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PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the
12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and
Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also
known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997.
So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim.
The conferences focuses on the application of CFD in the oil and gas industries, metal production,
mineral processing, power generation, chemicals and other process industries. In addition pragmatic
modelling concepts and bio-mechanical applications have become an important part of the
conference. The papers in this book demonstrate the current progress in applied CFD.

The conference papers undergo a review process involving two experts. Only papers accepted by the
reviewers are included in the proceedings. 108 contributions were presented at the conference
together with six keynote presentations. A majority of these contributions are presented by their
manuscript in this collection (a few were granted to present without an accompanying manuscript).

The organizing committee would like to thank everyone who has helped with review of manuscripts,
all those who helped to promote the conference and all authors who have submitted scientific
contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal

Production and NanoSim.
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ABSTRACT

With kinetic gas theory as a starting point, equations of change for
total mass, species mass, momentum and inner energy are devel-
oped for the dispersed gaseous phase and implemented to describe
the Fischer-Tropsch synthesis carried out at industrial scale. The
resultant model describes bubble velocity, composition and temper-
ature in the gaseous phase as function of axial position and bubble
size. The bubble size is found from the population balance equation
(PBE) using a continuous mass density function which is calcu-
lated explicitly and used as basis for the gas-liquid transfer fluxes
of species mass, momentum and heat. In the Fischer-Tropsch syn-
thesis reactants are transported from inside gas bubbles through the
gas-liquid interface into the liquid phase and subsequently into the
catalyst pores to form hydrocarbon products at the active sites on
the catalyst surface. Higher catalyst loading requires a higher mass
transfer from the gas bubbles to the liquid phase and may cause the
overall reaction to become mass transfer limited. In order to opti-
mize reactor design, knowledge of the bubble size may thus be of
importance. The liquid and solid phases are modelled using con-
ventional continuum mechamics equations of change. The results
of the simulations show that the weight percent of reactant varies
by 20 percentage points from the smallest to the largest bubble size
and thus a significant level of detail is added to the model when in-
cluding bubble size in the mass fraction variable. For temperature
the particle size dependency is negligible at the same conditions.
It is noted that firm conclusions on the mass and heat transfer lim-
itations can only be drawn when reliable estimates of the transfer
coefficients are available.

Keywords:  population balance methods, chemical reactors,
slurry bubble column, multiphase mass transfer, Fischer-Tropsch
synthesis, bubble size .

NOMENCLATURE

Greek Symbols

o Volume fraction, [—].

Y Size dependent mass transfer term, [1/s].

Ys  Size dependent mass transfer term for species s, [1/s].
Mass transfer term, [kg/m? s].

Bubble diameter, [m].

Effective turbulent conductivity in spatial space,
W/mK].

Dynamic viscosity, [kg/ms].

Bubble diameter, [m].

>y

S
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E  Microscopical velocity in property space, [/s].
p  Mass density, [ks/m’].

Pcat  Catalyst density in reactor, [kg/m?].

v Generic quantity.

®  Weight fraction, [—].

Latin Symbols

A Bubble surface area, [m?].

Gas-liquid interfacial area per unit dispersion mixture,
).
b Breakage frequency, [1/s].
c Coalescence frequency, [1/s].
c Microscopical velocity in physical space, [/s].
Cp Drag coefficient, [—].
Specific heat capacity, [//kg k].
Sauter mean diameter, [m].
D Diameter of column, [m].
Eff. axial dispersion coefficient, [m*/s].
f Number density function, [#/m3 m|.
Mass density function, [kg/m? m].
Size dependent drag force per mass, [V/kg].
Force, [N].
Standard acceleration of gravity, [7/s?].
Heat transfer coefficient, [W/m? k].
Specific enthalpy, [//kg].
Daughter size redistribution function, [1/m].
Source term, [k8/m? s].
Liquid side mass transfer coefficient, [m/s].
Equilibrium constant describing the relationship y; /x}
at given conditions, [—].
Mass, [kg].
Microscopical density function, [#/(m? mm/s K kg)].
Microscopical normalized density function, [#/(m/s K)].
Pressure, [Pa].
Pressure tensor, [kg/m s2].
¢ Space-property pressure vector, [ks/ms?].
Kinetic energy flux vector, [W/m?)].
Space-property kinetic energy flux vector, [W/m?].
Physical coordinates, [m].
o Reaction rate in terms of CO conversion, [kmol s/kgcar].
Reaction term, [kg/m? s].
Source term not due to collisions,
Time, [s].
Temperature, [K].
Velocity, [7/s].
Bubble volume, [m?].
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ve  Growth velocity, [m/s].
Z Dispersion height, [m].
Sub/superscripts

B — D Birth and death terms.
coll Collisions.

d (mass) density function.
eff  Effective.
G Gas.

