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PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the
12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and
Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also
known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997.
So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim.
The conferences focuses on the application of CFD in the oil and gas industries, metal production,
mineral processing, power generation, chemicals and other process industries. In addition pragmatic
modelling concepts and bio-mechanical applications have become an important part of the
conference. The papers in this book demonstrate the current progress in applied CFD.

The conference papers undergo a review process involving two experts. Only papers accepted by the
reviewers are included in the proceedings. 108 contributions were presented at the conference
together with six keynote presentations. A majority of these contributions are presented by their
manuscript in this collection (a few were granted to present without an accompanying manuscript).

The organizing committee would like to thank everyone who has helped with review of manuscripts,
all those who helped to promote the conference and all authors who have submitted scientific
contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal

Production and NanoSim.
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ABSTRACT

A code based on finite element method was built and applied on the
variable density incompressible Navier-Stokes equations for accu-
rately simulating immiscible two phase flows. The algorithm simu-
lates the interface between the two liquid phases with high accuracy;
it utilizes both the level-set method with a third order strong stabil-
ity property Runge-Kutta (SSPRK) time integrator and a second-
order projection method for the momentum equation. The solver
developed is based on deal.Il, an open source framework code. Nu-
merical assessments on the transport and momentum equations are
presented to verify the code accuracy. Nonconforming manufac-
tured solutions are shown to produce the expected convergence rate
of the used numerical schemes. Simulation of classical Rayleigh-
Taylor instability was carried out and shown to match those in the
published work.

Keywords: CFD, projection methods, level set, LES .

NOMENCLATURE

Greek Symbols

p Density

u Dynamic viscosity
Y Kinematic viscosity
(0] Level set

Latin Symbols
u Velocity
)4 Pressure
t Time

Vv An appropriate space with proper boundary conditions

All symbols are non-dimensional.

METHOD

The variable density incompressible Navier-Stokes equations
are defined as follows:

atp + le(pu) = 07
posu+ (u-V)u] — 2udiv(V'u)
+Vp=pf.
div(u) =0,

inQx (0,7], (1)

inQx(0,7], (2)
inQx(0,7T], 3)

where Q C R>3 and 9Q is the boundary, p(x,?) is the density
at (x,¢) € Q x [0,T], u(x,t) is the velocity vector field, u
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is the dynamic viscosity, and p(x,?) is the pressure. Bold
variables are vector valued. Equation (1) is referred to as the
transport equation, (2) is the momentum equation and (3) is
the incompressibility constraint.

Transport equation weak formulation

The weak formulation for the transport equation is: Find
p(x,7) € V(Q) such that:

/v(ap—l—u'Vp)dx—O, YWwev(Q), @
o \ot
p(x,1) = paa; indQ_, (5
p(x,0) = po, po >0, (6)

where V is an appropriate space for the transport equation
with appropriate boundary conditions.

To accurately capture the density field p, we choose the 3™
order time integration method "Strong Stability Preserving
Runge-Kutta" with three steps (abbreviated as SSPRK(3,3))
as described by (Gottlieb, 2005). The SSPRK(3,3) steps are:

YU =y L Arf (), @
1

O = " <3yk+y<l> +Atf(tk+17y(1))>7 (®)

Yol = ;<yk+2y(2> +2Atf(tk+57y(2)))~ ©)

The strong stability preserving property is |[y¥7!|| < |[y¥|.
This makes it attractive in the transport equation case. The
SSP property comes from the maximum principle preserving
property of the Forward Euler method.

The Level Set Model

The fluid mixture we are interested in modeling with the
transport equations has two phases: oil, and water. Each has
a different density value p. Since they do not mix, it is im-
portant that each phase must be distinct when modeled and
the volume of each phase in Q2 be conserved. Otherwise, the
incompressibility condition div (#) = 0 will be violated. As
a consequence, when solving the approximation of the trans-
port equation, one needs to make sure the interface between
two phases is tracked with enough accuracy. There are many
methods to achieve such accuracy, which can be divided into
two classes. In the first one, the interface is implicitly tracked
by a function defined on the whole domain. Such methods in-
clude the level set method, and volume of fluid method. In
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the second class, the interface is explicitly tracked with front-
tracking methods. We will use the level set method between
two phases.

