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PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the
12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and
Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also
known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997.
So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim.
The conferences focuses on the application of CFD in the oil and gas industries, metal production,
mineral processing, power generation, chemicals and other process industries. In addition pragmatic
modelling concepts and bio-mechanical applications have become an important part of the
conference. The papers in this book demonstrate the current progress in applied CFD.

The conference papers undergo a review process involving two experts. Only papers accepted by the
reviewers are included in the proceedings. 108 contributions were presented at the conference
together with six keynote presentations. A majority of these contributions are presented by their
manuscript in this collection (a few were granted to present without an accompanying manuscript).

The organizing committee would like to thank everyone who has helped with review of manuscripts,
all those who helped to promote the conference and all authors who have submitted scientific
contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal

Production and NanoSim.

Stein Tore Johansen & Jan Erik Olsen
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CFD-DEM MODELLING OF BLAST FURNACE TAPPING
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ABSTRACT

The campaign length of a blast furnace is limited by the hearth inner
lining lifetime. In order to maximize the campaign length and en-
sure a good draining of hot metal and slag, a good understanding of
the flow in the hearth is essential. Challenges in modelling the flow
involve several continuous phases (hot metal, slag and hot blast) as
well as the presence of the deadman, a dense bed of coke particles.
The shape and position of the deadman depend on the weight of the
burden column above and the buoyancy forces from the liquids in
the hearth.

A numerical coupled CFD (Computational Fluid Dynamics) - DEM
(Discrete Element Method) model was developed and implemented
in CFDEMcoupling (Goniva et al., 2012), intended for future flow
pattern investigation of the hearth during tapping. A VOF (Volume
of Fluid) method is used to model the multiple continuous phases
and DEM to model the discrete particles. The VOF and DEM mod-
els are coupled together in a 2-way manner, resulting in a complete
4-way coupled CFD-DEM model. We report the experimental vali-
dation of the model, performed on a small-scale particle filled tank.
The tank was drained of water through the dense particle bed and
the mass flow rate was measured.

Difficulties in choosing a fine enough mesh for the VOF method
to correctly resolve the interface and simultaneously ensure a sta-
ble and accurate void fraction calculation arose. Different methods
was proposed to enable particle sizes in the same range of the CFD
cells, involving alternative methods for mapping the void fraction
field onto the CFD mesh, as well as smoothing of the void fraction.
With the smoothing model of Radl et al. (2014), the simulation was
stable and very good agreements were found with the experimental
measurements.

Keywords: VOF-method, DEM, multiphase flow, particle bed,
blast furnace hearth .

NOMENCLATURE

Greek Symbols

o volume fraction, [—]

€ void fraction, [—]

p  density, [k8/m’]

u dynamic viscosity / friction coefficient, [kg/ms/—]
v kinematic viscosity / Poisson’s ratio, [n*/s/—]
T viscous stress tensor, [N/n?]

6 surface tension, [N/m]

K  interface curvature, [1/m]

®  angular velocity, [rad/s]
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At time step, [s]

Latin Symbols

u  velocity, [m/s].

p  pressure, [Pal.

p+  non-hydrostatic pressure, [Pa].
g gravity, [m/s?].

x  coordinate, [m].

F  force, [N].

m  mass, [kg].

I moment of inertia, [kg m?].
M torque, [Nm].

d  diameter, [m].

vV volume, [m?].

COR coefficient of restitution, [—].
N number of particles, [—].
Sub/superscripts

f fluid.

P particle.

i phase i / particle i.

c compression.

c surface tension.
particle-fluid interaction.
particle-particle interaction.
T turbulent.

a.m added mass.

semi — sat. semi-saturated.

INTRODUCTION

The blast furnace hearth condition has been proven to be crit-
ical to the campaign length as well as ensuring a stable op-
eration. Increasing the blast furnace campaign length is of
great importance because the re-lining is an expensive oper-
ation and causes a significant downtime in production (Shao,
2013; Zhang et al., 2008). The hearth is an extremely harsh
environment, temperatures exceeding 2000°C and high fluid
velocities close to the tap holes cause great wear on the lin-
ing. Thus understanding the fluid flow pattern in the hearth is
essential in order to optimize the campaign length (Ariyama
et al., 2014; Guo et al., 2008).