G — L Gas-liquid.

in (Reactor) inlet.
L Liquid.

m Mass.

max Maximum.
min  Minimum.

p Particle.

r Physical space.

s Superficial (superscript).

s Chemical species (subscript).
S Solid.

S — L Solid-liquid.

SL  Slurry.

z z (axial) direction.

& Property space.

INTRODUCTION
Background

In the modelling of multiphase chemical reactors the interfa-
cial transfer fluxes play an important role. Chemical species
are transported between the phases to form products, interfa-
cial forces influence the relative velocities of the phases and
heat is transfered from one phase to another. Mathematical
models for reactive dispersed flows (as opposed to stratified)
are developed on basis of continuum mechanics and kinetic
theory of gases (Jakobsen, 2008). With emphasis on mod-
elling the interfacial transfer fluxes, the latter framework is
of interest as it provides a density function describing the
number of entities at a location in physical space and prop-
erty space. Solving for the density function explicitly, the
transfer of chemical species, momentum and heat can thus
be calculated as the product of the transfer coefficient, the
density function and a property dependent driving force. In
particular, choosing size (diameter) as the property space /
inner coordinate the influence of the bubble size distribution
on mass, momentum and heat transfer can be studied.

Development of a reactive multifluid-PBE model

A multifluid-PBE model, where PBE denotes the popula-
tion balance equation, was developed by Dorao (2006), Zhu
(2009), Patruno et al. (2009), Sporleder (2011), Nayak et al.
(2011) and Solsvik and Jakobsen (2014) to describe isother-
mal non-reactive flow with size dependent velocity. Based on
the works by Andresen (1990) and Simonin (1996) a model
for reactive, non-isothermal solid particles in gas was de-
veloped by Lathouwers and Bellan (2000) to describe the
gasification of biomass. Chao (2012) extended their model
to allow for two types of particles in a gas and applied it
to sorption enhanced steam methane reforming. With the ki-
netic theory of gases in common, this work extends the above
models to describe reactive, non-isothermal gas bubbles in a
liquid phase with size dependent velocity, weight fractions
and temperature. An explicit and continous mass density
function describes the mass of bubbles at a point in physi-
cal space z (axial direction) and property space & (diameter).

286

Application of the multifluid-PBE to the Fischer-
Tropsch synthesis

The multifluid-PBE model is applied to the Fischer-Tropsch
synthesis of liquid hydrocarbons from biomass carbon
sources, termed Biomass-to-Liquid (BtL). Torrefication and
gasification of wood residue such as branches and tops gives
synthesis gas which is fed to a reactor where it is converted
to hydrocarbons over a catalyst.

A potential reactor for this process is the slurry bubble col-
umn (Figure 1) where the reactants are fed as gas through
a slurry composed of solid catalyst submerged in a liquid
phase. In order to form products, carbon monoxide and hy-
drogen are transported from the gas bubbles to the liquid
phase and into the catalyst pores where they form hydro-
carbons of various lengths in a very exothermal reaction.
With high gas flow rates and the requirement of efficient
mass transfer and heat removal the Fischer-Tropsch process
requires accurate description of size dependent interfacial
transfer fluxes and field variables such as weight fraction, ve-
locity and temperature.

gaseous products

«5.----5- mm Z:I—
liquid products 5 o
and solid catalyst ® o
catalyst
@ ==
® .l gas
o0 = ¢ = liquid
{
14708
® o
eI g
make-up liquid bt ®
and solid catalyst d ° ,
4 = L. cooling
L 2
sparger

reactants

Figure 1: Slurry bubble column reactor for the Fischer-Tropsch
synthesis. Solid catalyst is submerged in the liquid phase.
Gas bubbles with reactant are injected through a sparger.
Cooling rods along the axial direction facilitate removal
of reaction heat from the liquid phase.