The level set method was first introduced by (Osher and
Sethian, 1988) to evolve the interface with speeds depend-
ing on the curvature of a given velocity field. The interface
is tracked with a function ®(x) to represent the n — 1 dimen-
sional interface I' C Q separating  into two phases Q; and
Q). There are many ways to define I" but we are going to use
the tanh function with the interface at ®(x) = 0.5. The tanh
function is defined as:

o= rrm ()

where d is a distance from the interface function and y con-
trols how steep the interface is. To describe the evolution of
an interface that is transported along with a fluid, we can use
® is used instead of p in (4):

(10)

/v<a¢+u-V<I>>dx=0, Wwev(Q), (1)
Q ot
O(x,1) = Dyq, inoQ_, (12
®(x,0) = Py, ®y>0. (13)

This essentially transports the & function instead of the den-
sity p. To reconstruct p from ®, we use the function H(®P):

d(x) < 0.5,
®(x) > 0.5,

P1,
P2,

H®() ~{ (14)

where pj, p> are the densities of the fluids in Q; and Q,
respectively (p; < pz). H(®) will produce density fields
that have discontinuous transitions between phases, which
are undesirable when dealing with PDEs that expect smooth
enough functions. There are many functions that create
smoother transitions such as:

_P2—P1

P2+ pP1
t
2 > @

ah (2% (15)
( Y )

where o controls how steep the transition between the two
densities is. The advantage of this reconstruction is that it
produces the closest density field close to (14) with some
retained smoothness. Another candidate H function is:

H(®(x))

H(®(x)) = (p2 —p1)P(x) +p1, (16)
which is a linear scaling of the level set to the densities in
Q. It is robust but translates the undesirable oscillations that
extends beyond ®(x) > 1 or ®(x) < 0. This issue may be
solved by clipping the reconstruction at a certain radius o
around 0.5 (0 < a <0.5):

pl,dD(x) <0.5-—q,

11( (")) ’ ( ) ’

(@) — (05 —a)) P2

+ p1,otherwise.
(I7)

This reconstruction introduces relatively sharp changes in the
density gradient and affects the stability of simulation runs.
Finally, the last reconstruction we are going to introduce has
the property of having slope zero at the 0.5+ o points and
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being a transition polynomial of third degree (0 < a0 < 0.5):

p1,  ifdx)<0.5—a,
P2, if ®(x) >0.5+a,
(40— 2@(x) + 1) (200 + 2D (x) — 1)2
3203
(p2 —p1) +p1, otherwise.

H(®P(x)) = (18)

Compared to the clipped reconstruction (17), the above has
smooth gradient transitions and was found to have a stabiliz-
ing effect when used in the simulations below. This transition
is comparable to the Heaviside function (14) in (Sussman and
Fatemi, 1999) but has the advantage of being polynomial in
nature.

Entropy-Viscosity

The Entropy-Viscosity is (at least) a second-order stabiliza-
tion term introduced by (Guermond et al., 2011a) and (Guer-
mond and Pasquetti, 2011). It has the advantage of having
a less diffusive effect on the solution and thus allowing the
construction of stabilized second order numerical schemes.
Using the transport equation weak form:

/ Vi (aapth +uy - Vpp —div (VVP)> dx =0, Vv, € V4(Q),
Q
(19)

and v is calculated for each cell separately as follows. De-
fine E(¢) as convex functions that satisfies the differential
inequality:

E(9)+u-VE(0) <0, (20)

where ¢ is the level set function mentioned in section and
E(9) is the entropy function. For examples, one can use:

2D

l(q)_ %)1’ where p=1,2,...,
E — P
(9) {—log(|¢(l—¢)|+10_l4)'

In the fully discretized setting, use ¢"*,¢"~! and compute the
following values for each quadrature points g, qy in cell k
and face f:

MyE (9") ~TgE (9"')
+
At
% (u"-VIIZ E (") +u" ' VIIZ E (6" "))

T (qp) =u" - n[0, 11, E(Q")] |- (23)

RV (qy) = (22)

Then get the maximum RZH/ o maxg, ck ’R”“/ *(qu)| and

I = MaXx fef MaXg e f ’J"(qf)|. Note tk}aF we are using the
Crank-Nicolson scheme to calculate R giving us a second or-
der accurate value for R. The viscosity v, will then be:

n+1/2 n
R ik ), (24)
IE@") —E(0")|1=(q)

where E(0) = i Jo £(6) and | E(@") ~ E(&") |- is anor-
malization factor. The amount of artificial viscosity is pro-
portional to the entropy production but bounded from above
by the linear artificial viscosity. If the solution is smooth and
entropy production is very small, little or no artificial viscos-
ity is added. Some disadvantages remain such as coefficients
C,,Cy, to tune and the ambiguity of 4.

