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PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the
12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and
Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also
known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997.
So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim.
The conferences focuses on the application of CFD in the oil and gas industries, metal production,
mineral processing, power generation, chemicals and other process industries. In addition pragmatic
modelling concepts and bio-mechanical applications have become an important part of the
conference. The papers in this book demonstrate the current progress in applied CFD.

The conference papers undergo a review process involving two experts. Only papers accepted by the
reviewers are included in the proceedings. 108 contributions were presented at the conference
together with six keynote presentations. A majority of these contributions are presented by their
manuscript in this collection (a few were granted to present without an accompanying manuscript).

The organizing committee would like to thank everyone who has helped with review of manuscripts,
all those who helped to promote the conference and all authors who have submitted scientific
contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal

Production and NanoSim.
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SOLIDIFICATION MODELING WITH USER DEFINED FUNCTION IN ANSYS FLUENT

Moritz EICKHOFF'*, Antje RUCKERT', Herbert PFEIFER’

" RWTH Aachen University, Department for Industrial Furnaces and Heat Engineering, Kopernikusstr. 10, 52074 Aa-
chen, GERMANY

* E-mail: eickhoff@iob.rwth-aachen.de

ABSTRACT

The modelling of solidification processes in combination with
fluid flow is one main application of ANSYS Fluent. The solid-
ification is modelled with the enthalpy porosity technique.
Therefor the fluid flow is damped like a flow through a porous
media of dendrites. In case of materials with large solidification
ranges, like the nickel based superalloy 718, the adjustment
possibilities of ANSYS Fluent are often not adequate. The pro-
gram postulates a linear dependency between liquid fraction
and temperature. To improve the simulation, the solidification
was implemented by a user defined function (UDF). The prin-
cipal modelling of fluid flow is based on the theory of AN-
SYS Fluent, but it is now possible to adjust the liquid fraction
in fine temperature steps.

Keywords: Rheology, Interphases, Casting and solidifica-
tion, Process metallurgy, Alloy 718.

NOMENCLATURE

Greek Symbols
€ Turbulent dissipation rate, [-].
A Thermal conductivity, [W/(m K)].

Up Dynamic viscosity, [kg/(m s)].
\ Divergence operator, [-].

p Density, [kg/m?].

T Shear stress tensor, [N/m?].
Latin Symbols

Apusn Mushy zone constant, [kg/(m?® s)].

Internal energy, [J].

Fraction, [-].

Force against fluid flow per volume, [N/m?].
Gravity, [m/s?].

Turbulent kinetic energy, [-].

Permeability, [m?].

Small number, [-].

Pressure, [Pa].

volumetric energy source, [J/m?].
Momentum sink for turbulence, [kg/(m? s)].
Velocity, [m/s].

Time, [s].

Temperature, [K].

o

HAT R LUOT ~ X xQ T ®
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Sub/superscripts
eff  Effective (molecular + turbulent).

ESR Electro slag remelting.

€ Turbulent dissipation rate.
k Turbulent kinetic energy.
lig  Liquidus/ liquid.

p Pulling (movement of the solid).
sol  Solidus.

UDF User-defined function.
UDM User-defined memory.
VAR Vacuum arc remelting.

X X-direction.

y Y-direction.

z Z-direction.
INTRODUCTION

Metallurgical processes are often modeled to obtain de-
tails of the inner fluid flow or temperature distribution,
due to the difficult observation possibilities with classical
measurement methods. The modelling of solidification
processes is in focus of research since the 1970s (Erick-
son, 1975).

One of the common simulation programs ANSY'S Fluent
uses the enthalpy-porosity approach (ANSYS Inc.,
Release 14.5, 2012) which was introduced by Poirier
(1987). ANSYS Fluent uses the assumption that the lig-
uid fraction is proportional to the temperature in the so-
lidification range. For many standard steels, this assump-
tion will be an appropriate approach. In case of some
nickel based superalloys, like alloy 718, the supposition
is far-out the real material behavior.

Therefore, user-defined functions implement the solidifi-
cation to reproduce the real material behavior.

SOLIDIFICATION PHENOMENA

Important for the simulation of solidification processes
are the damping of the fluid flow in the mushy region and
the solidification enthalpy. The damping is adjustable
with the material specific mushy zone constant (Voller et
al., 1990) and considers the liquid fraction also.