Mass transfer

Efficient mass transfer of reactants from gas phase to liquid
phase along with fast reaction kinetics are important for the
overall reactor efficiency for the Fischer-Tropsch synthesis
in a slurry bubble column. In this work, the kinetic model
by Yates and Satterfield (1991) is applied to study the con-
version of reactants and a standard Anderson-Schultz-Flory
distribution is applied to estimate the chain length of the hy-
drocarbon products.
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A schematic view of the mass transfer resistances in the
Fischer-Tropsch synthesis in a slurry bubble column is
shown in Figure 2. It is known that among all the mass
transfer resistances from gas bubble to inside the catalyst
pellet the liquid side mass transfer is the limiting (Kohler,
1986). Values for the liquid side mass transfer coefficient for
Fischer-Tropsch fluids vary by an order of magnitude (Vandu
etal.,2004). In this work the model by Calderbank and Moo-
Young (1961) for small bubbles is applied. While the authors
denoted small bubbles as those with diameter less than 2.5
mm, they remarked that most industrial reactors exhibit con-
ditions where the small bubble correlation was better than
their large bubble correlation.

phase boundary

_ liquid film bulk liquid
," ~gas film
Vi A
4 .
, Y
1 1
' gas ——
1
‘\ 1 ¢ 2
‘ 4
A Y K4
§~ '¢

catalyst particle surface

Figure 2: Possible mass transfer limitations (Kohler,
whereas step (2) is the most important.

1986),

Momentum transfer

The main momentum transfer is the drag force between the
gas bubbles and the liquid phase. The gas bubbles are fed
at a velocity of 0.5 m/s while the liquid phase initial veloc-
ity is 0.02 m/s, thus the drag force is significant. Bubble
size dependent velocity is known from the literature to give a
valuable additional information compared to all bubbles hav-
ing the same average velocity (e.g. Frank et al. (2005)). As
shown before for the Fischer-Tropsch synthesis in a slurry
bubble column (Vik et al., 2015) the velocity varies signifi-
cantly with bubble size - mainly as a result of the drag force
dependency on bubble size.

Heat transfer

The interfacial gas-liquid heat flux is modelled using the heat
transfer coefficient by Calderbank and Moo-Young (1961).
The reaction heat is removed from the liquid using axial cool-
ing rods. In this work we have assumed only the liquid phase
to be in contact with the axial cooling rods (See Figure 1)
and thus only the gas-liquid interfacial heat transfer is rele-
vant for the bubble size dependent gas temperature.

THEORY
The Boltzmann equation

An analogy to the kinetic theory of granular flow is ap-
plied to describe reactive bubbles in an interstitial liquid.
The starting point is a microscopical density function p =
p(r.§,¢c,E, ), T,,mp,t) which describes the number of
bubbles located at point r with size &, physical velocity ¢,
property velocity (growth) Z, weight fraction of species s
®;,p, temperature T, mass m,, at time . Compared to the
model of Lathouwers and Bellan (2000)/ Chao (2012) the
coordinate set is extended to include the size in form of the
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diameter & and velocity in diameter; growth E. A Boltzmann-
like equation for p is formulated as

~op
0§

op . 9p (op
+Z®57Pa Sp+ pam (at>collisi0n+s

The two terms on the right hand side denote the changes in p
due to collision events and other (not collision) events. Equa-
tion 1 is multiplied with a microscopical quantity ¥, and the
mass m,, and then integrated. Lathouwers and Bellan (2000)
multiplied with the particle mass and integrated over the en-
tire space except physical location and time. Nayak et al.
(2011) assumed constant particle mass and integrated over
the entire space except physical location, size and time. We
here multiply with particle mass and integrate over the entire
space except physical location, size and time. This gives a
mass averaged momentum equation:

ap
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Equations of change for the dispersed fluid are found by in-
troducing appropriate quantities for y,. We shall introduce
coordinates for \,, thus using an Eulerian framework.
Definitions

We define an average of the macroscopical number density:

+(>o
F(rE 1) = / (P&, ¢,E, @5 p, Ty, my, 1)dedEd e, pdTydm,
- 3)

and mass density:

+oo
m,,p(r,é';,c, g, Wy p, T,,,m,,,t)dQ

fd(raavt) -

—oo

“

where dQ = dedEdw ,dT,dm,, for brevity. Fluid properties
are found from moments of \,, defined as:

~+oo
y,m,P(r.§,c,Z,0;,,T,,mp,t)dQ

(Wp) = (&)

where P(r,&,¢,E, 0 ,,T,,mp,t) is a normalized microscop-
ical density function, deﬁned as:

p(raévca E’a wS.,]?v Tpam]ﬂ[)

fd(ra§7t)

This yields and alternative formulation of the moment:

(6)
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Average, or macroscopical bubble mass is found by:
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and we adopt the relation:

Ja(r,6,0) = f(r,&,0)m(r,,1) ©
from Lathouwers and Bellan (2000). Macroscopical or av-
erage dispersed fluid properties such as velocity, growth ve-
locity, weight fraction of species s, temperature and enthalpy
are then given as:

1 tee
vr(r,&,t) = m/_m cm,pdQ (10)
1 Fee
V&(r,&,t):m/_w Empde (11)
~+oo
(Ds(r,g,t) = m . (Ds_pmppd.Q (12)
T ! +°°T dQ 13
('E&J)—m _ Tpmpp (13)
1 tee
h(r,E,t) = Faren) ) hpm,pd€2 (14)

Peculiar velocity, growth velocity, weight fraction, tempera-
ture and enthalpy are defined as the difference between the
microscopical and macroscopical velocity and the average of
the fluctuation is zero. The pressure tensor and heat flux are
defined by:

P(rE1) = /7 J:QmpCdeQ — f(CC) (15

+o0
q(r.&;1) = myCH pdQ = f,(CH')

—oo

(16)

We define a space-property pressure vector and a space-
property kinetic energy flux as:

~+oo

Pe= /700 m,,védeQ:fd@éC) a7
o0

qe = mpvéh'de = fd<véh'> (18)

From Equation 2 the equations of change for total mass,
species mass, momentum and enthalpy (temperature) are
found by inserting for 1, y,,, ¢ and &, for y,, respectively,
and applying definitions 10-18.

MODEL DESCRIPTION
Assumptions

With the kinetic theory of gases originally developed for di-
lute monoatomic gases in vacuum, the application has moved
far from the original intentions of the theory, as shown in Fig-
ure 3.

The particles in this work are bubbles with a significant mass
and occupying a significant volume that may vary. The inter-
stitial fluid is a liquid exerting a drag force on the particles
and the bubbles are injected into the reactor with an initial
velocity, thus not moving freely. The equations are cross-
sectionally averaged to reduce the number of spatial dimen-
sions to one. Furthermore, the implemented model is steady-
state.
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Equations of change

The article presents a novel model particularly designed
to described interfacial mass transfer limited chemical pro-
cesses in a slurry bubble column. The developed equations of
change are 3D and transient, but in order to simulate a practi-
cal process such as the Fischer-Tropsch synthesis, a reduced
1D steady state model is applied. The developed equations
of change are shown below. The population balance equa-
tion formulated in terms of a mass density function f;(z,&)
is given as:

vV E) ,G)V, 5
a(fd(z’%)z a8 A E;))ﬁ 20 = fa(2:8)%(z,8) +Jm(2,5)
(19)
with initial conditions:
fd|z:zmin = fd,in (20)

fd|E,-=E,-min =0

In addition, the growth flux ve fy is set to zero at the & bound-
aries so that no bubbles enter or leave the domain through
growth. The growth velocity is defined as Morel (2015), ex-
tending it to a density as a function of z and &:

(e =g | P n8) Vel

The continuity equation is subtracted from the equations of
change for species mass, momentum and enthalpy (temper-
ature). For the gas phase the dispersion, turbulent dissipa-
tion and conduction terms are omitted because the gas phase
experiences negligible backmixing. For species mass this

gives:
vz, é)fd(zg)amc;giz(z’&) + Vg(Zf;)fd(Za &)a“)(;asézé)

= fd(z7 &)YS(Z7 &) - (DS(Z, &)fd(& &)7(27 &)
+ <J(Dx,p> - wS(Z’ E.a)Jm (Z>§)

