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PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the
12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and
Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also
known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997.
So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim.
The conferences focuses on the application of CFD in the oil and gas industries, metal production,
mineral processing, power generation, chemicals and other process industries. In addition pragmatic
modelling concepts and bio-mechanical applications have become an important part of the
conference. The papers in this book demonstrate the current progress in applied CFD.

The conference papers undergo a review process involving two experts. Only papers accepted by the
reviewers are included in the proceedings. 108 contributions were presented at the conference
together with six keynote presentations. A majority of these contributions are presented by their
manuscript in this collection (a few were granted to present without an accompanying manuscript).

The organizing committee would like to thank everyone who has helped with review of manuscripts,
all those who helped to promote the conference and all authors who have submitted scientific
contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal

Production and NanoSim.
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ABSTRACT

The liquid slug formation in a hilly-terrain pipeline is
simulated using the Volume of Fluid model and RNG k-¢
turbulence model. The numerical model is validated by the
experimental data of the horizontal slug flow. The influence of
pipe diameter on liquid slug formation is discussed in detail.
The results show that the pipe is blocked by the liquid slug at
the moment of slug formed. The pipe pressure suddenly
increases, and then decreases gradually in the process of liquid
slug formation and motion. The pipe diameter has little effect
on liquid slug formation, while the pipe pressure drop and
liquid holdup change small.

Keywords: gas-liquid two-phase flow, CFD, natural gas,
pipe flow.

NOMENCLATURE

A complete list of symbols used, with dimensions, is
required.

Greek Symbols

o Volume fraction, [-].
oy  Constant, [-].

o, Constant, [-].

S Constant, [-].

¢ Turbulent dissipation rate, [-].

0;  Kronecker delta, [-].

u  Dynamic viscosity, [m’s™].

Turbulent viscosity, [m’s™].

Constant, [-].

p  Density, [kgm™].

6  Inclination angle of pipe, [°].

6, Inclination angle of descending pipe, [°].
6, Inclination angle of ascending pipe, [°].

Latin Symbols

C,. Constant, [-].
C*I‘g Constant, [-].
C,. Constant, [-].
C, Constant, [-].
D Pipe diameter, [mm].
E;  Mean strain rate, [-].

207

F  External body force, [N].

F,,; Surface force, [N].
G, Generation of turbulence kinetic energy, [-].
g Acceleration of gravity, [m/s*].
h Level of stagnant liquid, [mm].
k  Turbulent kinetic energy, [m”s™].
L Pipeline length [m].
mp , Mass transfer from phase p to phase ¢, [kgs™].
mqp Mass transfer from phase ¢ to phase p, [kgs™].
p  Pressure, [Pa].
O  Volume of pipe, [m’s™].
0,  Volume of stagnant liquid, [m’s™].
S.g  Source term, [-].
t Time, [s].
u Velocity, [ms™].
Vs  Inlet gas velocity [ms™].
Vs Superficial liquid velocity [ms™].
Vse  Superficial gas velocity [ms™].
Sub/superscripts
G Gas.
L Liquid.
i Indexi.
J Index ;.
INTRODUCTION

Natural gas field usually locates in hilly or basin region,
and then the hilly-terrain pipelines are used inevitably.
The water in wet gas can assemble in the low-lying
pipes, and becomes stagnant liquid in the process of
transporting wet gas. It leads to the formation of the
liquid slug or the slug flow which can cause the shapely
pressure and liquid holdup fluctuation in the pipeline.
Therefore, it is important to study and predict the slug
flow in the hilly-terrain pipelines.

For the slug flow, the study mainly focuses on the
horizontal pipe, vertical pipe and hilly-terrain pipes. For
the horizontal pipelines, a prediction method based on
one-dimensional two-fluid model was presented for
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predicting hydrodynamic slug initiation and growth by
Issa and Kempf (2003). Al-Safran et al. (2015)
proposed a new empirical relationship for predicting
slug liquid holdup in high viscosity liquids. For the
studies of a slug in the vertical pipelines, Taha and Cui
(2006) used the Volume of Fluid (VOF) model to
simulate the motion of a single Taylor bubble in the
vertical tubes and obtained the shape and flow
parameters of the slug. Abdulkadir et al. (2015)
conducted the experimental and numerical studies in the
vertical pipes with 6 m long and 0.067 m internal
diameter. Henau and Raithby (1995) investigated the
slug behavior in two-phase pipes which contained
several uphill and downhill sections. Ersoy et al. (2011)
investigated gas-oil-water three-phase slug flow in
hilly-terrain pipelines.

