Proceedings of the 12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries

Progress in Applied CFD – CFD2017

SINTEF **PROCEEDINGS** SINTEF Proceedings

Editors: Jan Erik Olsen and Stein Tore Johansen

Progress in Applied CFD - CFD2017

Proceedings of the 12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries

SINTEF Academic Press

SINTEF Proceedings no 2

Editors: Jan Erik Olsen and Stein Tore Johansen

Progress in Applied CFD - CFD2017

Selected papers from 10th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries

Key words: CFD, Flow, Modelling

Cover, illustration: Arun Kamath

ISSN 2387-4295 (online) ISBN 978-82-536-1544-8 (pdf)

© Copyright SINTEF Academic Press 2017

The material in this publication is covered by the provisions of the Norwegian Copyright Act. Without any special agreement with SINTEF Academic Press, any copying and making available of the material is only allowed to the extent that this is permitted by law or allowed through an agreement with Kopinor, the Reproduction Rights Organisation for Norway. Any use contrary to legislation or an agreement may lead to a liability for damages and confiscation, and may be punished by fines or imprisonment

SINTEF Academic Press		
Address:	Forskningsveien 3 B	
	PO Box 124 Blindern	
	N-0314 OSLO	
Tel:	+47 73 59 30 00	
Fax:	+47 22 96 55 08	

www.sintef.no/byggforsk www.sintefbok.no

SINTEF Proceedings

SINTEF Proceedings is a serial publication for peer-reviewed conference proceedings on a variety of scientific topics.

The processes of peer-reviewing of papers published in SINTEF Proceedings are administered by the conference organizers and proceedings editors. Detailed procedures will vary according to custom and practice in each scientific community.

PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the 12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997. So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim. The conferences focuses on the application of CFD in the oil and gas industries, metal production, mineral processing, power generation, chemicals and other process industries. In addition pragmatic modelling concepts and bio-mechanical applications have become an important part of the conference. The papers in this book demonstrate the current progress in applied CFD.

The conference papers undergo a review process involving two experts. Only papers accepted by the reviewers are included in the proceedings. 108 contributions were presented at the conference together with six keynote presentations. A majority of these contributions are presented by their manuscript in this collection (a few were granted to present without an accompanying manuscript).

The organizing committee would like to thank everyone who has helped with review of manuscripts, all those who helped to promote the conference and all authors who have submitted scientific contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal Production and NanoSim.

Stein Tore Johansen & Jan Erik Olsen

Organizing committee:

Conference chairman: Prof. Stein Tore Johansen Conference coordinator: Dr. Jan Erik Olsen Dr. Bernhard Müller Dr.Sigrid Karstad Dahl Dr.Shahriar Amini Dr.Ernst Meese Dr.Josip Zoric Dr.Jannike Solsvik Dr.Peter Witt

Scientific committee:

Stein Tore Johansen, SINTEF/NTNU Bernhard Müller, NTNU Phil Schwarz, CSIRO Akio Tomiyama, Kobe University Hans Kuipers, Eindhoven University of Technology Jinghai Li, Chinese Academy of Science Markus Braun, Ansys Simon Lo, CD-adapco Patrick Segers, Universiteit Gent Jiyuan Tu, RMIT Jos Derksen, University of Aberdeen Dmitry Eskin, Schlumberger-Doll Research Pär Jönsson, KTH Stefan Pirker, Johannes Kepler University Josip Zoric, SINTEF

CONTENTS

PRAGMATIC MODELLING	9
On pragmatism in industrial modeling. Part III: Application to operational drilling	11
CFD modeling of dynamic emulsion stability	23
Modelling of interaction between turbines and terrain wakes using pragmatic approach	29
FLUIDIZED BED	
Simulation of chemical looping combustion process in a double looping fluidized bed	
reactor with cu-based oxygen carriers	39
Extremely fast simulations of heat transfer in fluidized beds	47
Mass transfer phenomena in fluidized beds with horizontally immersed membranes	53
A Two-Fluid model study of hydrogen production via water gas shift in fluidized bed	
membrane reactors	63
Effect of lift force on dense gas-fluidized beds of non-spherical particles	71
Experimental and numerical investigation of a bubbling dense gas-solid fluidized bed	81
Direct numerical simulation of the effective drag in gas-liquid-solid systems	89
A Lagrangian-Eulerian hybrid model for the simulation of direct reduction of iron ore	
in fluidized beds	
High temperature fluidization - influence of inter-particle forces on fluidization behavior	107
Verification of filtered two fluid models for reactive gas-solid flows	115
BIOMECHANICS	123
A computational framework involving CFD and data mining tools for analyzing disease in	
cartoid artery	125
Investigating the numerical parameter space for a stenosed patient-specific internal	
carotid artery model	133
Velocity profiles in a 2D model of the left ventricular outflow tract, pathological	
case study using PIV and CFD modeling	139
Oscillatory flow and mass transport in a coronary artery	147
Patient specific numerical simulation of flow in the human upper airways for assessing	
the effect of nasal surgery	153
CFD simulations of turbulent flow in the human upper airways	163
OIL & GAS APPLICATIONS	169
Estimation of flow rates and parameters in two-phase stratified and slug flow by an	
ensemble Kalman filter	171
Direct numerical simulation of proppant transport in a narrow channel for hydraulic	
fracturing application	179
Multiphase direct numerical simulations (DNS) of oil-water flows through	
homogeneous porous rocks	185
CFD erosion modelling of blind tees	191
Shape factors inclusion in a one-dimensional, transient two-fluid model for stratified	
and slug flow simulations in pipes	201
Gas-liquid two-phase flow behavior in terrain-inclined pipelines for wet natural	
gas transportation	207