2

(22)

single type reactive

O

multiple type

mono-atomic gases

molecules

particles

bubbles

bubbles in interstitial fluid

Figure 3: Extension of the subjects to the kinetic theory of gases.
The upper left corner represents the origin of kinetic gas
theory - a monoatomic gas in a vacuum. Gas atoms of
different type, denser gases, particles, bubbles and finally
bubbles subject to chemical reactions and in an interstitial
fluid, which is considered in this work (inside red dashed
line).
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The initial conditions are given as:

WG,s |z:zmin = G s,in

23
(DG*S |&:émin = KS(DL’S (Z) ( )

The initial condition at &;;, implies that the smallest bubbles
with diameter &, are assumed to be in equilibrium with the
liquid phase at all times. For momentum:

vg(z,€)

vG(z, E,\)fd(zvz.o)T + V;;(Z7 &) falz, E)M

o€ (24)
= fa(2,8)F:(2,8) + (Je) —vG(2,€)Im(2,8)
with the initial conditions:
VG|z=zmm = VG,in 25)

VG|é:émin =VL (Z)

where the smallest bubbles are assumed to have the same
velocity as the liquid. For temperature:

Cpro(e.E)ale ) TG 4yl ) T
= fd(Z;&)qZ(Zaé) + <JTp> - TG(Zva)Jm(ZvEJ)
(26)
with initial conditions:
16| :=zin = 1G,in o7

TG ‘ézgmin = TSL (Z)

as the smallest bubbles are assumed to have the same tem-
perature as the slurry.

Interfacial transfer terms

Interfacial mass, momentum and heat transfer terms are de-
fined in terms of the size dependent variables weight fraction,
velocity and temperature.

Mass transfer

_ Ja(z2,8)AE)kLs(z)pL , 1
fale B~ SRS L(,(Swa,xz@—m.s(z;)

where A(§) is the surface area of a bubble, k7 s(z,§) is the
liquid side mass transfer coefficient, py is the liquid density
(constant in this work), @y s(z) the weight fraction of com-
ponent s in the liquid phase and K an equilibrium constant
for component s. The mass transfer term 7y is obtained by
summing over all s:

fd(L&)’Y: Zfd(zﬁé’;)y_v

(29)
It is noted that integration of Equation 28 and 29 yield the
&-averaged mass transfer terms for the liquid phase.

Momentum transfer

The force terms are given by Nayak et al. (2011):
_ Ja(z,§) dp(2)

F(z,8) = 0o(zE) 3z +fa(2:8)8: + fiige (2,8) (30)
where
== 3o LI (.2 -2 v D) - e (2)

€1y
Integrating Equation 31 over & gives the momentum ex-
change term for use in the liquid phase momentum equation.
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Heat transfer

The heat transfer term for heat transfer by convection is sim-
ilar to the species mass transfer term in mathematical struc-
ture:

- fd(zﬂé)A(é)hG* (Zvé)
fd(zvé)qc(za&) - pG(Z,é)V(FQL) (TG(ng) - TSL((Z);)

Integrating Equation 32 over & gives the heat exchange term
for use in the slurry temperature equation.

Source terms

The source terms due to coalescence and breakage in the pop-
ulation balance equation (Equation 19) are modelled as:

Jm(Z, &) = 7b(§)fd(za &)

Emax
+pc(z,§)V(§)/& hb@@”@m
Ja(r.G,1) e

pole. OV (D)
2 R
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dg

(=813
=) [ e(&.0)

where the closure models by Coulaloglou and Tavlarides
(1977) for breakage frequency and daughter size redistribu-
tion are applied. A pre-factor of Kz =2 x 1073 was multi-
plied to the breakage terms to adjust the resultant breakage
frequency to reasonable numbers within the bubble size do-
main along the axial direction of the reactor. Coalescence
was not included in the simulations as bubble column flows
generally are breakage dominated Sporleder ef al. (2011).
Breakage and coalescence terms for the species mass, mo-
mentum and energy equations are in general not known. As
continuity is subtracted from the species mass, momentum
and energy equations, two source terms appear in each equa-
tion. These are assumed to be equal (but with opposite sign)
through the assumption that the product of averages equal to
average of products and thus cancel. The result is that only
the continuity equation has source terms due to coalescence
and breakage.

