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PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the
12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and
Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also
known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997.
So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim.
The conferences focuses on the application of CFD in the oil and gas industries, metal production,
mineral processing, power generation, chemicals and other process industries. In addition pragmatic
modelling concepts and bio-mechanical applications have become an important part of the
conference. The papers in this book demonstrate the current progress in applied CFD.

The conference papers undergo a review process involving two experts. Only papers accepted by the
reviewers are included in the proceedings. 108 contributions were presented at the conference
together with six keynote presentations. A majority of these contributions are presented by their
manuscript in this collection (a few were granted to present without an accompanying manuscript).

The organizing committee would like to thank everyone who has helped with review of manuscripts,
all those who helped to promote the conference and all authors who have submitted scientific
contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal
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ABSTRACT

The interaction of breaking waves with marine structures involves
complex free surface deformation and instantaneous loading on the
structural members. A typical offshore platform or a coastal struc-
ture consists of several vertical and horizontal members exposed
to breaking wave action. The breaking wave hydrodynamics and
the effect of neighbouring cylinders on multiple cylinders placed
in near vicinity is important due to force amplification or reduction
resulting from interaction between the cylinders. The kinematics
of breaking waves and the hydrodynamics of breaking wave inter-
action with a single vertical cylinder have been studied in detail in
current literature. Studies have established that the location of a
cylinder with respect to the wave breaking point has a major influ-
ence on the breaking wave forces on the cylinder. These studies
have to be extended to investigate the hydrodynamics of cylinders
placed close to each other to understand the modifications in the
force regime due to the presence of neighbouring cylinders under a
breaking wave regime.

In this paper, the open-source Computational Fluid Dynamics
(CFD) model REEF3D is used to simulate breaking wave interac-
tion with a pair of tandem cylinders. The focus of the study is on
the location of the wave breaking point with respect to the upstream
cylinder and the consequences for the downstream cylinder. The
free surface features associated with the incident breaking wave and
the evolution of the free surface after interaction with the upstream
cylinder are investigated. The overturning wave crest and the asso-
ciated free surface deformation have a major influence on the wave
that is then incident on the downstream cylinder. The development
of a downstream jet behind the upstream cylinder leads to the nega-
tion of the shadowing effect on the downstream cylinder. This can
lead to an unexpected higher force on the downstream cylinder. The
evolution of this downstream jet and the extent of this phenomenon
changes the character of the otherwise shadow region behind the
upstream cylinder. A detailed understanding of this phenomenon
can provide new insights into the wave hydrodynamics related to
multiple cylinders placed in close vicinity under a breaking wave
regime. The knowledge regarding force amplification or reduction
on downstream cylinders will aid in designing a safer and reliable
substructure for marine installations.

Keywords: CFD, hydrodynamics, breaking wave, wave force,
tandem cylinders .

NOMENCLATURE

Greek Symbols
'  Relaxation function, (]

p  Fluid density, [k¢/m?]

v Kinematic viscosity, [°/s]

v, Eddy viscosity, [7*/s]

®  Specific turbulent dissipation rate, [1/s]
Q  Surface of object, [m?]

0(¥X,1) Level set function, [m]

n  Free surface elevation, [m]

T viscous shear stress tensor, [N/m?]

Latin Symbols

d  still water level, [m].

p  Pressure, [Pal.

g Acceleration due to gravity, [m/s2].

D Cylinder diameter, [m)].

F  Total force, [N].

H  Wave height, [m].

S centre to centre separation distance between the cylin-
ders, [m].

T  Wave period, [s].

U  time-averaged velocity, [m/s].

Sub/superscripts
i Index i.
j Index j.