NUMERICS, METHODS & CODE DEVELOPMENT	213
Innovative computing for industrially-relevant multiphase flows	215
Development of GPU parallel multiphase flow solver for turbulent slurry flows in cyclone	223
Immersed boundary method for the compressible Navier–Stokes equations using	
high order summation-by-parts difference operators	233
Direct numerical simulation of coupled heat and mass transfer in fluid-solid systems	243
A simulation concept for generic simulation of multi-material flow,	
using staggered Cartesian grids	253
A cartesian cut-cell method, based on formal volume averaging of mass,	
momentum equations	265
SOFT: a framework for semantic interoperability of scientific software	273
POPULATION BALANCE	279
Combined multifluid-population balance method for polydisperse multiphase flows	281
A multifluid-PBE model for a slurry bubble column with bubble size dependent	
velocity, weight fractions and temperature	285
CFD simulation of the droplet size distribution of liquid-liquid emulsions	
in stirred tank reactors	295
Towards a CFD model for boiling flows: validation of QMOM predictions with	
TOPFLOW experiments	301
Numerical simulations of turbulent liquid-liquid dispersions with quadrature-based	
moment methods	309
Simulation of dispersion of immiscible fluids in a turbulent couette flow	317
Simulation of gas-liquid flows in separators - a Lagrangian approach	325
CFD modelling to predict mass transfer in pulsed sieve plate extraction columns	335
BREAKUP & COALESCENCE	343
Experimental and numerical study on single droplet breakage in turbulent flow	345
Improved collision modelling for liquid metal droplets in a copper slag cleaning process	355
Modelling of bubble dynamics in slag during its hot stage engineering	365
Controlled coalescence with local front reconstruction method	373
BUBBLY FLOWS	381
Modelling of fluid dynamics, mass transfer and chemical reaction in bubbly flows	383
Stochastic DSMC model for large scale dense bubbly flows	391
On the surfacing mechanism of bubble plumes from subsea gas release	399
Bubble generated turbulence in two fluid simulation of bubbly flow	405
HEAT TRANSFER	413
CFD-simulation of boiling in a heated pipe including flow pattern transitions	
using a multi-field concept	415
The pear-shaped fate of an ice melting front	423
Flow dynamics studies for flexible operation of continuous casters (flow flex cc)	431
An Euler-Euler model for gas-liquid flows in a coil wound heat exchanger	441
NON-NEWTONIAN FLOWS	449
Viscoelastic flow simulations in disordered porous media	451
Tire rubber extrudate swell simulation and verification with experiments	459
Front-tracking simulations of bubbles rising in non-Newtonian fluids	469
A 2D sediment bed morphodynamics model for turbulent, non-Newtonian,	
particle-loaded flows	479

METALLURGICAL APPLICATIONS	491
Experimental modelling of metallurgical processes	493
State of the art: macroscopic modelling approaches for the description of multiphysics	
phenomena within the electroslag remelting process	499
LES-VOF simulation of turbulent interfacial flow in the continuous casting mold	507
CFD-DEM modelling of blast furnace tapping	515
Multiphase flow modelling of furnace tapholes	521
Numerical predictions of the shape and size of the raceway zone in a blast furnace	531
Modelling and measurements in the aluminium industry - Where are the obstacles?	541
Modelling of chemical reactions in metallurgical processes	549
Using CFD analysis to optimise top submerged lance furnace geometries	555
Numerical analysis of the temperature distribution in a martensic stainless steel	
strip during hardening	565
Validation of a rapid slag viscosity measurement by CFD	575
Solidification modeling with user defined function in ANSYS Fluent	583
Cleaning of polycyclic aromatic hydrocarbons (PAH) obtained from ferroalloys plant	587
Granular flow described by fictitious fluids: a suitable methodology for process simulations	593
A multiscale numerical approach of the dripping slag in the coke bed zone of a	
pilot scale Si-Mn furnace	599
INDUSTRIAL APPLICATIONS	605
Use of CFD as a design tool for a phospheric acid plant cooling pond	607
Numerical evaluation of co-firing solid recovered fuel with petroleum coke in a	
cement rotary kiln: Influence of fuel moisture	613
Experimental and CFD investigation of fractal distributor on a novel plate and	
frame ion-exchanger	621
COMBUSTION	631
CED modeling of a commercial-size circle-draft biomass gasifier	633
Numerical study of coal particle gasification up to Reynolds numbers of 1000	641
Modelling combustion of pulverized coal and alternative carbon materials in the	
hlast furnace raceway	647
Combustion chamber scaling for energy recovery from furnace process gas:	047
waste to value	657
PACKED BED	665
Comparison of particle-resolved direct numerical simulation and 1D modelling	
of catalytic reactions in a packed bed	667
Numerical investigation of particle types influence on packed bed adsorber behaviour	675
CFD based study of dense medium drum separation processes	683
A multi-domain 1D particle-reactor model for packed bed reactor applications	689
SDECIES TRANSDORT & INTEREACES	600
SPECIES INANSPORT & INTERFACES	099
- reaction in welding processes	701
- reaction in weights processes	701 700
Implementation, demonstration and validation of a user-defined wall function	709
for direct precipitation fouling in Ansys Eluent	717
	/ エ/

