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PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the
12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and
Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also
known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997.
So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim.
The conferences focuses on the application of CFD in the oil and gas industries, metal production,
mineral processing, power generation, chemicals and other process industries. In addition pragmatic
modelling concepts and bio-mechanical applications have become an important part of the
conference. The papers in this book demonstrate the current progress in applied CFD.

The conference papers undergo a review process involving two experts. Only papers accepted by the
reviewers are included in the proceedings. 108 contributions were presented at the conference
together with six keynote presentations. A majority of these contributions are presented by their
manuscript in this collection (a few were granted to present without an accompanying manuscript).

The organizing committee would like to thank everyone who has helped with review of manuscripts,
all those who helped to promote the conference and all authors who have submitted scientific
contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal

Production and NanoSim.

Stein Tore Johansen & Jan Erik Olsen
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TIRE RUBBER EXTRUDATE SWELL SIMULATION AND VERIFICATION WITH
EXPERIMENTS

J Buist, DJ Van Dijk, TJ Mateboer*
Windesheim University Professorship for Polymer Engineering, 8000 GB Zwolle, the Netherlands

* E-mail: t.j.mateboer@windesheim.nl

ABSTRACT

Extrudate swell simulations and experiments have been
performed with a viscoelastic tire rubber compound at
high flow rates through a circular die. A 3-mode PTT
model was fitted onto rheological data of the rubber. The
PTT model covers the range of shear rates present in the
simulation. Convergence of the simulation was achieved
with some wall slippage. The simulated and experimental
extrudate swell is in good agreement at 20 mm from the
die exit for a wide range of flow rates.

Keywords: CFD, extrudate swell, die swell, PTT,
viscoelasticity, tire rubber compound

NOMENCLATURE

Greek Symbols

¥ Shear rate, [s™!].

€ Strain (elasticity) parameter of the PTT model,
[-].

é Slip parameter of PTT model, [-] [1].

n* Dynamic viscosity, [Pa-s].

n Viscosity, [Pas].

A relaxation time, [s].

p Mass density, [kg-m™].

On Stress normal to plane direction, [Pa].

Twall The shear stress at the wall, [Pa].

w Oscillation frequency, [rad-s™!].

Latin Symbols

H Diameter of the extrudate, [m].

Ho Diameter of the die, [m].

D Rate of deformation tensor, [s™'].
g Gravity field, [m-s?].

G’ Storage modulus, [Pa].

G” Loss modulus, [Pa].

k Slip coefficient, [kg'm?s].
Power law coefficient, [Pa~s”*7*~Rad1""7*],

My
me Power law coefficient, [Pa-snc'-l -Radl"’G’]_
ny* power law index, [-].

ng power law index, [-].

p Pressure, [Pa].

0 Flow rate, [m*-s™].
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r Viscosity ratio, [-].

rpm  Rotations per minute of the gear pump.

S Swell ratio, [-].

t Time, [s].

T, glass-liquid transition temperature, [°C]

T Stress tensor, [Pa].

A .

T Upper-convected derivative of tensor 7, [Pa].
1

1? Lower-convected derivative of tensor T, [Pa].
1

14 Velocity field, [m/s].

Vs Velocity at the wall, the slip velocity, [m-s™]

INTRODUCTION

Unvulcanized rubber extrusion is a key process in the tire
industry. When rubber is extruded the extrudate will
swell, a phenomenon called ‘extrudate swell’ or ‘die
swell’. The degree of extrudate swell is dependent on
many process parameters, among those parameters are
the die shape, production rate, rubber composition and
the elastic behavior of the rubber. Extrusion die design is
a costly and time consuming process due to extrudate
swell. Die design may be aided by numerical simulations
of the extrusion process [2]. Flow patterns and pressure
build up (flow resistance) within the die may be
simulated with standard (fluid mechanics) numerical
methods. However, extrudate swell poses specific
problems because of the viscoelastic nature of the
material, and because of the complex boundary
conditions. There seems to be a growing interest in the
tire making industry in simulating the extrusion of tire
rubber [3-8]. This study proposes a procedure for aiding
die design for industrial rubber extrusion by performing
rheological measurements and numerical simulations.
The simulated extrudate swell is verified with
experimental extrudate swell.

