,477 4,649 1,097 484 144,160 67,223
CSP-228-30-s 1,745 640 42 263,893 9,541 5,317 3,085 30 372,363 4,660
CSP-228-30-ex3 2,295 379 112 194,998 21,014 7,254 4,753 198 599,077 26,902

24

compared to benchmark results obtained by solving a standard CSP model.
The comparisons show that the proposed I-CSP method gives improvements
from 6.28% to 13.84% for the different instances. For the I-CSP-IS, we ob-
tained an additional improvement of the same order of magnitude. However,
in the practical application we consider, the wider re-timing options cannot
be implemented under the current infrastructure access regulations.

There are several interesting paths for future research. First, it has been
shown that the lower bound obtained from LP-relaxation to the I-CSP is
weak and finding it is time consuming. This affects the branching process
and makes it impossible to close the optimality gap for real-life instances. By
identifying key demands where flexibility is important and demands where
flexibility is less or not important, it could be possible to search among a
larger set for the good solutions. This could be implemented by examining
the quality of the duties and only allowing changes to demands covered by
low quality duties.

Second, we have shown that added flexibility greatly benefits the overall
solution. Additional flexibility can be introduced by the way the time win-
dows are split. The current algorithm ensures that the decision on re-timing
of one demand is completely independent of others. If instead we allow the
full, original, time window to be used, while adding precedence constraints
on the demands in the same engine duty, we would achieve additional flexi-
bility.

References

Abbink, E., L. Albino, T. Dollevoet, D. Huisman, J. Roussado, and R. Sal-
danha (2011). Solving large scale crew scheduling problems in practice.
Public Transport 3 (2), 149–164.

Bach, L. (2014). Routing and Scheduling Problems - Optimization using
Exact and Heuristic Methods. Ph. D. thesis, Aarhus University.

Bach, L., M. Gendreau, and S. Wøhlk (2015). Freight railway operator
timetabling and engine scheduling. European Journal of Operational Re-
search 241, 309–319.

Caprara, A., M. Fischetti, and P. Toth (1999). A heuristic method for the
set covering problem. Operations Research 47 (5), 730–743.

Caprara, A., L. Kroon, M. Monaci, M. Peeters, and P. Toth (2007). Passen-
ger railway optimization. In C. Barnhart and G. Laporte (Eds.), Trans-
portation, Volume 14 of Handbooks in Operations Research and Manage-
ment Science, pp. 129–187. Amsterdam: Elsevier.

25

Elhallaoui, I., D. Villeneuve, F. Soumis, and G. Desaulniers (2005). Dy-
namic aggregation of set-partitioning constraints in column generation.
Operations Research 53 (4), 632–645.

Feillet, D., P. Dejax, M. Gendreau, and C. Gueguen (2004). An exact algo-
rithm for the elementary shortest path problem with resource constraints:
Application to some vehicle routing problems. Networks 44 (3), 216–229.

Freling, R., D. Huisman, and A. P. M. Wagelmans (2003). Models and algo-
rithms for integration of vehicle and crew scheduling. Journal of Schedul-
ing 6 (1), 63–85.

Gintner, V., N. Kliewer, and L. Suhl (2008). A crew scheduling approach for
public transit enhanced with aspects from vehicle scheduling. In M. Hick-
man, P. Mirchandani, and S. Voss (Eds.), Computer-aided Systems in
Public Transport, Volume 600 of Lecture Notes in Economics and Mathe-
matical Systems, pp. 25–42. Springer Berlin Heidelberg.

Groot, S. and D. Huisman (2008). Vehicle and crew scheduling: Solving
large real-world instances with an integrated approach. In M. Hickman,
P. Mirchandani, and S. Voss (Eds.), Computer-aided Systems in Public
Transport, Volume 600 of Lecture Notes in Economics and Mathematical
Systems, pp. 43–56. Springer Berlin Heidelberg.

Huisman, D. (2007). A column generation approach for the rail crew re-
scheduling problem. European Journal of Operational Research 180 (1),
163–173.

Huisman, D., R. Freling, and A. P. M. Wagelmans (2005). Multiple-depot
integrated vehicle and crew scheduling. Transportation Science 39 (4),
491–502.

Huisman, D., L. G. Kroon, R. M. Lentink, and M. J. C. M. Vromans
(2005). Operations Research in Passenger Railway Transportation. Sta-
tistica Neerlandica 59, 467–497.

Jütte, S., M. Albers, U. W. Thonemann, and K. Haase (2011). Optimizing
railway crew scheduling at DB Schenker. Interfaces 41 (2), 109–122.

Jütte, S. and U. W. Thonemann (2012). Divide-and-price: A decomposition
algorithm for solving large railway crew scheduling problems. European
Journal of Operational Research 219 (2), 214–223.

Kliewer, N., B. Amberg, and B. Amberg (2012). Multiple depot vehicle
and crew scheduling with time windows for scheduled trips. Public Trans-
port 3 (3), 213–244.

26

Kroon, L. G., D. Huisman, E. J. W. Abbink, P.-J. Fioole, M. Fischetti,
G. Maróti, L. Schrijver, A. Steenbeek, and R. Ybema (2009). The new
Dutch Timetable: The OR Revolution. Interfaces 39, 6–17.

Kwan, R. S. and A. Kwan (2007). Effective search space control for large
and/or complex driver scheduling problems. Annals of Operations Re-
search 155 (1), 417–435.

Lusby, R., J. Larsen, M. Ehrgott, and D. Ryan (2011). Railway track allo-
cation: models and methods. OR Spectrum 33 (4), 843–883.

Mesquita, M., A. Paias, and A. Resṕıcio (2009). Branching approaches for
integrated vehicle and crew scheduling. Public Transport 1 (1), 21–37.

Potthoff, D., D. Huisman, and G. Desaulniers (2010). Column generation
with dynamic duty selection for railway crew rescheduling. Transportation
Science 44 (4), 493–505.

Rezanova, N. J. and D. M. Ryan (2010). The train driver recovery problem
- a set partitioning based model and solution method. Computers &
Operations Research 37 (5), 845–856.

Ryan, D. M. and B. A. Foster (1981). An integer programming approach
to scheduling. In A. Wren (Ed.), Computer Scheduling of Public Trans-
port: Urban Passenger Vehicle and Crew Scheduling, pp. 269–280. North-
Holland.

Steinzen, I., V. Gintner, L. Suhl, and N. Kliewer (2010). A time-space
network approach for the integrated vehicle- and crew-scheduling problem
with multiple depots. Transportation Science 44 (3), 367–382.

Veelenturf, L. P., D. Potthoff, D. Huisman, and L. G. Kroon (2012). Railway
crew rescheduling with retiming. Transportation Research Part C 20, 95–
110.

27