Vi = min (th|u| 1, Colt®
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Compression for the Level Set

For the level set method to work, the curved shape of the level
set function over the boundary must be maintained to pre-
vent adding non-physical effects to the model. The stabiliza-
tion viscosity diffuses the level set interface as the simulation
marches in time. Consequently, with the presence of the dif-
fusion term, we add the compression (or anti-diffusion) term

div (Ck%( 1—dn)0p, %) to the transport equation (4):

d
—0p,+u-V
/S;x[o,T] atq)h u ¢h
Von

. v

div (VVq)h Ckhq)h(l on) |V¢h|) dxdt =0, (25)
where the level set ¢ € [0,1] and defined at ¢ = 0.5. This
compression term eliminates the need for a separate reini-
tialization step. In practice, it has been observed that the
compression term in (25) induces “fingering” effect in sim-
ulations. It is the result of perturbations in the initial level
set that the compression term gradually propagates result-
ing in the level set extending like fingers. To mitigate that,
a smoothed out ¢; is used in the normal of the compres-

\%ZI where ¢} is the solution to ¢f — th(]);‘l =

¢,Vo; -n =0 on 0Q. We will denote S as the operator that
maps ¢ to the corresponding ¢* (i.e. SO;, = ;).
Let us detail the algorithm for solving (25):

sion front

1. Initialize the level set by normalizing the initial density
scalar field.

PO — Pmin
o - Phpu
Pmax — Pmin

2. For each of the SSPRK(3,3) steps below, we need to
solve the following:

Ln(“h,q)mq);;) = —Uup- Vq)h
voj,

—div (VV% —Ck%q)h(l _q)h) |V(])*| )7 (26)
h

when solved for each of the three steps below, the values
are

0y = 0+ ArL" (], 0, 507, 27)
1
o =5 (301"
+ AL (2wl — ¢,§‘>,S¢,S‘>)) : (28)

n 1 n
h+l =3 (¢h + 24’22)

1
AL (2 [3uz - uZ_l} 012, sq),(f)) > . (29)

3. Lastly, we “denormalize” the level set with a reconstruc-
tion function such as:

il = H (04)(Pmax — Pmin) + Pmin-

P (30)

It is worth mentioning that when the entropy-viscosity van-
ishes in well resolved regions of the solution, the compres-
sion stops working and the sharpness of the level set inter-
face is lost. This may be remedied by using some “antivan-
ish” viscoSity Vantivanish = V + Ve Where Vg is a small positive
amount of viscosity that maintains the balance between dif-
fusion and compression and, thus, maintains the slope of the
level set.
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Projection method for the momentum equation

Initialize the algorithm with p® = po, u® = ug, p° = po,¢° =
¢° = 0 then proceed as follows:

1. Setup intermediate variables:
pr = prfly éBDFz(P"H),
where BDF, (¢" 1) = 3¢"+! —4¢" +¢" !,
pro= it % (4&;1” _s\p”l) :

*

uwoo= el

2u' —u
2. Prediction:

3p*un+l _ 4pn+lun + pn+1u;1—1
2At

1
+ Edlv (pk+lu*)un+1 _luAun+1 +Vp* — pn+1fn+1’

_ pn+1u* .Vun+1

+1]
W g =0,
3. Projection:
ASY"! 3Pmin oo (k1) 3,8y =0,
2At
Sanrl —div (unJrl)7

4. Pressure correction: p"t! =yt — ygtt

where BDF stands for Backwards Difference Formula.

This variable density projection method is shown to have a
error of O(Af?) in the L norm. The stability proof can be
found in (Guermond and Salgado, 2011, §5.4)

Large Eddy Simulation

The Large Eddy Simulation (LES) is based on the — at
least — 2" order entropy-viscosity method (Guermond et al.,
2011b). The concept behind LES is separating the flow into
large — or resolved — and small — or subgrid — scales. For a
good overview of LES, see (John, 2004).

When dealing with the Navier-Stokes equations, LES
is added as a cell-wise viscosity vxg > 0 to the term
—2vdiv (V*u). The result is a viscosity v + vi. The classical
Smagorinsky model ((Smagorinsky, 1963)) uses:

vk = C:8k || Vull,

where C; is the Smagorinsky constant and & is the width of
the filter (which is proportional to hg). (Guermond et al.,
201 1c) proposed the following Entropy-Viscosity approach:

L]
||“%||L°°<Q)
Dh(x,t) =

1 . 1 _ 1
o (2u,21> +d1v<(2uﬁ+ph> uh) —Re A <2uﬁ>

+Re™ ! (Vup)* —f-u, (31)

Vg := min (thk|u|,Ce

where

where /g is the mesh size locally, ||u?|| (@) is a normalizing
term, and C,,C, are appropriate constants. The first term
Cmhi|u| is the first order artificial viscosity. When the mesh
is fine enough to simulate all the scales, h% |Dj(x,t)| is much
smaller than the first-order artificial viscosity. This makes vg
a consistent viscosity that vanishes when scales of all levels
are resolved.
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NUMERICAL RESULTS

We test the schemes discussed in the previous sections nu-
merically and present them here.