The hearth is filled with liquid iron and slag, which settles in
immiscible layers due to their different densities. Addition-
ally, dense packed coke particles form a permeable structure
often referred to as the deadman (Nnanna et al., 2004; Tanzil
et al., 1984). The shape and position of the deadman depend
on the operation, it is depending on the weight of the bur-



den column above and the buoyancy forces from the liquid
metal and slag in the hearth. Due to the harsh environment,
accurate measurements are difficult to perform, hence accu-
rate models are essential in the understanding of the hearth
(Huang et al., 2005). In order to accurately model the tap-
ping procedure it is important to consider the dynamics of
the deadman.

Therefore, in this work a coupled CFD - DEM model was
developed and implemented in the open-source software
CFDEMcoupling, intended to be used in future work for flow
pattern- and deadman dynamics investigation during tapping.
In DEM, each individual particle is solved for, giving the
model capabilities of accounting for the deadman dynamics
at the expense of being extremely computationally demand-
ing. The well known interface tracking method VOF (Hirt
and Nichols, 1981; Gueyftfier et al., 1999), is used to model
the multiple immiscible fluids.

MODEL DESCRIPTION

The CFD-DEM model is based on the theory for unresolved
particle-fluid interaction, in which the flow around each par-
ticle is not resolved. Typically the CFD grid cells are larger
than the particles and volume-averaged quantities are used
on cell-size scale level. Sacrificing the smallest scale phe-
nomena to solve for larger systems.

CFD governing equations

In order to model the multiple continuous phases, a VOF ap-
proach is used to track the interface. It is based on a mixture
approach, where an indicator function ranging from O to 1 is
used to distinguish between the fluids. The evolution of the
interface is described by solving the advection equation,

219 (ag) =0, M
where o is the volume fraction and uy the fluid velocity (Hirt
and Nichols, 1981; Li et al., 1999). If the particle phase
is considered as well as introducing a compression term to
sharpen the interface, as done by Rusche (2002), a final set of
transport equations for the volume fractions o; can be written
as,

0eQy;
3 (2

where € is the local void fraction and u, is the artificial com-
pression velocity. The local fluid properties are determined
by taking the volume weighted average of all the phases
physical values as shown in Equation (3) and (4) for k con-
tinuous phases.

+ V- (eoyus) — V- (uc0; (1—0;)) =0,

k
pr=Y oip;
i=1

k

3)

Hp =) Oy 4)

i=1

The flow is described by the Navier-Stokes (NS) equations
in the form from Anderson and Jackson (1967). In VOF
methodology only one momentum equation is solved, using
the mixture fluid properties. Due to the presence of discrete
particles, the void fraction term has been incorporated into
the governing equations. The continuity equation is given by
Equation (5) and the momentum equation by Equation (6).

% LY. (eus) =0

ot ©)
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oepruys
ot

+V-(eprusus) =—eVp* +evV-r—e(g-x) Vpy

+F°+F/!

(6)
The formulation of pressure in Equation (6) is different from
e.g. Anderson and Jackson (1967) and Sun and Sakai (2015).
According to Rusche (2002), solving for a modified pressure
p*, defined as p* = p — (g-x) py, where g is the gravity vec-
tor and x the coordinate vector, simplifies the assignment of
pressure boundary conditions as well as it offers a numer-
ically better way of handling the strong density gradient at
the interface. Physically, p* can be interpreted as the pres-
sure without the hydrostatic contribution. Furthermore, T de-
notes the viscous stress tensor, which is usually written as

T =uy (Vu 5 —|—Vuj§). F° is the surface tension force, de-

fined as F° = oxVa, where ¢ denotes the surface tension
and x is the interface curvature. FP/ is a source term arising
from the momentum exchange between the fluids and parti-
cles, which is further described in the following section.

