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PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the
12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and
Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also
known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997.
So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim.
The conferences focuses on the application of CFD in the oil and gas industries, metal production,
mineral processing, power generation, chemicals and other process industries. In addition pragmatic
modelling concepts and bio-mechanical applications have become an important part of the
conference. The papers in this book demonstrate the current progress in applied CFD.

The conference papers undergo a review process involving two experts. Only papers accepted by the
reviewers are included in the proceedings. 108 contributions were presented at the conference
together with six keynote presentations. A majority of these contributions are presented by their
manuscript in this collection (a few were granted to present without an accompanying manuscript).

The organizing committee would like to thank everyone who has helped with review of manuscripts,
all those who helped to promote the conference and all authors who have submitted scientific
contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal

Production and NanoSim.
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ABSTRACT

In previous works, (Ferrari et al., 2017) have shown that a one-
dimensional, hyperbolic, transient five equations two-fluid model is
able to numerically describe stratified, wavy, and slug flow in hor-
izontal and near-horizontal pipes. Slug statistical characteristics,
such as slug velocity, frequency, and length can be numerically pre-
dicted with results in good agreement with experimental data and
well-known empirical relations. In this model some approximated
and simplified assumptions are adopted to describe shear stresses at
wall and at phase interface.

In this paper, we focus on the possibility to account for the cross
sectional flow by including the shape of the velocity profiles, in-
serting shape factors into the momentum balance equations. Veloc-
ity profiles are obtained by the pre-integrated model proposed by
(Biberg, 2007) and they are computed at each time step and at each
computational cell. Once that the velocity profiles are known, the
obtained shape factors are inserted in the numerical resolution. In
this way it is possible to recover part of the information lost due to
the one-dimensional flow description.

Velocity profiles computed in stratified conditions are compared
against experimental profiles measured with PIV technique - see
(Ayati et al., 2015), showing good agreement. Finally, first results
in slug flow configuration are shown.

Keywords: Multiphase pipeline transport, Oil & Gas .

NOMENCLATURE

Greek Symbols

Phase volume fraction, [—]
Wetted angle, [rad]

Shape factor, [—]

Boundary layer thickness, [m]
Pipe inclination angle, [rad|
Eigenvalues vector, [m/s]
Dynamic viscosity, [k8/ms]
Mass density, [k8/m?]

Shear stress, [Pa]
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Latin Symbols

A Pipe section, [m?].

A;  Pipe section occupied by phase j, [m?].
c Sound speed, [m/s].

D Pipe diameter, [m].

f  Friction factor, [—].

F;  Interfacial friction term, [N/m3].

F,  Wall friction term, [N/m?].

201

g Gravity acceleration, [/s?].
h  Liquid height, [m].

ks Sand roughness, [m)].

pi  Interfacial pressure, [Pa.

rp  Pressure relaxation parameter, [1/Pas|.
R Eigenvector matrix, [m/s].

Re  Reynolds number, [—].

S;  Pipe perimeter wetted by phase j, [m].

S;  Interfacial perimeter, [m].

t Time coordinate, [s].

u Phase velocity, [m/s].

u; Interfacial velocity, [m/s].

us  Superficial velocity, [7/s].

% Cross-sectional velocity, [7/s].

X Space coordinate in the axial direction, [m].
y Space coordinate in the cross-sectional direction, [m].
Sub/superscripts

g Gas phase.

l Liquid phase.

J Generic phase, gas or liquid.
INTRODUCTION

Stratified and slug flow are two-phase flow regimes fre-
quently encountered in multiphase pipeline transport of oil
and gas. In the past decades, the interest in the numerical
description of these flow regimes has significantly increased,
aiming at obtaining predictions about the behaviour of the
fluids employed in petroleum transport pipelines, chemi-
cal and nuclear industries, and buoyancy driven fermenta-
tion devices. The one-dimensional averaged two-fluid model
is often employed (see (Issa and Kempf, 2003), (Renault,
2007)) and pipelines are usually simulated adopting mono-
dimensional models to keep reasonable simulation times.
Closure relations to describe shear stresses at interface and
at wall are required, and friction factors are often described
adopting models or correlations (see (Bonizzi et al., 2009));
however, wall and interfacial shear stresses are related via
the velocity distribution and, therefore, the cross-sectional
flow description is required to obtain consistent modelling.
Two-dimensional and three-dimensional models are com-
putationally expensive and require too long computational
times; to solve the issue of speed versus consistency, the
cross-sectional velocity profiles can be described by a pre-
integrated model, which leads to a consistent set of near-
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algebraic friction models suitable for one-dimensional two-
phase flow simulations.