INTRODUCTION

Simulating the propagation and interaction of breaking
waves produced by reducing water depth presents challenges
due to the complex physical processes involved, with highly
non-linear interactions and rapid variations in the free sur-
face. Several numerical investigations have attempted to
model wave breaking over plane slopes such as Lin and
Liu (1998); Zhao et al. (2004); ALAGAN CHELLA et al.
(2015a). With the help of these studies, detailed informa-
tion about breaking wave characteristics and the geometric
properties of breaking waves under different incident condi-
tions and bottom slope have been obtained. The empirical
coefficients used for the evaluation of breaking wave forces
in other structural models and design considerations are de-
termined using the breaking wave parameters quantified by
these studies. With the advances in computational modelling
and with the establishment of CFD models that can repre-
sent the breaking process in a satisfactory manner, break-
ing wave forces on structures can be calculated. In current
literature, Bredmose and Jacobsen (2010) present breaking
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wave impact forces due to focussed waves with the JoN-
SWAP wave spectrum for input and carried out computa-
tions for half the domain assuming lateral symmetry of the
problem using OpenFOAM. Mo et al. (2013) measured and
modelled solitary wave breaking and its interaction with a
slender cylinder over a plane slope for a single case using the
filtered Navier-Stokes equations with large eddy simulation
(LES) turbulence modelling. Choi et al. (2015) investigated
breaking wave impact forces on a vertical cylinder and two
cases of inclined cylinders for one incident wave using the
modified Navier-Stokes equations with the volume of fluid
(VOF) method for interface capturing to study the dynamic
amplification factor due to structural response. These inves-
tigations present results for breaking wave interaction with a
single cylinder, while breaking wave forces on tandem cylin-
ders, the effect of neighbouring cylinders on the breaking
wave forces on the cylinders along with the complex free
surface deformations associated with the interaction are not
presented in detail.

In the current study, the open source CFD model REEF3D
(Bihs et al., 2016) is used to simulate periodic breaking wave
forces on tandem cylinders in a three-dimensional wave tank
without assuming lateral symmetry. The model has been pre-
viously used to simulate the wave breaking process under dif-
ferent conditions (ALAGAN CHELLA et al., 2015b,c) and
the wave breaking kinematics were fully represented includ-
ing the motion of the jet, air pocket formation and the recon-
nection of the jet with the preceding wave trough. Follow-
ing the work presented in (Kamath et al., 2016), the effect
of breaker location and the upstream cylinder on the wave
forces on a second cylinder placed downstream in tandem is
investigated.

MODEL DESCRIPTION
Governing Equations

In the numerical wave tank REEF3D, the incompress-
ible three-dimensional Reynolds-Averaged Navier-Stokes
(RANS) equations are solved in conjunction with the con-
tinuity equation:

U
3 =0 )
E_f_ %__lal+i (V+V) %+8UJ + 0
a 0w, T pox o O\ox; Tow )] T8
2

where U is the velocity, p is the density of the fluid, p is the
pressure, Vv is the kinematic viscosity, V; is the eddy viscosity
and g the acceleration due to gravity.

Discretisation Schemes

The convective terms of the RANS equations are discretised
using the fifth-order conservative finite difference Weighted
Essentially Non-Oscillatory (WENO) scheme (Jiang and
Shu, 1996) and time advancement is carried out using a Total
Variation Diminishing (TVD) third-order Runge-Kutta ex-
plicit time scheme (Shu and Osher, 1988). The CFL criterion
is used in an adaptive time stepping algorithm to determine
the optimal time step for each step in the simulation. An im-
plicit time scheme is used for diffusion to remove it from
the CFL criterion. The projection method (Chorin, 1968)
is applied for pressure treatment and the Poisson pressure
equation is solved with a PFMG preconditioned (Ashby and
Flagout, 1996) BiCGStab solver (van der Vorst, 1992) from
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the high performance solver library HYPRE (hyp, 2015).
The code is parallelised using the MPI (Message Passing In-
terface) framework. A staggered Cartesian grid is employed
in the model and complex geometries are accounted for using
the ghost cell immersed boundary method

Free surface and Turbulence modelling

The two equation k- model is employed for turbulence
closure (Wilcox, 1994) along with eddy viscosity lim-
iters (Durbin, 2009) and a free surface turbulence damp-
ing scheme (Naot and Rodi, 1982). The hydrodynamics are
modelled in a two-phase flow approach, calculating the flow
for both water and air. The level set method (Osher and
Sethian, 1988) captures the interface between the two fluids.
(Berthelsen and Faltinsen, 2008). Further details regarding
the numerical model REEF3D can be obtained in Bihs et al.
(2016).