FREE SURFACE FLOW & WAVES	727
Unresolved CFD-DEM in environmental engineering: submarine slope stability and	
other applications	729
Influence of the upstream cylinder and wave breaking point on the breaking wave	
forces on the downstream cylinder	735
Recent developments for the computation of the necessary submergence of pump	
intakes with free surfaces	743
Parallel multiphase flow software for solving the Navier-Stokes equations	752
PARTICLE METHODS	759
A numerical approach to model aggregate restructuring in shear flow using DEM in	
Lattice-Boltzmann simulations	
Adaptive coarse-graining for large-scale DEM simulations	773
Novel efficient hybrid-DEM collision integration scheme	779
Implementing the kinetic theory of granular flows into the Lagrangian	
dense discrete phase model	785
Importance of the different fluid forces on particle dispersion in fluid phase	
resonance mixers	
Large scale modelling of bubble formation and growth in a supersaturated liquid	798
FUNDAMENTAL FLUID DYNAMICS	807
Flow past a yawed cylinder of finite length using a fictitious domain method	809
A numerical evaluation of the effect of the electro-magnetic force on bubble flow	
in aluminium smelting process	819
A DNS study of droplet spreading and penetration on a porous medium	825
From linear to nonlinear: Transient growth in confined magnetohydrodynamic flows	831

OSCILLATORY FLOW AND MASS TRANSPORT IN A CORONARY ARTERY

Sargon A. GABRIEL^{1*}, Yan DING¹, John A. GEAR¹, Yuqing FENG^{2†}

¹Mathematics, School of Science, RMIT University, Melbourne, Victoria 3001, AUSTRALIA ²Mineral Resources, CSIRO, Clayton South, Victoria 3169, AUSTRALIA

> * E-mail: sargon.gabriel@rmit.edu.au [†] E-mail: yuqing.feng@csiro.au

ABSTRACT

Pulsatile flow is intrinsic to the cardiovascular system and is driven by the rhythmic beating of the heart. As a system for mass transport, the cardiovascular system hosts a variety of biochemical and cellular species whose transport is subjected to the corresponding flow oscillations. The influence is most prevalent near the heart and particularly within arteries, where pressure fluctuations are most significant. This makes modelling of long-term mass transport difficult to evaluate, since intermediate oscillations need to be explicitly resolved. By applying Reynolds averaging to the governing flow and mass transport equations on a representative period of oscillation, this problem may be alleviated. However, doing so introduces extra terms akin to the Reynolds stresses in the flow equations as well as perturbed-flux terms in the mass transport equations. These terms are investigated in the present study and their distributions assessed. A human right coronary artery is used as the subject geometry, wherein the oscillatory transport behaviour of blood flow and low density lipoprotein is studied.

Keywords: coronary artery, oscillation, period-average, pulsatile flow, species transport.

NOMENCLATURE

Greek Symbols

- ∂ partial derivative
- δ_{ij} Kronecker delta tensor
- μ dynamic viscosity, [kg/m/s]
- ρ density, $[kg/m^3]$
- τ_{ii} viscous stress tensor, $[kg/m/s^2]$
- τ_w wall shear stress vector, $[kg/m/s^2]$
- φ arbitrary scalar field variable
- Δ_{ii} strain-rate tensor, [1/s]
- Γ domain boundary
- Ω domain

Latin Symbols

- c normalised species concentration
- d diameter, [m]
- *n* surface normal vector
- *p* pressure, $|kg/m/s^2|$
- ps pulsatile-state (period-averaged)
- ss steady-state
- t time, [s]
- \boldsymbol{u} velocity vector, [m/s]
- *x* spatial position vector, [m]

- C species concentration
- D species diffusivity, $[m^2/s]$
- J flux into a boundary
- Pe Péclet
- Re Reynolds

Sub/superscripts

- 0 reference condition (at the inflow)
- i, j Cartesian tensor indices¹
- F fluid
- I inflow
- O outflow
- W wall

INTRODUCTION

The cardiovascular system is a circulatory transport system for blood that carries erythrocytes, thrombocytes, lipoproteins and other species throughout the body. The flow of blood within the cardiovascular system is driven by pressure differentials generated at the heart. As the heart periodically contracts and relaxes, the pressure differentials fluctuate, causing blood flow to oscillate about a non-zero netperiod flow-rate. Correspondingly, the transport of bloodborne species is inherently oscillatory², with oscillations imparted by the advecting blood medium. Advective transport by blood flow is one of two dominant transport processes governing species within the cardiovascular system, with the other being diffusive transport. The net transport of a species may be therefore regarded as a competing balance between the two transport processes, with advection generally dominating within the bulk blood flow and diffusion near the vascular walls. This collective behaviour is quantified by the dimensionless Péclet number (Pe), which measures the respective rates of advective and diffusive transport.