In the present work, we aim at introducing the velocity pro-
files shape description in the mono-dimensional, transient,
five-equation two-fluid model by (Ferrari ef al., 2017): they
assumed that the profiles coefficients were unitary (Y, = Y, =
1), representing a completely flat profile. The profiles coeffi-
cients are correction factors adopted to describe the curvature
of the velocity profile, since the latter is not constant over the
entire cross section and, for turbulent flows, the profile coeffi-
cient is slightly above one. To account for the cross-sectional
velocity, we need to modify the five-equation system eigen-
structure, inserting the 7y factors in the modelisation; then,
we adopted the pre-integrated model developed by (Biberg,
2007), to describe the shear stresses at interface and at wall
consistently with the modelling of the velocity profiles.

In this paper, the comparison of the computed velocity pro-
files against the experimental ones measured by (Ayati et al.,
2015) will be reported, showing a fairly good agreement;
then, first results in slug flow will be presented, showing how
to describe numerically the velocity profiles during the tran-
sition from two-phase to single phase flow.

MODEL DESCRIPTION

In this work, we adopted the mono-dimensional, hyperbolic,
transient, five-equation, two-fluid model proposed by (Fer-
rari et al., 2017), which is able to compute well flow regimes
transitions and slug flow characteristics. The first modifi-
cation performed on the model consists in adding the shape
factors 7y, and 7;, both for gas and liquid phase, in the mo-
mentum balance equations, Eqs. (4) - (5)

da, Jdog o
W-f—ulg*rp(ptg le) )
d(0gpg) | (OgPgutg)

o T O ©)
d(oypy) | d(oupiur)

a o V 3)
3(0tgPgity)  O(YsOtgPyity) Ipig

+ + 0 —=— + P %cos(e)*
o ox sox | Pe%85; -

— PgOLegsin(0) — Fe — F; 4
o(aupyu) . A(Yi04pu7) Ipil oh _
Py + 3 + oy i +p1algacos(9) =

—pioygsin(0) — Fy + F. %)

The introduction of the shape factors in the model equations
modifies the eigenstructure of the system; since the numer-
ical resolution of the model is based on the Roe linearisa-
tion, the knowledge of the system eigenstructure is required.
Thus, as first step of this work, the modified eigenvalue and
eigenvectors were computed; we remark that, if the shape
factors in the modified eigenstructure are set to one (as sup-
posed in the previous work by (Ferrari et al., 2017)), the
original version of the eigenstructure is recovered (the com-
parison of the old eigenvalues against the new ones includ-
ing shape factors is reported in Appendix A). The numeri-
cal resolution is largely based on the one proposed by (Fer-
rari et al., 2017), which adopts the finite volume method and
an explicit first order time discretisation. The source term
on the right-hand side of the advection equation —Eq. (1) —
is taken into account by a pressure relaxation process, de-
scribed by (Munkejord, 2005), which requires the solution

of a second degree polynomial equation: in the hyperbolic
step, the gas volume fraction ol is modified to restore pres-

sure equality at the interface. Some modifications were ap-
plied in the computation of the shear stresses at wall and at
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interface and the pre-integrated model proposed by (Biberg,
2007) was adopted to compute the cross-sectional velocity
profiles, which are required to obtain the shape factors (see
(Picchi et al., 2014))

1
¥ [, ©)

= 7- 5
A]vj

The velocity distribution v; in the y direction is computed as
proposed by (Biberg, 2007)

M*
Vj :sgn(’twj)¥Aj+Cj, @)
where A; and C;, reported in Appendix B, are function of Y,
the adimensional position along the pipe cross section, of R,
the ratio between the shear stress at interface and at wall,
Y R, — Ti

Yy =2
h’

®)

=
Twj

and of K;, a parameter accounting for the interface shape,
which reads, respectively for gas and liquid phase,

8v,

= , Ki=1 9
¢ ‘”g — |
in case of smooth interface, and
0.065p, u, — , o —
Ky=——Pe M 7 UL e g [P B M ()
Pr—Pg ghycos® V] uy

in case of wavy interface.