The gas-liquid slug flow attracts attention all the time.
However, the formation and motion of a single liquid
slug still needs to be further studied in hilly-terrain
pipelines, in particular the existence of the stagnant
liquids. In this paper, the numerical study is carried out
to understand the formation process of a single liquid
slug in hilly-terrain pipelines. The influence of pipe
diameter on liquid slug formation is analysed in detail.

MODEL DESCRIPTION

The slug flow is a sort of complex gas-liquid flow
which has a distinct phase interface. The interface
catching is a key step for the simulation of the liquid
slug. The Volume of Fluid (VOF) model is a kind of
surface-tracking technology based on fixed Eulerian
mesh and it can be used for modelling two or more
immiscible fluids. Therefore, the VOF model is
employed here to track the gas-liquid phase interface in
hilly-terrain pipelines. In addition, the turbulence model
is necessary due to the flow is turbulent in our
simulation.

Governing Equation
Continuity equation

op 0O

—+—(pu,)=0 1

a o (pu;) ey
Momentum equation

o - -

—(pu)+V - (puu)

ot (2)

:—Vp+V-|:,u(V;t+V;tT)}+p§+F

where p is the density, U is the velocity, p is the static
pressure, u is the dynamic viscosity, g is the
gravitational acceleration and F is external body force.

Volume fraction equation

1|0 _ . .
p—{a(aqpqﬂv.(aqpqvq) =S, + Z;(mpq —mqp)} 3)
q =

where m - is the mass transfer from phase ¢ to phase

p and m_ is the mass transfer from phase p to phase g,

ar
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@, s the volume fraction of phase ¢, S, is the source

%

term.

Continuum Surface Force Model

The effect of surface force along the interface is
included in the VOF model. The continuum surface
force (CSF) model proposed by Brackbill et al (1992) is
used in this paper. It is implemented as a source term in
the momentum equation. The surface force F, is

expressed as follows:
pxVa,

F =0, 7250 @
E(pf +p;)
where

p=a,p,+(1-a,)p, (5)
k=V-n (6)

. N
n=— (7

|
n=Va, ®)

Turbulence Model

The RNG k-¢ turbulence model has an additional term
in its & equation that significantly improves the accuracy
for rapidly strained flows. It also provides an option to
account for the effects of swirl or rotation by modifying
the turbulent viscosity appropriately. Therefore, the
RNG #k-¢ turbulence model is employed here because
the flow turns at the elbow of the pipe which connects
the uphill section and downhill section in hilly-terrain
pipelines. The turbulence kinetic energy, &, and its rate
of dissipation, ¢, are as follows:

opk) _ a(ph,)
ot Ox,
9
-9 a oK +G, +pe v
axj k:l’le/f axj k p
ope)  peu,)
ot Ox,
. 10
—ia 6_8+C1€8G -C i o
ax_/ o Moy 6x/. P 2:P X
where
Hegr =SHT L, (1)
2
4 =pC, % (12)
&
. n(l-n/n,)
cC =c -1 1 13
le le 1+ﬂ773 ( )
n=QE,-E)" K (14)
&
. Ou;
Ei' =l %4__] (15)
To2lax;, ox

where C,=0.0845, a=0,=139, C,=142, C,=1.68,
n=4.377, p=0.012.



Gas-Liquid Two-Phase Flow In Terrain-Inclined Pipelines

GEOMETRY AND MESH

The sketch of hilly-terrain pipeline is shown in Figure 1.
This pipeline contains a descending pipe and an
ascending pipe, respectively. The inclination angles of
two pipes are 8, and 6,. The stagnant liquid is water and
the gas phase is methane. Two pressure monitoring
points (P1 and P2) are set at the center of the pipe cross
section which locates in x = -15 D and x = 15 D. The

pipe pressure drop is the value of |P1—P2| in this
paper.

P1

Stagnant liquid

Flow Direction

The computational domain should be meshed after the
geometric model is established. The commercial
software ANSYS ICEM CFD is selected as the meshing
tool. The hexahedral mesh and O-block technology are
selected as the grid partition strategy for improving the
quality of grid. The grid system is shown in Figure 2.
Around 300 000 cells are performed for our simulations
after the grid independence test.