At any point in the flow, advective transport is perceived almost equally amongst relatively passive blood-borne species (i. e. that do not significantly influence the flow field). However, diffusive transport can vary since diffusivity varies amongst species and hence, their corresponding Péclet numbers. A low Péclet number species (i.e. of high diffusivity

¹The subscripts *i*, *j* are reserved for index notation of Cartesian tensors; all other subscripts are for designating variables and should not be interpreted as tensor indices. Repeated indices in a term imply Einstein summation notation. For the generic vector variable $\boldsymbol{\varphi}$, the element-wise absolute is designated by $|\boldsymbol{\varphi}_i|$ and the Euclidean magnitude (2-norm) by $\|\boldsymbol{\varphi}\| = \sqrt{\varphi_i \varphi_i}$. ²The terms *oscillatory* and *pulsatile* are herein used interchangeably to

describe the flow and are not differentiated with any distinct meaning.

within blood plasma), would be little influenced by the oscillatory flow and would conform to a near-regular transport. However, most blood-borne species are generally of high Péclet numbers in the bulk flow, such as low density lipoproteins (Pe $\sim 2 \times 10^8$) and oxygen (Pe $\sim 1 \times 10^6$) (Stangeby and Ethier, 2002). In such species, the dominance of advective transport implies a strong influence from the flow, and hence its oscillatory behaviour on their transport. From a modelling perspective, this presents a potential constraint for high Péclet number species transport, since the strong coupling to the flow in the bulk flow and increasing influence of diffusivity in the near-wall flow implies an interplay of varying length and time scales. That is, the corresponding response of the species to perturbations from the oscillating flow would spatially vary between the bulk and near-wall flow, requiring a large number of periods (i. e. computational time) to achieve a steady-periodic equilibrium state.

This is demonstrated in the transport of high Péclet number blood-borne species, in that whilst the flow may resolve to a steady-periodic regime within a reasonable ~ 5 periods of oscillation from resting-state initial conditions (Liu et al., 2011), the same is not necessarily true for the species, which may take considerably longer (Sun et al., 2007). This is especially problematic near vascular walls where other types of interactions may occur, such as transport into the walls and reactions with other species (Tarbell, 2003). For computational models of such species, this presents an inconvenience that may be infeasible to resolve within reasonable time and computational resources. Indeed, oscillatory flow and mass transport has been extensively investigated in past studies, such as those of Hong et al. (2012), Liu et al. (2011), Sakellarios et al. (2013) and Sun et al. (2007). However, the difficulty of attaining a steady-periodic regime still remains to be realised within feasible computational resources. In the objective of resolving this difficulty, the mechanics that influence the steady-periodic regime for flow and species transport are therefore investigated in the present study. Period-averaging techniques akin to those of turbulence modelling are applied to the governing flow and species transport equations, so that they may be compared to their equivalent steady-state conditions.

METHODOLOGY

A human right coronary artery (RCA) segment is selected as the subject geometry of study for this investigation. This is because coronary arteries are inherent with relatively small diameters and longitudinal variations in their geometry; the former is useful for reducing computational requirements as multiple periods of oscillation are to be computed, and the latter is useful for inducing variations in the distribution of near-wall species concentration. For this study, the species to be investigated is low density lipoprotein (LDL).

Geometry

The RCA geometry³ to be investigated comprises of a single stem with no bifurcations or branches. The geometry comprises of the volumetric flow space (lumen) Ω_F , which is bounded by the wall Γ_W , inflow Γ_I and outflow Γ_O boundaries; see figure 1 (a). To ensure that the flow and species entering Ω_F are sufficiently developed from their boundary condition states, the inflow and outflow boundaries are extended by flow extensions of 5 [mm] and 10 [mm] respectively.

The geometry is discretised using a longitudinally swept Ogrid mesh that comprises of 2385 hexahedral elements per cross-section, which amounts to about 7.75×10^5 elements for the collective geometry; see figure 1 (b). For most of the volumetric flow space, the concentration of LDL is expected to be uniform, except near the wall where a thin mass transport boundary layer develops. The near-wall mesh is thus refined to sufficiently resolve the mass transport boundary layer, such that the first element layer height is about 2200 times smaller than the average inflow diameter $d_{\rm I}$.

Figure 1: Detail of the RCA segment used for this study, with (a) geometry schematic (not including flow-extensions) and (b) cross-section O-grid mesh (coarsened for display).

Governing equations

To investigate the oscillatory behaviour of flow and mass transport of blood and blood-borne species, a continuum description is considered. That is, though it is recognised that blood comprises a heterogeneous suspension of particulates, the collective fluid is approximated as continuous on a sufficiently large macroscale level. For blood vessels with diameters significantly larger than that of an erythrocyte (i. e. red blood cell), the continuum fluid assumption is found to satisfactorily hold. However, special care needs to be made in resolving macroscale level properties such as rheology, which need to be described via constitutive models (Thiriet, 2008). For the present study, the arterial wall is assumed to be rigid and hence non-compliant. This assumption is made so that data processing of oscillatory blood flow and blood-borne species transport can be made within a fixed (i.e. Eulerian) reference frame. For example, the Eulerian reference frame allows for a spatially-invariant definition of period-averaging to be naturally realised. Otherwise, if the arterial wall is allowed to deform, then so would the volumetric flow space $\Omega_{\rm F}$. In such a case, special treatment would be required to define a spatially-invariant period-average within $\Omega_{\rm F}$.

Blood flow transport

To describe blood flow, the incompressible mass and momentum conservation (Navier–Stokes) equations are used. In conservative-form, these are respectively expressed by

$$\partial_i u_i = 0 \tag{1}$$

$$\rho \partial_t u_i + \partial_j \left(\rho u_i u_j - \tau_{ij} + p \delta_{ij} \right) = 0, \qquad (2)$$

where u_i is a component of the blood's velocity field vector **u** and *p* is its scalar pressure field; δ_{ij} is the Kronecker delta. The viscous stress tensor is defined $\tau_{ij} = 2\mu\Delta_{ij}$ and the strain-rate tensor $\Delta_{ij} = \frac{1}{2} (\partial_i u_j + \partial_j u_i)$. Material properties are provided by the blood's density ρ and viscosity μ , which are assumed constant for the present formulation, such that $\rho = 1050 [\text{kg/m}^3]$ and $\mu = 3.45 \times 10^{-3} [\text{kg/m/s}]$.