Liquid and solid phase equations

The liquid and solid phase equations are the standard axial
dispersion model equations coupled with a momentum equa-
tion for each phase. The solid phase is assumed to have the
same temperature as the liquid phase. The liquid and solid
phases is collectively referred to as the slurry temperature.
No species mass equation is applied for the solid phase. The
liquid and solid equations along with Fischer-Tropsch spe-
cific reactor parameters are given in Vik et al. (2015).

SOLUTION METHOD AND IMPLEMENTATION

The equations of change for species mass, total mass, mo-
mentum and enthalpy (temperature) for the dispersed, lig-
uid and solid phases were implemented in MATLAB(R) and
solved using the orthogonal collocation method. 22 points
were used in the axial direction and 35 points in the property
(diameter) direction. Convergence was taken as when the
global iteration error was less than 107>, The mass loss/gain
in the model was calculated for each phase as the difference
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between phase specific mass flux entering and leaving the
model, divided by the phase specific mass flux entering the
reactor.

Operating conditions

The operating conditions are given in Table 1.

Table 1: Operating conditions.

Reactor inlet temperature T 220 °C

Reactor outlet pressure Do 3 MPa

Inlet superficial gas velocity vijlo 0.26 m/s

Inlet superficial liquid velocity vSL’O 0.01 m/s

Dispersion (reactor) height H 50 m

Reactor diameter D 9m

Mass of catalyst per mass of dispersion 0 0.05

Product distribution parameter oasr 09

H,/CO feed (mole based) ratio - 2

Liquid density (constant) pL 687 kg/m?

Bubble size range & 0.1 -15 mm
RESULTS

Interfacial transfer fluxes

The interfacial fluxes for mass, momentum and energy for a
single bubble as defined in Equations 28/29, 31 and 32 are
shown in Figures 4, 5 and 6 for bubbles of size 0.1 to 15
mm. Available surface area for a single bubble as function of
diameter is shown in Figure 7. Mass and heat flux are directly
proportional to the available surface area and this is seen in
the left plot of Figures 4 and 6. All three fluxes are inversely
proportional to &. But as the driving force is squared in the
drag force (as opposed to linear in mass and heat flux) the
drag force has a different slope than do the mass and heat
flux.

The interfacial gas-liquid mass transfer flux occurs as the re-
action alters the liquid concentrations and thus gives a driv-
ing force between them. The interfacial mass transfer flux
reaches a peak as the reaction rate is at its maximum level in
the liquid phase.

The interfacial momentum flux is more of a constant mag-
nitude over the axial direction of the reactor. As the bub-
bles are injected with a high velocity of 0.5 m/s and the lig-
uid phase moves slowly with 0.02 m/s, the gas bubbles are
slowed down by the liquid phase along the reactor height.
The interfacial heat transfer flux occurs first with a positive
sign (observed from the gas side) as the bubbles are heated by
the heat of the reaction in the liquid phase. Then with a neg-
ative sign as the liquid is cooled by the installed cooling rods
(Figure 1) and successively cools the gas bubbles. The gas-
liquid heat flux shows a peak slightly higher in the dispersion
than does the mass flux, reflecting the peak of the heat of the
reaction. The smaller bubbles have their maximum heating
rate slightly lower in the reactor than do the larger bubbles,
showing quicker heat transfer due to their higher available
surface area for heat transfer.

Size dependent weight fractions

Figure 8 shows the weight fraction of CO as function of bub-
ble size and axial direction. The field value is lower than
the average for the smallest bubble sizes and higher for the
largest bubble sizes. The largest difference seen between the
field value and the average value at the smallest bubble size
is 12 wt% units higher for the average than the field. For the
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largest bubble the field value is up to 8 wt% units lower than
the average. The difference is at its largest at the middle of
the reactor height (around 25 m). The maximum difference
in concentration between the smallest and largest bubble size
is 20 wt% units at the middle of the reactor height. CO is the
reactant and is thus transported out of the bubble. Smaller
bubbles have higher surface area per mass of gas and thus
allow for more mass transport. A lower concentration of re-
actant for the smaller bubbles and vice versa for the large
bubbles is thus an expected result.