Theory

Extrudate swell is a complex phenomenon. There are
several contributing factors identified [9]. Swelling due
to rearrangement of the velocity field, which happens in
Newtonian fluids and Non-Newtonian fluids alike. This
is only a small contribution for viscoelastic fluids like



rubber. The main cause of extrudate swell in viscoelastic
fluids is elastic recovery.

It is unlikely that an analytical solution can be found to
calculate extrudate swell according to R. 1. Tanner [9].
This is due to the stress singularity which occurs at the
change of boundary conditions from zero velocity at the
die wall into the free-surface.

Die wall: v=0 stress singularity free-surface:
\[ \L 0,=0
>>>>=>>>1".."-
l“n

Figure 1: Schematic representation of extrudate swell.
Velocities are zero at the die wall. At the free-surface
the stresses normal to the free surface are zero [9].

Locating the free-surface is difficult. For this reason
many attempts to calculate extrudate swell involve
numerical methods. These methods need constitutive
equations to describe the behavior of viscoelastic
materials. Examples of viscoelastic models often applied
in extrudate swell simulation studies are:

— Kaye-Bernstein-Kearsley-Zapas model [10-14]

— Pom-Pom model [14-17]

— Algebraic Extra-Stress Model [16, 18-20]

— Phan Thien & Tanner (PTT) model [8, 14-16,

20-30]

J.H. Kim and M.Y. Lyu have performed extrudate swell
simulations with several viscoelastic models [16]. The
PTT model shows good agreement with capillary
rheometer experiments. Therefore the PTT model is
applied in this study. Extrudate swell simulation studies
are often conducted at relatively low flow rates and low
shear rates [8, 14, 15, 31]. But in industrial rubber
extrusion processes high flow rates and shear rates occur.
This study is focused on extrudate swell at industrial flow
rates.

EXPERIMENTAL SETUP

Extrusion experiments

Apollo tyres provided a rubber compound suitable for
tire production. VMI Group performed several extrudate
swell experiments. The rubber was extruded with a Shark
70 extruder, the shape and dimensions of the extrudate
swell was captured on camera from above the extrudate.

extruder

extrusion dij

conveyor-belt

Figure 2: Schematic diagram of extrudate swell
measurement setup.
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The extrusion die is circular symmetrical and consist of a
conical part and a capillary part.

6/
- : »

« -

O

Figure 3: Cross-section of the circular symmetrical
extrusion die, all dimensions are in mm. The rubber
flow direction is from left to right. The red arrow points
were the rubber exits the die.

A conveyor belt transported the rubber away from the
extruder. The conveyor-belt speed was visually matched
to the extrudate velocity to avoid pulling on the rubber
extrudate. Pulling on the rubber decreases the extrudate
swell. Camera imaging was used to measure the
extrudate swell at several distances from the die exit. The
rubber curves downward upon exiting the die since the
conveyor-belt is positioned lower than the die exit, see
Figure 4. This results in lower accuracy measurements of
the extrudate swell at greater distances from the die exit.

Figure 4: Photograph of the die, extruded rubber and
conveyor belt, the camera is not included in this
photograph.

The Shark 70 extruder consists of a conveying screw
extruder and a gear-pump. The conveying screw extruder
was set to produce a pressure of 30 Bar. Experiments
have been performed at 4 different gear-pump speeds.



Table 1: Set gear-pump speeds and corresponding flow

rates.
Gear pump speed Flow rate
5 rpm 14.7 ml-s’!
10 rpm 29.3 ml-s’!
15 rpm 44.7 ml-s!
20 rpm 58.7 ml-s’!

The flow rate was verified measuring the mass of
extrudate collected during 36 s of extrusion. With each
experiment, the temperature was measured at the inside
of the extrudate. Extrudate swell (S) is expressed as the
ratio of the diameter of the die and the extrudate
diameter:

_H-H,

H,

S

Rheological measurement setup

The G’, G” and 5* of the rubber compound were
measured with an RPA2000 provided by the University
of Twente. The RPA2000 is a cone-cone oscillatory
rheometer. The cone geometry ensures that the shear rate
is independent of the distance to the center of the cone.

stationary conical
upper die
Rubber

seal

I
|
I cone angular
v oscillation @

oscillating
conical
lower die

Figure 5: Schematic representation of the RPA2000,
the conical dies are filled with a rubber specimen [32].