Whilst it is recognised that blood viscosity is non-Newtonian (i. e. having a strain-rate dependence), its equivalent Newtonian approximation may be acceptable for arteries with diameters significantly larger than that of an erythrocyte $\sim 8 \times 10^{-6}$ [m] (Ambrosi *et al.*, 2012). The RCA geometry of figure 1 is sufficiently large to satisfy this condition and since

³Geometry provided by the Biofluid Mechanics Lab, Charité Universitätsmedizin Berlin.

multiple periods of oscillation are to be computed in this study, the Newtonian approximation is used so that computational needs are reduced. However, it is recommended that in general, a high fidelity model of blood flow within coronary arteries should use a non-Newtonian viscosity formulation; see for example the models presented in Cho and Kensey (1991). It is also noted that the near-wall computational elements (required to resolve the mass transport boundary layer) are smaller than the diameter of an erythrocyte and hence, should resolve greater detail than the continuum description of blood would allow. Such flow detail is beyond the scope of the present study and may necessitate local corrections to the material properties of the blood fluid if required. This has been addressed in studies such as Huang et al. (2009), which have resolved such detail as the Fahraeus-Lindqvist effect (migration of erythrocytes away from the wall) and resulting variations in blood rheology.

Species transport

As with the flow, the distribution of blood-borne species is modelled as a continuum. That is, rather than tracking individual particles, their concentration is resolved on an Eulerian framework. For this study, the species of interest is low density lipoprotein (LDL); a single particle has a diameter of approximately 2.0×10^{-8} [m] (Teerlink *et al.*, 2004), which is about 10^5 times smaller than the internal diameter of a coronary artery. Thus, with such large difference between their respective diameters, the continuum description is expected to satisfactorily hold for the transport of LDL.

The presence of LDL is assumed to have no influence on the flow field. Therefore, LDL concentration transport is modelled as a passive scalar c that is advected with the flow (one-way coupling). The governing transport equation can be expressed in conservative form as

$$\partial_t c + \partial_i \left(u_i c - D \partial_i c \right) = 0, \tag{3}$$

where *D* is the isotropic diffusion coefficient, which for LDL is about $5.0 \times 10^{-12} \text{ [m}^2/\text{s]}$ (Stangeby and Ethier, 2002). For the present case, *c* is a normalised concentration which has been scaled by its inflow value, such that $c = C/C_0$, where C is the concentration and C_0 is its inflow boundary value.

Boundary conditions

For a boundary Γ enclosing the volumetric flow space $\Omega_{\rm F}$, its inward-pointing surface normal is designated by \mathbf{n}^+ and outward-pointing surface normal by \mathbf{n}^- . The boundary conditions described here are for pulsatile flow conditions. Under steady-state conditions (i. e. when $\partial_t u_i = 0$ and $\partial_t c = 0$ in equations 2 and 3 respectively), the boundary conditions take their period-average values. At the inflow boundary $\Gamma_{\rm I}$, a pulsatile Poiseuille flow profile of the form

$$u_i(\mathbf{x},t) = 2 u_0(t) \left(1 - \left(\frac{\|\mathbf{x} - \mathbf{x}_c\|}{\frac{1}{2} d_1} \right)^2 \right) n_i^+ \qquad (4)$$

is assigned, where u_0 is the boundary-average velocity, which follows the time-periodic waveform defined in figure 2 and has period-average \overline{u}_0 . The characteristic parabolic profile of the Poiseuille flow has its maximum at the boundary centroid x_c , where x is a spatial coordinate on the boundary. To gauge-fix the pressure field, an arbitrarily selected Dirichlet condition p = 0 is assigned to the outflow boundary Γ_0 ; the precise value is not important under the present conditions. For the wall boundary Γ_W , a no-slip wall condition is assigned, such that $u_i = 0$.

Figure 2: Plot of the RCA inflow waveform and its period-average; using an 8-term truncated Fourier series representation of the waveform provided in (Johnston *et al.*, 2006).

Since the LDL concentration field has been normalised by its inflow value, the inflow boundary Γ_{I} is therefore ascribed with the uniform condition c = 1. At the outflow boundary Γ_{O} , a zero flux condition $(\partial_{i}c)n_{i}^{-} = 0$ is assigned. Both these conditions are whole-boundary approximations and locally misrepresent the near wall LDL concentration due to the presence of a spatially growing boundary layer. However, due to the high Péclet number of LDL, its species transport equation is weakly elliptic, and so with the added flowextensions, the effect of the misrepresented boundary conditions is not significant within the domain of interest. On the wall boundary Γ_{W} , the flux equilibrium condition

$$(u_i c - D\partial_i c) n_i = J_c \tag{5}$$

is ascribed, which describes the balance between advective flux into the wall and diffusive flux away from it. The net influx J_c of LDL into the arterial wall is set to be zero for the present conditions. The advecting velocity into the wall is set to be constant and equivalent to the water filtration velocity $J_u = 4.0 \times 10^{-8} \text{ [m/s]}$ (Stangeby and Ethier, 2002), such that $u_i n_i^- = J_u$. Note that this boundary condition has only been enforced in the species transport and has been omitted from the flow equations for this study. A more appropriate boundary condition for the flow equations should therefore correct the no-slip wall condition, such that

$$u_i n_i^- = J_u \tag{6}$$

$$u_i - (u_j n_j) n_i = 0. (7)$$

The effect of the misrepresented boundary condition is not expected to influence the flow field significantly, because J_u is much smaller than \overline{u}_0 and the domain Ω_F is small; see the analytical solution for a straight artery with a semi-permeable wall in Wada and Karino (2000) for the influence of J_u .