The main difference between the size dependent model in
this work and the average model is the use of a size depen-
dent mass transfer term. A size dependent mass transfer term
takes the difference in surface area per bubble gas mass into
account and can predict the effect of bubble size on mass
transfer. As mentioned above, mass transfer coefficients for
the Fischer-Tropsch synthesis are claimed to vary by one or-
der of magnitude. Figure 9 shows the effect of increasing and
decreasing the value of the liquid side mass transfer coeffi-
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Figure 4: Mass flux of CO for a single bubble as function of bub-
ble size for bubble sizes 0.1 mm to 15 mm. Left: Mass
transfer flux for a single bubble integrated over the entire
height of the reactor. Right: Mass transfer flux as func-
tion of bubble size and axial direction for a single bubble.
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Figure 5: Drag force for a single bubble as function of bubble size
for bubble sizes 0.1 mm to 15 mm. Left: Drag force for
a single bubble integrated over the entire height of the
reactor. Right: Drag force as function of bubble size and
axial direction for a single bubble.
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Figure 6: Heat flux for a single bubble as function of bubble size
for bubble sizes 0.1 mm to 15 mm. Left: Heat flux for
a single bubble integrated over the entire height of the
reactor. Right: Heat flux as function of bubble size and
axial direction for a single bubble.
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Figure 7: Surface area per volume for bubbles with diameter 0.1 to
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Figure 8: Weight fraction of CO (reactant) as function of bubble
size and axial direction. Large bubbles have more reac-
tant left in the bubble than the average. Small bubbles

have less reactant left than the average.
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cient by one order of magnitude. The nomial conversion at
the outlet is 89%. Increasing the mass transfer coefficient by
an order of magnitude gives 93%. Decreasing it gives a con-
version of 48%. These numbers indicate that the mass trans-
fer coefficient plays a significant role in the Fischer-Tropsch
synthesis at the given operating conditions. The process is
mass transfer limited at the given catalyst concentration (Ta-
ble 1).
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Conversion of CO in wt% as function of axial direction
for increase and decrease in the liquid side mass transfer
coefficient from the nominal value calculated from the
small bubble correlation by Calderbank and Moo-Young
(1961). Small &;, value is large mass transfer resistance,
high k; value is low mass transfer resistance. 45 wt%
catalyst per volume of slurry.

Figure 9:

It is noted that the base case simulation (Table 1) has a high
catalyst loading of 45 wt% per volume of slurry. As a sensi-
tivity a set of simulations with a 20 wt% catalyst concentra-
tion is given in Figure 10.
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Figure 10: Conversion of CO in wt% as function of axial direction
for increase and decrease in the liquid side mass trans-
fer coefficient from the nominal value calculated by the
formula from Calderbank and Moo-Young (1961). 20
wt% catalyst per volume of slurry.

The conversion of CO decreases from 89% to 17% for the
nominal k;, value. For the tenfold increase, the conversion
increases to 23%. For the low k; value the result is a de-
crease from to 15%. The difference in conversion between
the smallest and largest k7, values is smaller for lower catalyst
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concentrations, as is expected. With a lower catalyst concen-
tration it is less likely for the mass transfer to be the limiting
resistance in the overall efficiency of the reactor. However,
there is a potential to increase reactor efficiency by increas-
ing mass transfer also at lower catalyst concentrations.

A detailed modelling of the mass transfer flux as function of
the bubble size requires a good model for &z, also its depen-
dency on bubble size. Calderbank and Moo-Young (1961)
claimed the bubble size of less importance and claimed kz
rather being a function of the liquid properties such as dif-
fusivity than being a function of bubble size. However,
the number of experimental studies of mass transfer at high
pressures and with high gas flow rates is low (Rollbusch
et al., 2015), in particular if also requiring measurements in
Fischer-Tropsch-like fluids.

Size dependent velocity

Figure 11 shows the bubble size dependent velocity com-
pared to the mass averaged velocity. For the smallest bub-
bles the difference is very large; the average is 0.4 to 0.6
m/s and the smallest bubble size in the field value has the
same velocity as the liquid (set as boundary condition) of
0.02 m/s. The large variation in velocity as a function of bub-
ble size is dictated by the drag coefficient for a single bubble
by Tomiyama (1998). The coefficient is corrected by a factor
p; Cp = Cp(1 —0)P to account for bubble interaction. In
this work we use the value of 2 Ishii and Zuber (1979). The
value of p is further discussed by Rampure et al. (2007). It
is noted that the value of p is uncertain and has influence on
the velocity.
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Figure 11: Velocity as function of bubble size & and axial direc-
tion z. The average value is shown as connected red
circles. The difference in the velocity for the smallest
and largest bubbles is 0.6 m/s.