A rubber sample was subjected to a series of 9
measurements with a logarithmically increasing
oscillation frequency of 0.07 rad-s' up to 209 rad-s'.
Measurements with the RPA2000 were performed at 90
°C, 100 °C and 110 °C. The shear viscosity is calculated
from the dynamic viscosity with the Cox-Merz rule [33].

n(y)=n*(@); with j = o 2

SIMULATION SETUP

Constitutive model

The numerical simulations have been performed with
Polyflow of the Ansys 17.2 simulation suite. Polyflow is
FEM software which is often used for viscoelastic
extrusion simulations [8, 10, 13, 14, 16, 17, 20, 31, 34-
36]. Polyflow calculates the extra stress tensor of the
momentum conservation equation (3) with equation 4
[37].

ov
p<E+V-(vv)>:—Vp+VT+pg 3
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T=T,+T, 4

T, is a purely viscous component which improves the
convergence of the numerical method [37].

T,=24——D 5
-7

T, is calculated with the PTT wviscoelastic model,
equation 6 [37].

v A
¢ ¢
Z)T+=T

(1 2) ot

When a multi-mode viscoelastic model is used, the total
extra stress tensor is the sum of the individual
viscoelastic components. In order to limit the
computational costs only 3 modes have been used.

All the simulations are isothermal. The finite element
method is used for solving the system of equations, which
involves a combination of the discrete elastic viscous
stress splitting (DEVSS) and the streamline upwind (SU)
method [37].

e[ﬁtrm)] T,+A =2nD 6

Curve fitting the PTT model parameters onto
rheological data

The PTT model has several material specific parameters.
The values of these parameters are found by fitting the
PTT model onto the rheological data with Polymat.
Polymat is an application for curve fitting and is available
in Ansys 17.2. r, 5, ¢ and ¢ are fitted onto the measured
G’ and G”. ¢ and & are chosen to be identical for each
PTT mode. The relaxation mechanism occurs near 1/

[37]. The relaxation times are not curve fitted but set as
the reciprocal of the typical shear rates of the simulation.
These typical shear rates were determined with a trial
simulation. The trial simulation is similar to the extrudate
swell simulation. To limit computational costs, the
extrudate and the free surface were not included in the
trial simulation. A trial multimode PTT model with very
high and a very short relaxation times was used, all the
other parameters were curve fitted onto the measured
data. The trial simulation shows that typical shear rates
are between 1 s and 2000 s, In the final multimode PTT
model the relaxation times were chosen as 0.667 ms, 0.02
s and 0.6 s, which correspond with the typical shear rates
of the trial simulation. The simulations with the final
multimode PTT model do not exceed shear rates of 2130

sl

Extrapolation of the measured data

Measurements with the RPA2000 are limited to 208
Rad-s' at a maximum. The typical shear rates of the
simulation were much higher, therefore the measured #*,
G’ and G” were extrapolated in order to curve fit up to
1500 Rad-s!. With many rubber compounds a shear
thinning effect is measured up to very high shear rates
[38-40]. It is assumed that a power law is applicable with
shear rates up to 1500 s'. Complex viscosity
measurements are extrapolated using a power law which
is fitted onto the rheological data. For G’ an exponential
relation was found. Finally G” is calculated with the
extrapolated #* and G.

7,%—1
=m0 7

G'=mg "o 8



G"= wz - %2 _Gl2 9

Boundary conditions

It was assumed that there is no wall slippage in the
extrusion experiments, but the simulation would not
converge without a certain amount of slippage at the die
wall. This is most likely due to the high Weissenberg
number problem. The high shear rates mostly occur near
the die exit. Wall slippage was introduced in the
extrudate swell simulations in order to temper the shear
rates at the die exit. The wall slippage is enforced with
equation 10 [37, 40].