Validation

Here, we will present the validation of the projection method
with density p(x,f) = 1. This is a constant density test per-
formed on a variable density equation for validation pur-
poses. Using Q = (0,1)? domain with a uniform mesh and
cell-wise [Q2]¢ continuous finite elements, we introduce the
following simple linear polynomial manufactured solution
for the momentum equation:

e =40 (7). s =aeom @
1+z

ux,t)=>1+t) I+x |, pxs)=14+)xyz. (33)
I+y

ford = 2,3 respectively. We solve the equation (2) withu=1
running until final time 7 = 1. The projection step is dis-
abled, which means that the exact pressure is interpolated
every time step. The boundary condition u|yq = u(x,1)|30
is enforced. The time step is changed to roughly achieve a
Courant-Friedrichs-Lewy condition (CFL) of 0.25. As ex-

cells Udofs At ||eu||L2 ||eu||1.11

16 162 1E-02 8E-16 1E-14

2D 64 578 S5SE-03  6E-15 4E-14
256 2178 3E-03 2E-14 1E-13

8 375 2E-02 1E-15 1E-14

3D 64 2187 1E-02  3E-15 3E-14
512 14739 5E-03 9E-15 8E-14

Table 2: Error values for running conforming manufactured solu-
tions in a unit cube. We get a machine epsilon as expected.

Now, we validate the scheme by running a convergence rate
test. We use the same 2D setup as before with the following
nonconforming manufactured solutions:

).

We see in table 3 that we get the O(Af?) in the L? norm as
expected. The H' norms are a bit higher than the expected

O(At%).

B s(x) +cos(y+1)
u(x,1) = ( Cs(i)n(x) +§§1(yy+t)

p(x,t) =cos(x+y+r). (36)

pected, table 1 shows that the error is machine epsilon which Udofs At llewllrz  rate llew|l1 — rate
means that the algorithm reproduces the conforming manu- 4802 2E-02  1.54E-04 - 1.04E-03 _
factured solutions exactly. 18818  1E-02 4.28E-05 1.85 3.11E-04 1.75
74498  5E-03 1.14E-05 1.9 9.01E-05 1.79
cells  Ugofs At leullzz llewllst  CFLmax 296450 2.5B-03 2.98E-06 1.94 2.57E-05 1.81
16 162 8E-03 3E-13  1E-12  0.2621 " Af lepllz rate  fleplan  rate
2D 64 578 4E-03 1E-15 2E-14  0.2606
256 2178 2E-03 1E-14 8E-14  0.2607 4802 2E-02  1.37E-03 - 2.22E-02 -
18818  1E-02 4.10E-04 1.74 8.63E-03 1.36
8§ 375 3E-02 9E-16 1E-14  0.2601 74498  5E-03 1.18E-04 1.8 327E-03 14
3b 64 2187 1E-02 SE-15 3E-14 02614 206450 2.5B-03 3.31E-05 1.83 1.22E-03 1.42
512 14739 7E-03 7E-15 7E-14 02613

Table 1: Error values for running conforming manufactured solu-
tions in a unit cube. We get the expected value of machine
epsilon.

Projection Scheme

Using Q = (0, 1)¢ domain with a uniform mesh and cell-wise
[Qz]" /Q Taylor-Hood continuous finite elements, we intro-
duce the following simple linear polynomial manufactured
solution for the momentum equation:

e =40 (7). s =eom o
l1+z

ux,t)=(1+6)| 1+x |, pO,)=(1+1)xyz. (35)
I+y

with d = 2,3 respectively. We solve the equation (2) with
u = 1 running until final time 7" = 1. The projection step
is disabled, which means that the exact pressure is inter-
polated from the exact solution to the discrete space every
time step. We enforce the following boundary condition
uly0 = u(x,t)|30. The source term is modified to reflect the
exact solutions. As expected, table 2 shows that the error is
machine epsilon (~ 0), which means that the algorithm re-
produces the conforming manufactured solutions exactly.
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Table 3: Convergence rate for the constant density projection
method. The CFL,ax is at 0.64.