Size dependent temperature

Figure 12 shows the temperature as a function of bubble size
and axial direction, with average values in red connected cir-
cles. The field deviates from the average value by less than
0.02K at all points. The maximal variation in the tempera-
ture profile along the axis is 10 K. The size dependency of
the temperature is so small that it may be considered negligi-
ble for this system. It is noted that the gas and liquid phases
are fed at the same temperature in this simulation. In case of
difference between gas and liquid inlet temperatures or with
lower values for the interfacial heat transfer coefficient the
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bubble size dependency of the temperature may be impor-
tant.
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Figure 12: Temperature as function of bubble size & and axial di-
rection z. The average value is shown with connected
red circles. No variation in temperature as function of
bubble size is visible.

Effect of bubble size

A simulation was performed with a mean inlet bubble size of
15 mm instead of 10 mm. The results are shown in Figure 13.
With an interfacial area reduced to about 50% of the nominal
value, the conversion of CO decreases by 10 wt% points. The
gas velocity increases as bigger bubbles are less slowed down
by drag than smaller bubbles. The difference in outlet bubble
size is shown in the lower left plot in Figure 13 and shows a
difference of 8 mm for the peak bubble size. It is noted that
the total bubble (gas) mass in the reactor was 9 % less in the
sensitivity with a mean bubble size of 15 mm compared to
the base case of 10 mm. The total bubble volume was 6 %
less.
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Figure 13: Conversion of CO, interfacial area, bubble size distribu-
tion at outlet and gas velocity for a mean inlet bubble
size of 10 mm (base case) in black and 15 mm in gray.

CONCLUSION

A bubble size dependent model for weight fractions, veloc-
ity and temperature has been developed and applied to the
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Fischer-Tropsch synthesis in a slurry bubble column operat-
ing at industrial conditions.

The interfacial fluxes are inversely proportional to the bubble
diameter and thus decrease with increasing diameter. The
consequence is a higher mass, momentum (drag force) and
heat transfer rate for the smaller bubbles than for the larger.
Bubble size dependent velocity is known from the litera-
ture to give a valuable additional information compared to
all bubbles having the same average velocity. This is also
true here, as the drag force exerted on small bubbles is very
different than for large bubbles resulting in a velocity profile
highly dependent on bubble size. The difference in velocity
for the smallest and largest bubbles is 0.6 m/s at its maximum
which is significant as the average velocity is about 0.45 m/s.
Bubble size dependent weight fractions show a concentra-
tion difference between the smallest and largest bubble sizes
of maximum 0.2 at the conditions modelled here. With a
weight fraction of reactant ranging from 0.1 to 0.7 this is a
significant difference. Bubble size dependent weight frac-
tions give more accurate description of the mass transfer in
a reactor, given a proper kz, value for the system, preferably
as a function of bubble size. This poses a challenge as k;, as
a function of bubble size is difficult to measure at industrial
conditions such high pressure, high temperature and multi-
component viscous hydrocarbon fluids.

Bubble size dependent temperature does not add significant
information new in the process studied here. The temperature
as function of bubble size is relatively flat and the maximal
deviation for any bubble size from the average temperature
is 0.02 K. It is noted that the gas and liquid phases are fed
at the same temperature in this simulation. In case of differ-
ence between gas and liquid inlet temperatures or with lower
values for the interfacial heat transfer coefficient the bubble
size dependency of the temperature may be important.
Given that mass transfer influences the overall conversion in
the reactor, it is important to model this interfacial flux with
the necessary level of detail. A bubble size dependent trans-
fer flux combined with the information in the explicit density
function f;(z,&) provides a good starting point to increase
the level of detail in modelling mass transfer in mass transfer
limiting chemical and biochemical processes. It is noted that
firm conclusions on the mass and heat transfer limitations can
only be drawn when reliable estimates of the transfer coeffi-
cients are available.
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