DEM governing equations

The discrete particles are described with DEM. It is a well
known numerical method for solving granular flows and it
is based on the theory of Cundall and Strack (1979). Each
particle is solved individually by determining its trajectory
with Newton’s laws of motion as,

d .
miizf’l zFf’p—&-Fff-i-mi& @)
do, ; -
i— = =M +M!, ®)

where u,, ; is the particle velocity and ®,, ; the angular veloc-

ity. F?” denotes the inter-particle force and F?/ the particle-
fluid interaction force. In this work, relatively large parti-
cles are used (dp ~ 0(1073m)), thus neglecting any cohesive
forces which can be important for e.g. powders. The particle-
particle interaction term is then described only by the colli-
sion forces. .

The particle-fluid interaction term, F f’ f , is fully defined as:

F,I')f = Fdrag,i + FVp,i + F‘E,i +FBasset,i +Fu.m,i

)
+ FSaffman,i + FMagnus,ia

where the components on the right hand side are respectively
the drag force, pressure gradient force, viscous force, Basset
force, added-mass force, Saffman- and Magnus-lift force. In
this work, the Basset-, added-mass-, Saffman- and Magnus-
forces are neglected because it is expected that the drag-
, pressure gradient- and viscous-forces are dominant (Zhou
et al., 2010). Equation (7) can then be rewritten as,

du, ;
Dyl
i dt

n
=Y F{" 4 Fragi+Fvpi+ Fri+mg, (10)
i=1

where Fy,; = —V,;Vpand F; =V, ;V-T. In this work the
Koch and Hill drag model (Hill ez al., 2001; van Buijtenen
etal.,2011) was used.



Smoothing

One contradiction arises due to the nature of the model. In
VOF methodology, a fine mesh is desired to resolve the inter-
face, where as for unresolved CFD-DEM, the cell size should
be larger than the particles in order to accurately map the void
fraction field onto the mesh. A few alternative methods for
calculating the void fraction have been suggested to enable
for particle sizes in the range of the cell sizes. For example,
Jing (2016) used an approach where the particles are arti-
ficially enlarged to influence more surrounding cells, while
keeping the volume constant.

Additionally, Peng et al. (2014) reported that, small inaccu-
racies in mapping the void fraction onto the mesh eventually
causes local pressure fluctuations due to the formulation of
the governing equations. Reducing these fluctuations is of
great importance in order to ensure stable simulations. Ad-
ditional treatment of the exchange fields can be performed to
improve stability, as done by e.g. Pirker et al. (2011), Radl
et al. (2014) and Capecelatro and Desjardins (2013), where
a diffusion equation,

)

¢

- 11

5 Y
for the quantity in question ¢ is solved. D is the diffusion
coefficient, which can be defined as D = [2 /At, where [ is
interpreted as the smoothing length. By performing this op-
eration, the exchange fields are "smeared" over nearby cells.

EXPERIMENTAL SETUP

The tank was a transparent box with the dimensions
330x150x400 mm. A cylindrical tap hole with the diame-
ter dyur1er = 27.5 mm was located at the bottom of the side.
A schematical view of the setup is shown in Figure 1. A
valve was used to control the tapping and the total bulk mass
tapped was measured with a load cell. Because coke particles
are buoyant in the blast furnace hearth, wood particles were
chosen in order to be buoyant in water. The measured parti-
cle properties are listed in Table 1. As a result of choosing
wooden particles, the particle properties varied between wet
or dry because the wood soaked water. The particles were
measured and weighed in between ten experimental runs. A
semi-saturated state of the particles was reached after five in-
stances where-after for the following five runs, the particle-
diameter and density were determined to d, = 6.5 mm and
pp =850 kg/m? respectively.

= DV?9,

Table 1: Particle properties

Np 40000
Pp.dry 600 kg/m3
pp,semifsaﬁ 850 kg/m3
dp,dry 6.0 mm
p,semi—sat. 6.5 mm

For a first test run, a sitting particle bed was considered. The
initial water level was set to 300 mm and the buoyant parti-
cles were held down by a grid as shown in Figure 1. Another
grid was placed at the outlet to hinder the particles from leav-
ing the tank.