Oscillatory flow data processing

An arbitrary scalar field variable φ that is transported within an oscillating flow of period-length T_p is considered. To compare the oscillating field variable with its steady-state, it is first necessary to decompose it into a time-invariant state. This is achieved with Reynolds periodic-decomposition, which decomposes the field variable into its period-average $\overline{\varphi}$ and time-dependent perturbation φ' components. Reynolds periodic-decomposition is defined

$$\varphi(t) = \left\{ \overline{\varphi} + \varphi'(t) \mid \overline{\varphi} = \frac{1}{T} \int_{T} \varphi(t) \, \mathrm{d}t, \ t \in T \right\}, \quad (8)$$

where $T = kT_p$ is the integration time and $k \ge 1$ is an integer multiplier. Under laminar flow conditions, the flow field is periodic at all relevant length scales; therefore, the decomposition may be made over a single period of oscillation (k = 1). However, under turbulent flow conditions, a sufficiently large number of periods (k >> 1) would be required for $\overline{\varphi}$ to become temporally invariant.

Applying the Reynolds periodic-decomposition to the flow (equations 1 and 2) and species transport (equation 3), and period-averaging, respectively yields

$$\partial_i \overline{u}_i = 0$$
 (9)

$$\rho \partial_t \overline{u}_i + \partial_j \left(\rho \left(\overline{u}_i \overline{u}_j + \overline{u'_i u'_j} \right) - \overline{\tau}_{ij} + \overline{p} \delta_{ij} \right) = 0 \qquad (10)$$

$$\partial_t \overline{c} + \partial_i \left(\overline{u}_i \overline{c} + \overline{u'_i c'} - D \partial_i \overline{c} \right) = 0.$$
 (11)

It is noted that the period-averaged flow and mass equations are similar to their original form, except for the presence of added terms, which have emerged from the non-linear advective components of the equations. These added terms describe the period-aggregate influence of fluctuations about the period-average of their respective field variable. For the flow (equation 10) and species (equation 11), these added terms are respectively referred as the oscillatory advectivestress and oscillatory advective-flux.

Due to the presence of the oscillatory advective-stress and oscillatory advective-flux in the flow and species transport equations respectively, variations may emerge between the period-average and equivalent steady-state of their respective field variables. These variations may be subtle and difficult to qualitatively differentiate. A quantitative measure is therefore required, and is provided with the Steady Representation Index (SRI), which is defined

$$SRI\{\phi\} = \frac{\phi|_{ss} - \overline{\phi}|_{ps}}{\phi|_{ss} + \overline{\phi}|_{ps}}.$$
 (12)

This index quantifies variations in a generic field variable φ that arise due to flow pulsatility, relative to its equivalent steady-state. The SRI is signed and bounded by the range $-1 \leq \text{SRI} \leq 1$, such that a positive value $\text{SRI}\{\varphi\}$ denotes that the steady-state value locally overestimates the field variable φ , and a negative value if it underestimates; at $\text{SRI}\{\varphi\} = 0$, both steady and pulsatile conditions are locally equivalent. For the flow field, oscillatory fluctuations have generally been measured via the Oscillatory Shear Index (OSI), which was designed to measure fluctuations in the wall shear stress τ_w (He and Ku, 1996). In a previous study by the authors (Gabriel *et al.*, 2016), the Oscillatory Shear Index was generalised to the Oscillatory Flow Index (OFI), which extended the domain space of the index onto the flow-field, where

$$OFI = \begin{cases} 1 - \frac{\|\overline{\boldsymbol{u}}\|}{\|\boldsymbol{u}\|} & \text{on } \Omega_{F} \cup \partial \Omega_{F} \setminus \Gamma_{W} \\ \\ 1 - \frac{\|\overline{\boldsymbol{\tau}_{W}}\|}{\|\overline{\boldsymbol{\tau}_{W}}\|} & \text{on } \Gamma_{W}. \end{cases}$$
(13)

Note that the OSI is generally scaled to have a maximum value of 0.5; the scaling multiplier is removed in the above definition as it presents no added value. In the same study (Gabriel *et al.*, 2016), the Oscillatory Kinetic Energy Index (OKEI) was also introduced to measure the significance of the oscillatory fluctuations; by measures the trace (i. e. energy) of the oscillatory advective-stress tensor relative to that

of the period-average flow. The OKEI was also extended to flow and wall spaces, and is defined

$$OKEI = \begin{cases} \frac{\overline{u' \cdot u'}}{\overline{u} \cdot \overline{u} + \overline{u' \cdot u'}} & \text{on } \Omega_{F} \cup \partial \Omega_{F} \setminus \Gamma_{W} \\ \\ \frac{\overline{\tau'_{w} \cdot \tau'_{w}}}{\overline{\tau_{w}} \cdot \overline{\tau'_{w}} + \overline{\tau'_{w} \cdot \tau'_{w}}} & \text{on } \Gamma_{W}. \end{cases}$$
(14)