Numerical Wave Tank

The numerical model is used as a numerical wave tank
to model and calculate wave hydrodynamics. Waves are
generated on one end of the tank using the relaxation method
(Larsen and Dancy, 1983) with the relaxation functions
presented by Jacobsen et al. (2012). The velocity and the
free surface in the relaxation generation zone is modulated
as follows:

Urelaxed = F(x) Uanalytical (1 - F(x))ucomputarional

3)
q)relaxed = F(x) q)analytical + (1 - F(x))q)campulational

where I'(x) is a relaxation function and x € [0,1] is the x-
coordinate scaled to the length of the relaxation zone. The
relaxation function shown in Eq. (4) is used in the current
numerical model (Jacobsen et al., 2012):

3.5

1= g

Clx)=1- “)

e—1
The generation zone is generally one wavelength long and is
not considered an active part of the numerical wave tank. A
similar relaxation zone can be defined to absorb all the wave
energy at the other end of the tank, the numerical beach. In
the current model, in order to reduce the size of the com-
putational domain, an active wave absorption method is em-
ployed. At the downstream boundary, waves opposite to the
reflected waves are generated, achieving a net cancellation
of the wave energy at the end of the domain. A horizon-
tal velocity following the shallow water theory is prescribed
(Schiffer and Klopman, 2000) on the downstream boundary.

U<z>=—\/§a<t>

E(t)=n(t)—d (6)

Here, 1 (¢) is the actual free surface location along the down-
stream boundary and d the water depth.

(&)

Numerical evaluation of wave forces

The total breaking wave forces on a cylinder are calculated
by integrating the pressure p and the surface normal compo-
nent of the viscous shear stress tensor T on the surface of the
solid objects as follows:

F:/(—np—i—n-‘t)dQ 7
Q
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where n is the unit normal vector pointing into the fluid and
Q is the surface of the object.

RESULTS

Validation: Breaking wave force on a single cylin-
der

The breaking wave forces on a single vertical cylinder are
calculated and compared to experimental data from the ex-
periments were carried out at the Large Wave Flume (GWK),
Hannover, Germany (Irschik ef al., 2002). The cylinder has
a diameter D = 0.7 m, placed in a water depth of d = 3.80
m. Regular waves of period T = 4.0 s and height H = 1.30
m are incident on the cylinder that is placed at the crest of a
23 m long 1 : 10 slope. The still water depth at the cylinder
is d = 1.50 m in the experimental setup.

In the numerical setup the wave tank is 56 m long, 5 m wide
and 7 m high. A grid size of dx = 0.05 m is used, resulting
in a total of 15.68 million cells. A cylinder with D = 0.7 m
is placed at the crest of a 23 m long 1 : 10 slope, with its
centre at 44.0 m with the incident waves of period T =4.0 s
breaking exactly on the front surface of the cylinder. The
numerical setup is illustrated in Fig. (1), where except for the
total length of the tank, the other conditions are similar to the
experimental setup. Further details regarding the numerical
setup can be obtained in Kamath et al. (2016).

The numerically calculated wave force is compared to the
EMD (Empirical Mode Decomposition) treated experimental
data from Choi et al. (2015) to filter out the dynamic amplifi-
cation of the wave forces due to the vibration of the cylinder
in Fig. (2). A good agreement is seen between the numerical
and experimental breaking wave forces on a single vertical
cylinder.

Breaking wave force on tandem cylinders

The breaking wave interaction with a single vertical cylin-
der results in several distinct free surface features such as
the separation of the breaking wavefront around the cylinder,
the subsequent meeting of the separated wave front and the
formation of a water jet downstream of the cylinder. These
features have been presented and discussed by Kamath et al.
(2016). Here, the effect of the free surfaces features from
breaking wave interaction with the upstream cylinder on the
hydrodynamics of a cylinder placed downstream is studied in
different scenarios: when the wave breaking point is on the
surface of the upstream cylinder and when the wave break-
ing point is just behind the upstream cylinder. For each of
the breaking scenarios, the distance between the two cylin-
ders is varied and the effect on the breaking wave forces on
the downstream cylinder is investigated.

Breaking point on the front surface of the upstream cylinder

In this scenario, the wave breaking point is on the surface of
the upstream cylinder and the downstream cylinder is placed
at distances of S= 1D, 2D, 3D, 4D and 5D from the upstream
cylinder. The breaking wave force on a single cylinder in this
scenario is 13900 N. The variation of the total breaking wave
force on the downstream cylinder with the distance of the
downstream cylinder from the upstream cylinder is presented
in Fig. (3).

The wave force on the downstream cylinder is seen to in-
crease as the distance between the cylinders is increased from
S = 1D to 3D. At a centre-to-centre distance of S = 3D, the
force on the downstream cylinder is seen to be the maximum
under this scenario of wave impact. A further increase in
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the distance between the cylinders results in a decrease in
the total breaking wave force. At a centre-to-centre distance
of § = 5D, the total breaking wave force on the downstream
cylinder is similar to that at S = 1D.