SIMULATION SETUP

The computational domain is shown in Figure 2. Its outer
dimensions are 330x150x350 mm and it is divided in 1920
hexahedral cells, with the smallest cell size, Ax,;;, = 11 mm
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Figure 2: Computational domain and the initial state of the particle
bed and water level.

and the biggest, Ax;,,x = 25 mm. It should be noted that a few
assumptions were made to the tap hole. In the simulation, the
tap hole was modeled as a square instead of a circle with the
side, a, calculated as:

1 2
a= 5 V 7tdoutlet’

Additionally, the pipe from the experimental setup was not
modeled in the simulation. Thus it was assumed that the
pipe pressure drop could be neglected. Figure 2 also shows
the initial state the simulation. In order to ensure that the
particles remain on the bottom, the particle density is set
to 2500 kg/m?>. The full list of simulation parameters are
listed in Table 2 and 3, where v, denotes the Poisson’s ratio,
COR the coefficient of restitution and u,, the friction coeffi-
cient. It should be noted that the particle time step size was
100 times smaller than the fluid time step, meaning that 100
sub-iterations of DEM calculations were performed for every
CFD time step.

(12)



(a) Unsmoothed, t=1s

(¢) Unsmoothed, t =15 s
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Figure 3: Pressure for the unsmoothed- (left) and smoothed (right) simulation at the central plane for various time steps.

Table 2: Simulation parameters: fluid

Aty 5-1073s
Puater 1000 kg/m’
Pair 1.0 kg/m3
Vyater 1.0-107%m?/s
Vair 1.0-1075 m?/s

Owater—air 0.07 N/m

Table 3: Simulation parameters: particle

At

Pp

dp

Np

Young’s modulus
Vp

COR

Hp

5-1073s
2500 kg/m?
6.5 mm
40000
5-107%Pa
0.45
0.3
0.5
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RESULTS

The effect of smoothing on the pressure is depicted in Fig-
ure 3. Two different simulations were carried out, one un-
smoothed and one with the smoothing model previously de-
scribed active with the smoothing length / = 3d,,. The top
row shows the resulting pressure at t = 1 s and the bottom
row at t = 15s. One would expect a linearly increasing
pressure towards the bottom due to the hydrostatic pressure.
Consequently, the maximum pressure at the bottom would
decrease as the water level decreased. The expected behav-
ior can be observed in the smoothed simulation, while the
pressure in the unsmoothed shows an odd behavior. Thus,
validation was performed with the smoothing model active.

Figure 4 illustrates the instantaneous flow field at t = 8 s.
Due to atmospheric pressure at the outlet, the fluid is drained
and high fluid velocities are observed at the outlet. The mon-
itored mass flow rate is shown in Figure 5 . As expected,
the mass flow rate was high at the beginning and decreased
over time as the water level decreased and the tank was fully
drained after approximately 80 s. In order to compare the
simulation with the experimental results, the mass flow rate
was integrated over time. It is depicted in Figure 6 together
with the measurements. The experimental data is presented
by error bars, which represents the minimum-, mean- and
maximum-value of five experimental runs (as motivated in
the previous section). The dotted line represents the initial
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Figure 4: Illustration of the flow field att = 8 s.
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Figure 5: Tapping mass flow rate over time for a simulation of the
experimental setup.

amount of water in the tank.

It can be seen that the simulation successfully reproduced
the drainage pattern observed in the experiments. Both the
simulation result and the measurements converged towards
the expected amount drained and a small liquid hold up was
noticeable in the experiments as well as in the simulations.

CONCLUSION

A VOF-DEM coupled solver was successfully implemented
in the open-source software CFDEMcoupling, with capabil-
ities of handling n continuous phases in conjunction with
discrete particles.

A tank-draining experiment was set up to provide exper-
imental measurements to validate the model. Water was
drained through a sitting particle bed, consisting of wooden
particles and the flow rate was measured.

Numerical instabilities were encountered due to a relatively
fine mesh. Alternative ways of calculating the void fraction,
as well as smoothing of the exchange fields were performed
with success. With the smoothing model of Radl er al.
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Figure 6: Integrated mass flow rate over time, compared with ex-
perimental measurements.

(2014), very good agreement was found for the mass flow
rate compared to the experimental measurements.
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