By applying the OFI to the OKEI, direction-reversing (DR) and non direction-reversing (NDR) oscillations can be segregated and their significance measured, such that

$$OKEI_{DR} = OKEI \times OFI$$
(15)

$$OKEI_{NDR} = OKEI \times (1 - OFI).$$
 (16)

It is noted that a similar period-averaging technique was applied by Hong et al. (2012) to derive the period-average species concentration equations for LDL transport within the arterial wall. In that study, the authors argued that within the arterial wall, the period-averaged LDL concentration is significantly larger than its oscillatory perturbations and can thus be represented satisfactorily by the steady-state equivalent. In the present analysis, the period-averaged species equations within the lumen are demonstrated to inherit the period-aggregated influence of oscillatory perturbations via the oscillatory advective-flux term, which depending on its magnitude, can spatially modify the period-average species concentration from its steady-state equivalent. Therefore, in the same manner as the OKEI for the flow, the Oscillatory Species Advective-Flux Index (OSAFI) is proposed to measure the significance of the oscillatory advective-stress term in equation 11; the OSAFI is defined

$$OSAFI = \frac{\|\overline{\boldsymbol{u}'c'}\|}{\|\overline{\boldsymbol{u}}\,\overline{\boldsymbol{c}}\| + \|\overline{\boldsymbol{u}'c'}\|} \quad \text{on} \quad \Omega_{\mathrm{F}} \cup \partial\Omega_{\mathrm{F}} \setminus \Gamma_{\mathrm{W}}.$$
(17)

Computational implementation

The system of flow and species transport equations was implemented into the cell-centred finite-volume solver ANSYS Fluent v17.2, with in-house user-defined functions for customisation of the solver and data-processing. Computations were made with double-precision on a 64-bit serial machine. For the flow equations, pressure-velocity coupling was attained via the SIMPLE algorithm. Flow variable discretisation was made using a second-order upwind scheme and pressure discretisation using the standard ANSYS Fluent scheme (a neighbour-cell interpolation method using momentum equation coefficient weighting). For species (LDL concentration) discretisation, a first-order upwind scheme was used; this scheme was implemented to avoid numerical instabilities arising due to the high Péclet number associated with the species transport. Temporal discretisation of all equations was made with an implicit first-order forwarddifferencing scheme. Field variable gradients were derived using least-squares cell-based interpolation.

RESULTS AND DISCUSSION

For the pulsatile flow (i. e. temporal) case, computations were terminated at the end of the 20th period of oscillation. It was found that from zero initial conditions, the flow field had converged to a steady-periodic state by the fourth period (i. e. the period-average remained unchanged with successive periods). However, as expected of the high Péclet number associated with LDL transport, the LDL concentration field

Oscillatory flow and mass transport in a coronary artery/ CFD 2017

Figure 3: Plot of normalised velocity magnitude on a longitudinal mid-cut of the artery; for (a) period-average of pulsatile flow, (b) steady-state flow and (c) Steady Representation Index of both conditions.

Figure 5: Plot of normalised LDL concentration on the wall; for (a) period-average of pulsatile flow, (b) steady-state flow and (c) Steady Representation Index of both conditions.

Figure 4: Plot of normalised wall shear stress magnitude on the wall; for (a) period-average of pulsatile flow, (b) steadystate flow and (c) Steady Representation Index of both conditions, where $\tau_{w0} = 8\mu u_0/d_I$ is the inflow's equivalent Poiseuille wall shear stress.

Figure 6: Plot of OKEI on the wall; for (a) NDR and (b) DR oscillations. Also, a plot of (c) OSAFI on a near-wall surface within Ω_F (i. e. taking measurements at the first element layer from the wall).

Figure 7: Plot of normalised LDL concentration along the normalised distance of the (a) upper and (b) lower span of the RCA; comparing period-averaged pulsatile-state (ps) and equivalent steady-state (ss) conditions. The direction of the arrow is from period 1–20.

was yet to converge onto a steady-periodic state from initial conditions c = 1 (see figure 7). Nevertheless, to give preliminary insight into what is expected of a converged periodic state for the LDL concentration field, the 20th period results are investigated for the present study.

Observation of the flow and wall shear stress distributions in

figures 3 and 4 respectively, reveals that the period-average of the pulsatile flow displays similar characteristic to that of its equivalent steady-state condition. However, subtle variations can be observed, particularly in the magnitude of the velocity and wall shear stress at the narrowing of the artery (near its longitudinal centre) and at the expansion thereafter (just before the outflow). This is confirmed by the SRI for these respective indices, which also reveals that its sign is not homogeneous but a seemingly even distribution of positive and negative; indicating that the period-average of the pulsatile flow is both overestimated and underestimated relatively evenly by its steady-state equivalent.

For the LDL concentration (figure 5), it is noted that the period-average distribution for the 20th period is significantly far from converged, and many more periods are required before a steady-periodic state is achieved. When compared to the steady-state case, it appears that both distributions resemble each other (since regions of high and low concentrations seem to spatially coincide), though their respective magnitudes substantially differ. Correspondingly, it is expected that the steady-periodic state may also behave similarly to the 20th period. From the corresponding signed SRI distribution, it is noted that the period-average of the oscillatory concentration field is mostly less than that of its steadystate equivalent. Observation of successive period-averaged concentration profiles along the span of the artery (figure 7) reveals that the concentration field is currently incrementally increasing in magnitude away from its initial condition c = 1. This behaviour appears to be monotonic and slowing down with each successive period, indicating that the steadyperiodic state is a converging limit.