P2

Figure 1 Sketch of the hilly-terrain pipeline

Figure 2 Mesh generation

RESULTS AND DISCUSSION

Model Validation

In this paper the experimental data obtained by
Heywood and Richardson (1979) are employed to
validate our numerical method. The experiments were
carried out in an air-water flow loop system, which
included a horizontal pipeline of 42 mm inner diameter.
The y-ray absorption method was used to measure the
slug liquid holdup (liquid volume fraction). Six
experimental data in the same superficial liquid velocity
(0.978 m/s) were selected for the model validation in
different superficial gas velocities. The results of the
comparison between the experimental and numerical
data are shown in Figure 3. It presents that the
maximum relative error is 5.9% in superficial gas
velocity of 4.145 m/s. Therefore, the numerical results
are in good agreement with the experimental data.

Liguid Slug Formation Process

Figure 4 shows the formation process of a liquid slug in
the 150 mm diameter pipe with the inclination angle of
6, = 6, = 5°. The inlet gas velocity is 6.5 m/s, and the
ratio of the stagnant liquid height, 4, to the pipe
diameter is 0.75 (A/D=0.75). The phase fraction
distribution with different moment (7) is described in the
contours. The blue region represents the gas phase,
while the red one represents the liquid phase. The axis,
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x is the position coordinates of pipe along the flow
direction.
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Figure 3 Comparison between exprimental and
numerical results in a horizontal pipe

The flow area decreases due to the stagnant liquid
accumulated at the bottom of hilly-terrain pipes, which
cause the increase of the gas velocity. This flow
structure further induces the decline of the pressure
above the liquid level. Then suction force generates in
the vertical upward, which destroys the stability of gas-
liquid interface. For this reason, a wave crest forms.
When the liquid level uplifts to the top of the pipe and
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blocks the entire pipe cross section, the liquid slug flow
finally appears (+=0.005 s -0.100 s in Figure 4). The
liquid slug then goes into the next process of moving

forward under the pressure difference between the
upstream and downstream of the slug flow (=0.105-
0.120 s in Figure 4).

Flow Direction

V =0.1205
v t=0.115s
v t=0.110s
v 1=0.105s
v =0.09
v t=0).08s
v =0.07s

-2 -1.5 -1 0.5

0
X (m)

0.5 1 1.5 2

Figure 4 Formation process of a liquid slug

Pipe Diameter Effect

In this section, the influence of the pipe diameter on the
formation of a liquid slug is discussed in detail. The
pipe diameters are 90 mm, 120 mm, 150 mm, 180 mm
and 210 mm, respectively. The length of the ascending
and descending pipes is 50 D, while the inclination
angle is set to be 5°. The numerical simulation is
implemented in the identical condition which the inlet
gas velocity is 6.5 m/s with #/D=0.75.

80000 T T T T T T

0,=0, =5

WV, =6.5m/'s, hD=0.75

i f e

Prassura Drop (Pa)

:
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Figure 5 Influence of pipe diameter on pressure drop at
the moment of slug formed

The pressure drops in different pipe diameter at the
moment of slug formed are shown in Figure 5. The
pressure drop increases along with the pipe diameter.

The pressure drop ranges from 40,000 Pa to 82,000 Pa.
The rate of increasing pressure drop is about 30% with
the pipe diameter from 90 mm to 210 mm. Figure 6
describes the slug liquid holdup in different pipe
diameters. We can see that the liquid holdup increases
slowly in the pipe diameters from 90 mm to 180 mm,
while it declines slightly in the 210 mm diameter pipe.
However, the value of slug liquid holdup distributes
approximately 0.5 in the entire pipe diameters.
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Figure 6 Influence of pipe diameter on liquid holdup at
the moment of slug formed

CONCLUSIONS

The VOF and RNG k-¢ turbulence models show the
reasonable results in simulating the formation process
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of a liquid slug. The distinct gas-liquid two-phase
distribution and the formation process of a liquid slug
are obtained by numerical simulation. The pipe cross-
section is blocked by the liquid phase at the moment of
a liquid slug formed. The pressure suddenly increases,
and then declines gradually in process of liquid slug
formation and motion. The pipe diameter has tiny effect
on the slug formation, since the pressure drop and the
liquid holdup change little.
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