v, =— Twall

‘ k

There is a full-slip condition when /=0 kg-m2-s!, there is
no slip if k=00 kg'm%s!. Wall slippage decreases the
pressure drop in the die. The pressure drop can be
expressed as a function of slip coefficient k. It was
decided that a simulation performs sufficiently if the
pressure drop is not significantly influenced by the wall
slippage.
A simplified simulation was performed in order to find
the pressure drop within the die. The simplified
simulation is without extrudate and free surface, the
simulation does converge without wall slippage. The
simplified simulation was subsequently subjected to an
incrementally increasing wall slippage. At /=10% kg-m
25! the pressure drop became more than 95 % of that of
the simulation without wall slippage. The extrudate swell
simulations were performed with a wall slippage with a
slip coefficient &=108 kg-m?-s.
Finally, the surface of the extrudate is a free surface and
the remeshing technique Optimesh-3D was applied [37].
At the outflow plane, a zero tangential and normal force
condition was applied. This condition is applicable if the
elastic tensions are completely dissipated.

Mesh

Several 3D meshes of the die and 40 mm of extrudate
were designed. Some design consideration are:

- High node density near the die exit is desirable
since the greatest increase in extrudate diameter
is expected to happen near the die exit.

- Practice shows that a structured mesh of
hexagonal cells results in a more stable
simulation than an unstructured mesh.

- The computational costs increases rapidly with
an increase in the number of nodes.

- Sufficient node density near the die wall since
the shear rates are greatest near the die wall.

Figure 6 shows the cross-section through the length of the
die and extrudate, the node density is higher near the die
exit.

10
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Figure 6: A cross-section through the length of the die
and extrudate. Blue is the rubber inside the die, green is
extrudate with a free surface. Note the higher node
density near the die exit and larger cells further away
from the die exit.

Simulations with several meshes were performed in order
to find a mesh with a sufficient node density near the die
wall. The node density near the die wall was determined
by one variable, all other design parameters are kept
constant, see Figure 7.

Figure 7: Width cross-sections of the meshes. A:
Schematic representation of the mesh designs, the mesh
consists of a square mid-section (green) and a circular
part (blue). The total number of nodes is determined by
a constant number of nodes in the angular direction
(black) and a variable number of nodes in the radial
direction (red). B: Cross-section of a mesh with 4 nodes
in the radial direction. C: Cross-section of a mesh with 5
nodes in the radial direction. D: Cross-section of a mesh
with 6 nodes in the radial direction.

A mesh is sufficient if the extrudate does not increase
much when the number of nodes increases. The diameter
of the extrudate at 20 mm from the die exit as a function
of the number of nodes is shown in Figure 8.
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Figure 8: The extrudate diameter at 20 mm from the die
exit as a function of the number of nodes in the radial
direction with an flow rate of 13.9 ml-s™. The red cross
at 5 nodes in the radial direction, this is the mesh used
for the extrudate swell simulations.

The mesh used in this study is with 5 nodes in the radial
direction. The mesh is structured with hexagonal cells
and contains 15906 cells.

RESULTS AND DISCUSSION

Rheological measurements and curve-fit

The G’, G” and 5 were measured with the RPA2000,
the rubber compound did not show a significant
temperature dependence within the measured
temperature range. This temperature independent
behavior is expected since the rubber compound has a
low T, of less than 0 °C. The measurements at 100 °C
have been used for extrapolation and curve-fitting. The
measured G’, G” and # and the extrapolated data is
shown in Figure 9.
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Figure 9: Measured and extrapolated G’, G” and #.

Note: the dimensions differ between G’, G and 7.

Note: all dimensions are presented on a logarithmic
scale.

Equations 7, 8 and 9 are applied for the extrapolation of
G’,nand G”. The following values for the parameters of
these equations were found:

—  my+= 85422 Pa-s™*-Rad' """

— np=0241
—  mg=72078 Pa-s"¢"Rad™¢
- ng=0.259

A curve fit was made onto the extrapolated data and is
shown in Figure 10.
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Figure 10: Extrapolated and curve fitted G’, G” and #.
Note: the dimensions differ between G, G” and 7.
Note: all dimensions are presented on a logarithmic

scale.

The typical shear rates range between 1 s™! and 2000 s’
as was determined with the trial simulation. Note that the
fit matches well in the range of typical shear rates, but
poorly at the shear rates of less than 1 s°.

Table 2: Curve-fitted values of the 3 mode PTT model.
Note that there is only a single r for the multimode
model, and that ¢ and ¢ are identical for each mode.