Figure 1: Schematic diagram of geometry.

The parameters R; and K; are introduced also in the compu-
tation of the shear stresses at wall and at interface through
the corrected hydraulic diameter proposed by (Biberg, 2007)

4AJ-< Swj >F(Rf'”‘f>
Swj Swj—l—S,' ’

where the wetted perimeter S,; and S, and the interface
perimeter S; are shown in Figure 1. The corrected hydraulic
diameter is employed to compute the Reynolds number

D, an

Re,=|u,|%f_'Dej, (12)

J
which is then used to obtain the friction factor f; by the
Colebrook-White interpolation
2.51 ks
= —2lo —_—+
glO(Rej 7; 3.7D>

Vi

(13)
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in the case of turbulent flow and
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= — 14
i Re; (14)
in the case of laminar flow. In this work, both smooth and
rough flow can be described thanks to the sand roughness k;.

The gas shear stress at wall is computed as

_&PgWg‘”g.

g =4 5 (15)

the value of 7; and 7,,; are computed by knowing T,,,, R, and
R;.

The value of R, is computed in every computational cell and
at every time step by a root search algorithm, imposing the
equality of gas and liquid velocity at the interface, while
computing the shear stresses. Once that R is known, it is
possible to obtain the velocity profile in the cross-sectional
direction and, by integration, the shape factors value, which
will be inserted in the Roe matrix in the subsequent time
step.

RESULTS
Stratified flow

In this Section, the computed cross-sectional velocity pro-
files in stratified flow conditions will be validated against
the experimental measurements performed by (Ayati et al.,
2015): the geometry adopted in the experiments consists in
a horizontal 31 m long PVC pipe, with an internal diameter
D = 0.1 m; the fluids used in the test cases are water and
air at 22 °C, whose density are, respectively, 997 kg/m> and
1.2 kg/m?.
Concerning the numerical simulations, the space discretisa-
tion consists in 620 cells, leading to a Ax = D/2; the time
step is At = 107> s, with a corresponding CFL
At

CFL = EMWI ~0.2, (16)
since the maximum eigenvalue is approximately 10% /s (for
further information on the eigenvalues, see Appendix A).
We perform four comparisons, with four different couples
of superficial velocities, which are reported in Table 1: two
of the chosen configurations are characterized by a smooth
sub-regime and two by a 2D waves sub-regime, as stated by
(Ayati et al., 2015). In the case of smooth sub-regime (and
therefore smooth interface), in our numerical simulations we
adopted the relation for Ky in Equation (9), while in case
of 2D waves, we employed Equation (10). The PVC pipe
roughness, required in Equation (13), was set to the represen-
tative value 5 - 10~ 3mm, since the actual value is not reported
by (Ayati et al., 2015).
(Ayati et al., 2015) perform the PIV measurements in a ver-
tical plane located at 260D downstream from inlet and, thus,
our numerical results are extracted at the same position along
the pipe.
Figures 2 and 3 compare the experimental results with the
numerical ones: we can observe that the shapes of the com-
puted velocity profiles are in good agreement with the exper-
imental one (the experimental profiles present some disconti-
nuities because of strong background reflections or restricted
optical access in proximity of the interface, as explained by
(Ayati et al., 2015)). In the case of smooth regime, there is a
small discrepancy in the velocity magnitude: this can be due

to the fact that the numerical code forecasts an equilibrium
liquid volume fraction slightly higher than the one observed
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in the experiments: therefore, the flow section for the gas
phase is smaller and the velocity at the nose of the profile
is higher, while the opposite happens for the liquid phase,
whose velocity magnitude of the flat profile is slightly lower
than the observed one.

SOﬁ |
us= 0.08 m/s
u =109 m/s
gs
E
E O
>
= Experimental
=== Numerical
_50 L L T T
0 0.5 1 15 2 25 3
v [m/s]
50
u_ =0.08 m/s
Is
u =124mls
gs
E
E O
>
= Experimental
=== Numerical
_50 L L L T T
0 0.5 1 15 2 25 3 35
v [m/s]

Figure 2: Comparison of the experimental and the numerical pro-
files. Smooth sub-regime.