Figure 1 shows the liquid fraction of an alloy 718 in re-
spect to the temperature in the solidification range calcu-
lated by JMatPro. Obviously, the linear approximation
made by ANSY'S Fluent is not appropriate for this mate-
rial. After a cooling of 25 % of the temperature range the
liquid fraction is not 75 % but only 40 %. Therefore, the



damping of the fluid flow is underestimated by AN-
SYS Fluent.
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Figure 1: Liquid fraction of alloy 718 (Giesselmann et
al., 2015) in comparison to ANSYS Fluent

The deviation of the liquid fraction from alloy 718 results
in a nonlinear behavior of the enthalpy in the solidifica-
tion range, because the solidification enthalpy is depend-
ent on the liquid fraction.

Figure 2 shows the comparison of solidification en-
thalpies in respect to the temperature in the solidification
range. The grey line shows the linear implementation of
ANSYS Fluent. Obviously, the change in enthalpy of the
mild steel (Koric and Thomas, 2008) is close to the ap-
proximation from ANSYS Fluent. Whereas, the red line,
representing Alloy 718 (Overfelt et al., 1994), shows a
considerably different behavior.

1.0 4

o < <
= [« o0

<
]

relative solidification enthalpy

0.0

Taol Tliq

—Mild Steel
ANSYS Fluent

——Alloy 718

Figure 2: Comparison of solidification en-
thalpies (Overfelt et al., 1994, Koric and Thomas, 2008)
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BUILT-IN SOLIDIFICATION IN ANSYS FLUENT

The solidification module from ANSYS Inc. (Release
14.5, 2012) uses the enthalpy-porosity approach to im-
plement the damping of the fluid flow in the mushy re-
gion. Poirier (1987) shows, that the inter dendritic flow
follows Darcy’s law (Darcy, 1856):

Darcy’s law
Hp
——V

Vp =
P=~%

()

Voller and Prakash (1987) implemented the awareness of
Poirier (1987) in the fluid flow modeling. Later, a mushy
zone constant was introduced to replace the dynamic vis-
cosity pup and the unknown permeability K (Voller et al.,
1990). The liquid fraction fiiq represents the change in
permeability, whereas the mushy zone constant Apysh im-
plements the different material behavior (2). The small
number ¢ is equal 0.001 to avoid a division by zero (AN-
SYS Inc., Release 14.5, 2012).

Hp (1 - fliq)2 ]

2 - Apush (2)

K fl?q —1 mus

The ratio between viscosity and permeability (see for-
mula (2)) is then inserted in the equations (3) and (4) to
formulate the force F against the fluid flow v as well as
the momentum S against the turbulence quantities ®.

2
1—f.
Pl o) O
iq
2
1—f
S= (f3 f_lli) *Apush - P (4)
liq

The necessary turbulence quantities depend on the used
turbulence model. Equation (4) is equal for all quantities
like turbulent dissipation rate €, turbulent kinetic en-
ergy k, specific dissipation ® and so on (ANSYS Inc.,
Release 14.5, 2012).

To show the implementation of the formula above, the
momentum equation of the solver (5) is given below. The
damping force F of the fluid flow (Equation (4)) is in-
serted in the last term.

9
E(p-VHV-(p‘v-v)
=-Vp+V-(@+p-g+F

)

As mentioned in the previous chapter, the solidification
enthalpy is distributed linear over the temperature range
of solidification and implemented as source term Sy, in
the energy equation (6).

a
5P +V-(v-(p-e+p))

(6)



USER-DEFINED SOLIDIFICATION MODEL

To reconstruct the real material behavior of alloy 718 an
in-house developed solidification model based on UDFs
is used for several process models, like electro slag re-
melting (ESR) and vacuum arc remelting (VAR).

Approach

The aim of the modified solidification model is to imple-
ment the nonlinear behavior of the liquid fraction in re-
spect to the temperature. The curve progression can be
received for example from a Scheil-Gulliver approach
like in Figure 1 or other calculation programs for thermo-
physical data.

The idea was to reconstruct the solidification model of
ANSYS Fluent by user-defined functions. Therefore, the
main equations ((3) and (4)) for the damping are also
used.

The solidification enthalpy is included in the heat capac-
ity of the material.

Implementation

The implementation of the modified solidification model
is based on a DEFINE_ADIJUST function for the liquid
fraction and several DEFINE SOURCE functions for the
damping. A modified heat capacity includes the change
in enthalpy.