The variation of the total breaking wave forces on the down-
stream cylinder is a consequence of the free surface fea-
tures associated with the breaking wave interaction with the
upstream cylinder and the resulting wave incident on the
downstream cylinder. The downstream cylinder is within the
shadow region of the upstream cylinder at a separation dis-
tance of S = 1D. Here, the overturning wave crest incident
on the upstream cylinder with a vertical wavefront gets sep-
arated around the upstream cylinder. The downstream cylin-
der is then in the shadow zone and impacted by a smaller
mass of water compared to the upstream cylinder. This leads
to smaller breaking wave forces on the downstream cylin-
der. As the separation distance is increased, the downstream
cylinder moves out side the shadow region. The cylinder is
then impacted by a larger mass of water formed by the rejoin-
ing of the separated wavefront, downstream of the first cylin-
der. This results in increasing total breaking wave forces on
the downstream cylinder, with a maximum seen for S = 3D.

wo'Ie
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Figure 1: Numerical setup used for investigate breaking wave
forces on a cylinder
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As the separation distance is further increased beyond S =
3D, the downstream cylinder is outside the shadow region,
but now impacted by the splash up from the overturned wave
crest. With increasing distance from this point onwards, the
total breaking wave force on the downstream cylinder is re-
duced.

The free surface features associated with breaking wave in-
teraction with a pair of tandem cylinders placed with a sepa-
ration distance S = 2D is presented in Fig. (4). The incident
wave on the upstream cylinder, impacting the cylinder with
a vertical wave front crest is seen in Fig. (4a). The sepa-
ration of the wavefront around the upstream cylinder as the
incident wave crest begins to overturn is shown in Fig. (4b).
The downstream cylinder is in the shadow zone in Fig. (4c),
where the overturning wave crest impacts the cylinder with
significantly smaller mass of water due to the separation of
the wavefront around the upstream cylinder. Fig. (4d) shows
the overturned wave crest after it passes the downstream
cylinder and the runup on the downstream cylinder due to
the water jet formed behind the upstream cylinder.

1 — REEF3D
15,000 « experimental
10,000 -
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L |
5,000 :
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24 26
t[s]

Figure 2: Comparison on numerical and experimental breaking
wave forces on the single cylinder
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Figure 3: Variation of the breaking wave forces on the down-
stream cylinder with increasing distance from the up-
stream cylinder when the wave breaks on the surface of
the upstream cylinder
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(a)t/T =3.40

(b)1/T =3.70

(©)1/T =385

(d)1/T =425

Figure 4: Breaking wave interaction with tandem cylinders placed
with a distance of 2D between their centers, with the
wave breaking point on the surface of the upstream cylin-
der

At a separation distance of § = 4D, the downstream cylinder
is outside the shadow region of the upstream cylinder. The
vertical incident wave crest front on the upstream cylinder
in this case is presented in Fig. (5a). The separation of the
overturning wave crest around the upstream cylinder and the
development of the plunger are seen in Figs. (5b) and (5c¢) re-
spectively. Fig. (5d) shows the impact of the overturned wave
crest on the downstream cylinder. The downstream cylinder
is outside the shadow region behind the upstream cylinder,
but is impacted by the plunger before it reconnects with the
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(a)1/T =3.40

(b) 1/T =3.65

(©)1/T =3.90

(d)1/T =415

Figure 5: Breaking wave interaction with tandem cylinders placed
with a distance of 4D between their centres, with the
wave breaking point on the surface of the upstream cylin-
der

preceding wave crest. While the breaking wave forces on
the downstream cylinder in this case are lower than than for
S = 3D, they are higher than for S = 1D and 2D. In the case
of § = 3D, the plunger would impact the cylinder just under
the wave crest level and thus result in the highest wave force
on the cylinder in this scenario of wave impact, following
Irschik et al. (2002), Irschik et al. (2004) and Kamath et al.
(2016).
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Breaking point behind the upstream cylinder

In this scenario, the wave breaking point is just behind the
upstream cylinder and the downstream cylinder is placed at
distances of 1D, 2D, 3D, 4D and 5D from the upstream cylin-
der. The breaking wave force on a single cylinder in this
scenario is 9800 N. Fig. (6) shows the variation of the total
breaking wave forces on the downstream cylinder with the
distance between the two cylinders in this scenario. In this
scenario of wave impact, the total breaking wave forces on
the downstream cylinder are seen to increase with increas-
ing separation distance S, until S = 5D. Further increase in §
results in a reduction in the breaking wave force.