In Table 1 the computed shape factor for gas and liquid phase
are reported.

Table 1: Superficial liquid and gas velocities adopted in the numer-
ical simulations.

ups [m/s|  ugs [m/s]  Sub-regime Vi Yo
0.08 1.09 Smooth 1.10 1.03
0.08 1.27 Smooth 1.09 1.04
0.10 2.03 2D waves 1.09 1.04
0.10 2.29 2D waves 1.10 1.04
Slug flow

First results in slug flow configuration will be now discussed.
For the numerical simulations in slug conditions, the adopted
geometry consists in a 36 m long pipe, with and internal di-
ameter D = 0.078 m (see (Issa and Kempf, 2003)); in this
case we adopt Ax = 0.577D and At = 107 s. The liquid and
gas superficial velocities are, respectively, ;s = 1.5m/s and
ugs = 2.0m/s; the simulated fluids are again water and air.
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(Ferrari et al., 2017) developed a criterion to simulate the
transition from two-phase to single phase flow, which takes
place as a slug emerges and grows: this method consists in
setting to zero the gas velocity when the gas volume fraction
drops under a certain threshold; the threshold value is in the
range 3+ 8-1073. A special treatment for the shape factors
and velocity profile inside the slug body was added to the ex-
isting transition criterion: this method prescribes that, when
a slug forms, the shape factor of the gas phase is no longer
computed, since it is no more required in the calculation con-
cerning the gas momentum balance equation. Regarding the
liquid phase, we prescribe that the velocity profile inside the
slug body follow the relation proposed by (Biberg, 2007) in
the case of Poiseuille-type flow: although this kind of flow is
normally laminar, thanks to the turbulent viscosity employed
in the computations, we obtain a turbulent shaped profile.
(Dukler et al., 1985) adopted the one-seventh power law to
describe the velocity profile in the slug body

1/7
_ Y
VI =V (S) .

and, later, (Gopal and Jepson, 1997) supported their assump-
tions by experimental observations. In Figure 4 the computed
profile in a slug body is compared against the one-seventh
power law profile, which was calculated with 6 = D/2 and

(a7

50
u =0.10 m/s
Is
u _=2.03mls
gs
B
E 0f ]
>
= Experimental
=== Numerical
_50 L L L T T
0 1 2 3 4 5 6
v [m/s]
50 ﬁ
u =0.10 m/s
Is
u _=229mis
gs
B
E 0f ]
>
= Experimental
=== Numerical
_50 L L L T T
0 1 2 3 4 5 6
v [m/s]

Figure 3: Comparison of the experimental and the numerical pro-
files. 2D waves sub-regime.
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Vo = ujs+ugs =35m /s: this choice is justified by the fact
that the centerline velocity vg is very close to the slug veloc-
ity, which is obtained by summing the gas and liquid super-
ficial velocities, as reported by (Jepson, 1989). The shape
factor in the slug body is in the range 1.02 < 1.04.

—— Numerical
—— One-seventh power law|

0 1 2 3 4 5 6
v [m/s]

Figure 4: Comparison of the one-seventh power law profile against
the computed one.

Finally, Figure 5 reports the qualitative behaviour of the ve-
locity profiles before (top) and after (bottom) slug formation.

12
Distance along the pipe [m]

18 24 30 36

Time =104 s

%

E0.04

12 18 24
Distance along the pipe [m]

30 36

Figure 5: Example of computed velocity profiles before (top) and
after (bottom) slug formation.
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CONCLUSION

In this work, a transient, five-equation two-fluid model ac-
counting for cross-sectional velocity distribution has been
presented. Starting from the existing numerical code by
(Ferrari et al., 2017), the model has been modified to ac-
count for the velocity profiles shape by the v factor in the
momentum balance equations; the inclusion of these cor-
rection coefficients modifies the five-equation system eigen-
structure, which explicit form has been computed including
v factors. The pre-integrated model proposed by (Biberg,
2007) has been embodied in the numerical code, to compute
shear stresses at wall and at interface and to obtain a consis-
tent description of the cross-sectional velocity distribution.