First mode Second mode | Third mode
A 0.667-103s | 2-103s 0.6s
n 230.803 Pas | 3539.3 Pa's 79880.5 Pa‘s
€ 0.7508015 0.7508015 0.7508015
é 0.1360633 0.1360633 0.1360633
r 0.41343-10° | - -
Extrusion experiments
During the extrusion experiments the extrudate

temperature and mass flow rate have been measured.
Apollo tyres determined that the density of the rubber
compound is 1210 kg-m™.

Table 3: Measured flow rate and extrudate temperature
for each experiment.

Gear pump | Flow rate Extrudate
speed temperature
5 rpm 13.9 ml's’! 88 °C

10 rpm 27.4 mls! 95 °C

15 rpm 41.1 mls™! 100 °C

20 rpm 54.2 ml-s’! 105 °C

The measured flow rates of Table 3 are used for the
simulations.
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Shear rates in the simulations

The simulations show high shear rates within the
capillary part of the die. At higher flow rates the shear
rates increase, but do not surpass 2130 s”\. Which is in
agreement with the typical shear rates found with the trial
simulations and the chosen relaxation times.

Shear rate (s™!)
| 3 |

% % %

Lt

Figure 11: Shear rate in the extrudate swell simulations,
upper diagram is 5 rpm, the lower diagram is 20 rpm.

Extrudate swell

The measured extrudate swell and the simulated
extrudate swell are shown as a function of distance from
the die exit:

0.6

<
~

0.2

Extrudate swell ratio S [-]

0 10 20 30

Distance from the die exit [mm]

40

experiment Srpm simulation Srpm

experiment 10rpm simulation 10rpm

experiment 15rpm simulation 15rpm

experiment 20rpm simulation 20rpm

Figure 12: Experimental and simulated extrudate swell
as a function of distance from the die exit, the legend
shows the set gear pump speed of each experiment and
simulation.

In these experiments the extrudate swell increases as a
function of distance from the die exit up until 20 mm
from the die exit. A small decrease in extrudate swell at



30 mm from the die exit can be observed. This is most
likely a measurement error due to the downward
curvature of the extrudate.

The simulations show a rapid increase in extrudate swell
at a short distance from the die exit. The simulated
extrudate swell seems to overshoot in comparison to the
experiments. With more wall slippage, the overshoot
disappeared.

The simulations show an increase of extrudate swell near
the end of the 40 mm of simulated extrudate. This swell
increases when the simulation is repeated with a shorter
(20 mm) extrudate. A shorter extrudate has less time to
relax. The extra swell near the end is most likely due to
the boundary conditions at the outflow plane and the
elastic tensions which have not completely been
dissipated.

Figure 13 shows the simulated and experimental
extrudate swell as a function of the flow rate at 20 mm
from the die exit.
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Figure 13: Experimental and simulated extrudate swell
as a function of flow rate at 20 mm from the die exit.

There is strong agreement between the simulated and
experimental extrudate swell. Both the simulated and
experimental extrudate swell increase with higher flow
rates, but the increase becomes less at higher flow rates.

CONCLUSION

A procedure was proposed to simulate extrudate swell. A
rubber compound was analyzed for its rheological
behavior and a 3 mode PTT model was fitted onto the
rheological data. Extrudate simulations at high flow rates
and shear rates have been performed with the PTT model.
Extrusion experiments at high flow rates and shear rates
have been performed. The extrudate swell was measured,
the accuracy of the extrudate swell measurement is
decreases beyond 30 mm from the die exit. The simulated
swell is overpredicted near the die exit, the simulated
swell and the experimental swell is in good agreement at
20 mm from the die exit.

Recommendations / Future work

The extrusion simulation was performed with a single
circular die and a single tire rubber compound. Future
work will focus on different die shapes and sizes,
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different tire compounds and different viscoelastic
models.

In this study, rheological data was extrapolated. Further
study is needed to determine whether the behavior of
rubber matches the extrapolation.

Further research is needed to determine whether wall
slippage is present in the die and how this might be
included in the simulations. Wall slippage is not present
at low shear rates, but might be present at high shear
rates. The presence of wall slippage might be determined
by experiments and simulations at low and high flow
rates and shear rates. This could also be a validation of
the simulation procedure at low flow rates.
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