It is difficult to ascertain the influence of flow oscillations on the flow and species field variables, from their respective distributions alone. However, this information can be determined from their corresponding oscillatory indices. From figure 6, it can be observed that the OKEI is significant throughout the artery, with NDR oscillations dominating. A small distribution of OKEI_{DR} is also observed, though this is insignificant relative to that of the OKEI_{NDR}. The magnitude of these distributions is generally equal to or less than 0.5, indicating that the oscillatory advective-stress is not dominant though moderately influential in modifying the periodaverage flow field from its equivalent steady-state.

For the OSAFI, a more diverse distribution is observed, where there seems to be little correlation with that of the OKEI. However, a similar distribution is observed with the SRI{ $\|\tau_w\|$ } (figure 4), indicating a possible relation with the gradient of the flow velocity. Though, further analysis is required before this can be ascertained.

CONCLUSION

The oscillatory transport of pulsatile blood flow and bloodborne species (low density lipoprotein) has been investigated in the present study. It was determined from their respective period-averaged transport equations that oscillatory influence is inherent to the period-average transport. This influence is prominent in the advective terms of the equations and manifests as the period-aggregate of oscillatory advectivestresses and advective-fluxes within the flow and species transport respectively. These terms are identified to be the cause for parting the period-average transport from its equivalent steady-state condition. To investigate these terms, pulsatile blood flow within a human right coronary artery is investigated and oscillatory indices developed to measure their significance. It was observed that though a direct correlation could not be ascertained between the oscillatory indices for flow and species transport respectively, there was sufficient similarity to imply a potential relationship. It is the objective of this study that such a relationship can be determined and modelled, so as to better resolve pulsatile species transport without explicitly resolving all periods of oscillation.

ACKNOWLEDGEMENTS

This work was supported by an Australian Government Research Training Program Scholarship and a grant from the CSIRO through the ATN Industry Doctoral Training Centre. The Biofluid Mechanics Lab, Charité Universitätsmedizin Berlin is acknowledged for providing the RCA geometry.

REFERENCES

AMBROSI, D., QUARTERONI, A. and ROZZA, G. (eds.) (2012). *Modeling of Physiological Flows*, vol. 5 of *Modeling, Simulation & Applications*. Springer Milan, Milano.

CHO, Y.I. and KENSEY, K.R. (1991). "Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows." *Biorheology*, **28(3-4)**, 241–62.

GABRIEL, S.A., DING, Y. and FENG, Y. (2016). "Extending the Oscillatory Index to discern oscillatory flow modes". *20th Australasian Fluid Mechanics Conference*, 1– 4. Australasian Fluid Mechanics Society, Perth, Australia.

HE, X. and KU, D.N. (1996). "Pulsatile flow in the human left coronary artery bifurcation: average conditions." *Journal of Biomechanical Engineering*, **118**(1), 74–82.

HONG, J., FU, C., LIN, H. and TAN, W. (2012). "Non-Newtonian effects on low-density lipoprotein transport in the arterial wall". *Journal of Non-Newtonian Fluid Mechanics*, **189-190**, 1–7.

HUANG, J., LYCZKOWSKI, R.W. and GIDASPOW, D. (2009). "Pulsatile flow in a coronary artery using multiphase kinetic theory". *Journal of biomechanics*, **42(6)**, 743–54.

JOHNSTON, B.M., JOHNSTON, P.R., CORNEY, S. and KILPATRICK, D. (2006). "Non-Newtonian blood flow in human right coronary arteries: transient simulations." *Journal of biomechanics*, **39(6)**, 1116–28.

LIU, X., FAN, Y., DENG, X. and ZHAN, F. (2011). "Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta". *Journal of Biomechanics*, **44(6)**, 1123–1131.

SAKELLARIOS, A.I. *et al.* (2013). "Patient-specific computational modeling of subendothelial LDL accumulation in a stenosed right coronary artery: effect of hemodynamic and biological factors." *American journal of physiology. Heart and circulatory physiology*, **304(11)**, H1455–70.

STANGEBY, D.K. and ETHIER, C.R. (2002). "Computational analysis of coupled blood-wall arterial LDL transport". *Journal of biomechanical engineering*, **124(1)**, 1–8.

SUN, N. *et al.* (2007). "Influence of pulsatile flow on LDL transport in the arterial wall". *Annals of biomedical engineering*, **35**(10), 1782–90.

TARBELL, J.M. (2003). "Mass transport in arteries and the localization of atherosclerosis". *Annual review of biomedical engineering*, **5**(1), 79–118.

TEERLINK, T., SCHEFFER, P.G., BAKKER, S.J.L. and HEINE, R.J. (2004). "Combined data from LDL composition and size measurement are compatible with a discoid particle shape". *Journal of lipid research*, **45**(5), 954–66.

THIRIET, M. (2008). *Biology and Mechanics of Blood Flows. Part II: Mechanics and Medical Aspects.* Springer, New York, NY.

WADA, S. and KARINO, T. (2000). "Computational Study on LDL Transfer from Flowing Blood to Arterial Walls". T. Yamaguchi (ed.), *Clinical Application of Computational Mechanics to the Cardiovascular System*, 157–173. Springer Japan, Tokyo.