The variation of the total breaking wave force on the down-
stream cylinder seen in Fig. (6) is justified as follows. As
the wave breaking point is behind the upstream cylinder, the
downstream cylinder is effectively in direct exposure to the
breaking wave impact. With increasing S, the downstream
cylinder is placed in positions which result in higher total
breaking wave forces. According to the results presented by
Irschik et al. (2004) and Kamath et al. (2016), the total break-
ing wave forces on a single vertical cylinder are the highest
when the overturning wave crest impact the cylinder just be-
low the wave crest level followed by wave impact around
crest level and vertical impact. From the results for break-
ing wave interaction with cylinders placed in tandem, similar
conclusions can be drawn.

The breaking wave interaction with the tandem cylinders
placed with a separation distance of S = 1D is presented in
Fig. (7). The wave incident on the upstream cylinder is yet
to obtain a vertical wave crest front in Fig. (7a). The incident
wavefront is separated around the upstream cylinder and at-
tains a vertical wave crest front profile just passing the cylin-
der in Fig. (7b). The impact of the overturning wave crest on
the downstream cylinder is seen in Fig. (7c). Here, the im-
pacting overturning wave crest is still separated and thus the
wave impact on the downstream cylinder is by a lower mass
of water, resulting in the lowest breaking wave forces in this
scenario. The runup on the downstream cylinder as the over-
turning wave crest passes the downstream cylinder is seen in
Fig. (7d).

In the case of separation distance S = 5D, the total break-
ing wave forces on the downstream cylinder are the max-
imum in this scenario of breaking wave impact. Fig. (8a)
shows the wave incident on the upstream cylinder which has
not yet attained a vertical wave crest front. The incident
wave is separated and attains a vertical wave crest front in

14,000
12,000
10,000
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8,000+ o«
6,000+
4,000+

200 ———F——F——— 1 71
o 1 2 3 4 5 6

Figure 6: Variation of the breaking wave forces on the down-
stream cylinder with increasing distance from the up-
stream cylinder when the wave breaks just behind the
upstream cylinder
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Fig. (8b) as it passes the upstream cylinder. The overturning
wave crest propagating between the two cylinders is seen in
Fig. (8c). Finally, the impact of the overturning wave crest
on the downstream cylinder, just below the wave crest level
is seen in Fig. (8d). Thus, in this impact scenario where the
wave breaking point is just behind the upstream cylinder, the
wave forces on the downstream cylinder increase with in-
crease in S, due to the cylinder moving away from the shadow
zone and being exposed to the overturning wave crest under
conditions of impact that result in higher total breaking wave
forces.

(a)t/T =3.20

(@)t/T =320 (b) /T =3.45

(b)1/T =3.40 (©)1/T =3.80

(¢)t/T =3.55 (d) /T =4.00

Figure 8: Breaking wave interaction with tandem cylinders placed
with a distance of 5D between their centres, with the
wave breaking point just behind the upstream cylinder

CONCLUSION
The conclusions are:
1. Breaking wave forces on the downstream cylinder in a

tandem arrangement follow a similar trend as that ob-
served for a single cylinder, with maximum breaking

d)¢/T =3.90 wave forces calculated for the case where the overturn-
ing wave crest impacts the cylinder just below the wave
Figure 7: Breaking wave interaction with tandem cylinders placed crest level.
with a distance of 1D between their centers, with the
wave breaking point just behind the upstream cylinder 2. The free surface features due to breaking wave interac-

tion with the upstream cylinder such as the separation of

740



Influence of the Upstream Cylinder and Wave Breaking Point on the Breaking Wave Forces on the Downstream Cylinder/ CFD 2017

the wavefront, rejoining of the separated wavefront and
the formation of the water jet influence the wave forces
on the downstream cylinder.

3. The shadow zone behind the upstream cylinder is less
than 3D for vertical wave crest impact on the upstream
cylinder, while it is about 1D for wave breaking just be-
hind the upstream cylinder.

4. The breaking wave force on the downstream cylinder
can be equal to or higher than the breaking wave force
on a single cylinder under certain arrangements.
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