The liquid fraction should be adjusted very detailed to
represent the real fluid flow. Therefore, liquid fraction
and solidification enthalpy out of the thermophysical da-
tabase are divided in 1 K steps.

Damping of the fluid flow

A DEFINE ADIJUST UDF loops over all the cells in the
fluid regions to get the temperature of the cells. A look-
up function searches the corresponding liquid fraction for
these temperatures out of the tabulated liquid fractions.
The liquid fraction is saved in a user-defined
memory (UDM) for post processing.

Analog to the calculation procedure in ANSYS Fluent
the ratio between viscosity and permeability is calculated
with equation (2) and saved in another UDM. This ratio
is the damping term of velocities and turbulence quanti-
ties (see equation (3) and (4)).

The damping force and momentum values are calculated
in several DEFINE SOURCE UDFs. One UDF for each
velocity direction and the turbulence quantities, typical
turbulent dissipation rate € and turbulent kinetic en-
ergy k. The source value is the negative product of the
damping term with the velocity or turbulence value (See
equations (7) to (11)). If a pull velocity v, moves the solid
region, it has to be subtracted from the fluid velocity, here
in the x direction:
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The five source terms have to be included for the corre-
sponding values in the ANSYS Fluent interface. The pro-
gram implements the source terms in the momentum
equation (5) as well as the turbulence model.

Solidification enthalpy

To implement the nonlinear behavior of the solidification
enthalpy (see Figure 2) the enthalpy is included in the
heat capacity of the material (see Figure 3). Therefore, it
is not necessary to modify the energy equation (6) of the
solver.
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Figure 3: Heat capacity of alloy 718 including the so-
lidification enthalpy (Giesselmann, 2014)

Obviously, most of the solidification enthalpy is needed
or set free near to the liquidus temperature. This refers to
the steep slope of the liquidus fraction in this area (com-
pare Figure 1).

Another possibility to implement the enthalpy of solidi-
fication would be a DEFINE SOURCE UDF. The ad-
vantage of the presented solution is the reversible char-
acter of the heat capacity. Because some parts of the sim-
ulated region maybe melt on again, the solution with
source term would be more elaborate. Whereas the heat
capacity offers directly the possibility for change of sign
in the temperature derivation.

COMPARISON OF THE MODELS

To compare the built-in solidification of ANSYS Fluent
with the UDF based solidification model a test case was
set up. Figure 4 and Figure 5 show the flow of hot metal
through a cooled pipe. The left face is a velocity inlet of
hot liquid metal. The top wall is at constant temperature,
which is lower than the solidus temperature. At the right
side, the boundary is an outflow. The contour plot visu-
alizes the liquid fraction from one (white) to zero (black).
The black line symbolizes the position of 1 % solid frac-
tion. The vectors and their lengths show the velocity.

In Figure 4 the solidification model of ANSYS Fluent
was used. Therefore, the liquid fraction increases uni-
formly over the whole solidification range.
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Figure 4: Test case: Built-in Fluent solidification model

Figure 5 shows the same test case simulation as Figure 4
with the UDF based solidification model. Obviously, the
shape of the solidified area is slightly different, but more
interesting is the case that there is sharp edge in the mid-
dle of the gray scale. Therefore, the fluid flow is damped
at this position abruptly.
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Figure 5: Test case: UDF solidification model

The comparison of the two test cases show the similarity
of the models as well as the decisive differences.
Whereas the flow in first case is damped smoothly, the
damping with the UDF based model is more abrupt.

CONCLUSION

A modified solidification model for ANSYS Fluent was
introduced. It offers the possibility to reproduce the real
material behavior in context of liquid fraction in respect
to temperature. Which is important for the damping of
the fluid flow in the mushy region as well as the distribu-
tion of the solidification enthalpy over temperature.

586

The solidification model of ANSY'S Fluent was modified
and calculated in a user-defined function to adjust the lig-
uid fraction concerning the cell temperature properly.
The damping of the motion values is then implemented
by source terms for velocities and turbulence quantities.
The solidification enthalpy is included in the heat capac-
ity of the material. Therefore, the enthalpy can be fitted
very detailed.

A test case shows the similarities and differences of the
two models. The modified solidification implements a
more abrupt damping of the fluid flow.

The modified solidification model is able to replicate the
material behavior more detailed than the built-in solidifi-
cation module of ANSYS Fluent.
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