Numerical results both in stratified and in slug flow
regime have been presented. The computed velocity pro-
files in smooth and wavy stratified regime were compared
against experimental measurements, showing good agree-
ment. Moreover, a method to compute the velocity profile
during the transition from two-phase to single phase flow
(which occurs during slug formation) has been developed;
the computed velocity distribution in the liquid phase follows
quite accurately the one-seventh power law profile, which
has been experimentally observed to occur in the slug body.
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APPENDIX A: COMPARISON OF THE EIGEN-
STRUCTURE WITH AND WITHOUT THE INCLUSION
OF THE SHAPE FACTORS IN THE MODEL

We report here the eigenvalues and the eigenvectors of the
five-equation system with and without the shape factor in-
clusion in the model, to show how deeply the description
of the velocity profiles affects the eigenstructure of the five-
equation system.

First, the eigenvalues employed by (Ferrari et al., 2017) are

u;
Ug —Cg
A= |ug+cgl, (18)
up—cp
u+c
while the ones adopted in the present work are
- 0 -
402 —_1)12
% (1) - L0l
ez Hug (v, —1)]?
h= | F(ry) (19)
424wy (v, —1))2
“(14y)— %
u Vet (=12
O e il

where ¢, = 316.22 m/s and ¢; = 1000 m/s are the speed of
sound respectively for gas and liquid phase.
The eigenvectors without the shape factors are

1 0 0 0 0
CEPg+0igPg
_ [7(27”927@] 1 1 0 0
Apgtogpel 0 0
R=| T w>- i U= Cg UgtCg
2
crpi—oypi§
[(1—u;)2—c7] 0 0 ! !
L'z —
%ui 0 0 up—cy; u+c
(20)
where { = — ”4DS fi”;(og)e; the eigenvectors including v factors are
1 0 0 0 0
1 1 1 0 0
Telg—C;  YeUg—Cy
R= (|73 i I 0 0 , (2D
r41 0 0 1 1
22 22
rsi 0 o Mg M
with
" 6§Pg + 0P
21 = — 5
[Ygu§ —ugui(1+7vg) + "‘12 - Cg]
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[YeuZ — ugui(147g) +u? —c2] 22)
ra = cipr—oupi§
Youp —wpi (1+v) +uf — 7]’
Clzpz —oyp;C
rs1 =

Ui.
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It is possible to observe that, when in Equations (19) and
(21) Y¢ and ; are unitary, the expressions without the shape
factor of Equations (18) and (20) are recovered. Therefore,
the eigenstructure of the model including shape factors can
be seen as an extension of the one by (Ferrari et al., 2017).

APPENDIX B: FURTHER EQUATIONS ADOPTED IN
THE MODEL

In this Appendix, we report the equations developed by
(Biberg, 2007) and adopted in the presented model.

A; and C;, adopted in Eq. (7), are (the subscript j has been
removed for clarity)

(K3 +R)In(Y +K(1-Y))

A=In(1-Y)+ R K
LR+ VIR)/IR[In(Y + |RPP/*(1-Y))
3(K — |R]>/0)

— (R+ /IR (K +2|R[*/®)|RI*/5/IR]
InyY2—(1-Y)(Y —(1-Y)|R]>)
" 6(K2+ |R|¥/°K +|R[5/3)
K(R+/IR)) /IR

VAR £ RFIEK -+ RIP)

! (2(Y—1)|R|5/3+(2Y—1)|R|5/6+2Y> 03
\/§|R|5/6
and
C=C' sgn(n) "y, (24)
where
c! :sgn(’tw)u—; (m (kﬁ) +AK>7 (25)
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and
ye_ KREVR)YIRL o (1+2/IRP
V3(K? + |RI>/°K +|R]/3) V3 '

(26)
The exponent F (R, K;) reported in Eq. (11) is (the subscript
J has been removed for clarity)

Aty
AP

F(R,K) = (27

where
Ao S5(R+ /IR (IR]> + K* + K)R*In(|R|)
; 6(K3 — |RPP/2)(IR)>2 = 1)
K(K?+R?)In(K)
(K —1)(K3—|R[]>/2)

(R-+/IRD)V/IR]

VAR + RIS+ 1)(K2 + KIRIS/6+ R
| ((K— R tan ! <1+2/ R 6)

V3

5/6
— (K + (K +1)|R>%)|R|>/* tan ™" <2|R|f3+1>> (28)

and

AP = —%(2f3+9). (29)