Realistic Models

In this section, we will study the applications of variable
density projection scheme on a more realistic model; the
Rayleigh-Taylor instability test. We compare our results with
the work of (Guermond ef al., 2011a). Specifically in the
early times before turbulent behavior.

Rayleigh-Taylor Instability

We now apply the method to a more realistic problem. We
use the Rayleigh-Taylor instability test that (Tryggvason,
1988) used. Two fluids are initially at rest in the 2D domain
(—d/2,d/2) x (—2d,2d) and the heavier fluid is on top. The
transition of the phase-field variable p is as follows:

_ Pmax + Pmin
2

Pmax — Pmin

2

p(x,y,1=0)

+

y+u(x)
tanh< od ), 37

where o =~ 0.04 and the initial interface is slightly perturbed
as follows:

p(x) = 0.1cos(2mx/d). (38)
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t=1.0

t=1.5 t=2.0 t=2.5

Figure 1: The Rayleigh-Taylor instability with density ratio of 3.

The time is also scaled using the Atwood number in Tryg-
gvason as frryg = 1\/Ay

max min
A= %7 (39)
0 0

where p** := maxycopo(x) and pomi“ = MingcoPo(x). As
the system progresses at ¢t > 0, the heavy fluid will fall into
the lighter fluid as a result of having the momentum equation
gravity source term is pg

We non-dimensionalize the equations as follows. We divide
by: pn for the density p, d for length, and d'/?/|g|'/?
for time. Consequently, d'/ 2|g|1/ 2 is the velocity reference
and the Reynolds number is Re = pJ"d'/?|g|'/?d /u. We
will restrict ourselves to the domain (0,d/2) x (—2d,2d) be-
cause we assume that the symmetry of the initial setup con-
tinues as time progresses. The top and bottom parts have
no-slip boundary conditions and the left and right sides have
u-n=0, (I —n®n)vVu =0 boundary conditions (known as
symmetry or free boundary conditions).

Remark. Note that we must integrate the pressure term by
parts in the weak form for p to be in L?. In this experiment,
we tested both integrating by parts and leaving the pressure
term as is. This leads to different boundary conditions for
eachcase: (I—n®n)(VWu—Ip)=0,and (/—n®n)vVu=0
respectively. In this experiment, both were numerically sta-
ble and gave almost exactly the same results when com-
pared to previous papers. By not integrating by parts, p will
be in H' and we have to answer the question: Is the dis-
crete Ladyzhenskaya-Babuska-Brezzi (LBB) condition sat-
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t=1.0 t=1.5 t=2.0 t=2.5

Figure 2: The Rayleigh-Taylor instability with density ratio of 100.

isfied for the space pair H',H'? In this experiment specifi-
cally, the numerical scheme seems to be stable but we cannot
generalize to all possible cases without a rigorous proof.

As hyperbolic equations need stabilization, we do so with the
nonlinear entropy viscosity (Guermond et al., 2011a) using
the entropy function E(x) = —log|p(1 —p) +10~'4|. In fig-
ure 1, the evolution of the density field of ratio 3 at times 1,
1.5, 2, and 2.5 in Tryggvason time scale trry, = £1/A; with
Re = 1000. The same times are shown in figure 2 with den-
sity ratio of 100. The are 8484 Q, degrees of freedom for p
with uniform mesh size of 2048 cells. The time stepping is
variable and maintains a maximum CFL of 0.4.

Now, we want to conduct a more challenging test. Specifi-
cally, we will test with density ratio 100 to check the robust-
ness of the scheme — see, for example, (Sussman et al., 1994).
As figure 2 shows, the simulation holds nicely. Also, when
figure 1 is visually compared with the results in (Guermond
et al., 2015), they are visually almost identical.

CONCLUSION

The Navier-Stokes equations were solved using a code de-
veloped based on finite element method to accurately sim-
ulate immiscible two phase flows. A proprietary massively
parallel Navier-Stokes solver code based on the open source
software deal.Il was successfully implemented to simulate
the interface between the two liquid phases with good ac-
curacy. The utilization of both the level set method with a
third order strong stability property Runge-Kutta (SSPRK)
time integrator and a second-order projection method for the
momentum equation was deemed successful. Numerical val-
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idations of the transport and momentum equations were pre-
sented; they confirmed the code accuracy. The convergence
rate of the numerical schemes selected for modeling the non-
conforming manufactured solutions were shown to be within
expected convergence rate values. Classical Rayleigh-Taylor
instability results were shown to be in good agreement with
previously published work.
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