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Abstract 

Context: The trustworthiness of research results is a growing concern in many empirical disciplines. 
Aim: The goals of this paper are to assess how much the trustworthiness of results reported in software 
engineering experiments is affected by researcher and publication bias and to suggest improved 
research practices. 
Method: First, we conducted a small-scale survey to document the extent of researcher and publication 
biases in software engineering experiments. Then, we built a model that estimates the proportion of 
correct results for different levels of researcher and publication bias. A review of 150 randomly 
selected software engineering experiments published in the period 2002–2012 was conducted to 
provide input to the model. 
Results: The survey indicates that researcher and publication bias is quite common. This finding is 
supported by the observation that the actual proportion of statistically significant results reported in the 
reviewed papers was about twice as high as the one expected assuming no researcher and publication 
bias. Our models suggest a high proportion of incorrect results even with quite conservative 
assumptions. 
Conclusion: Research practices must improve to increase the trustworthiness of software engineering 
experiments. A key to this improvement is to avoid conducting studies with unsatisfactory low 
statistical power. 

Appearances to the mind are of four kinds. Things either are what they appear to be; or they neither 
are, nor appear to be; or they are, and do not appear to be; or they are not, and yet appear to 
be. Rightly to aim in all these cases is the wise man's task.  
Epictetus (AD 55-135), Discourses, Book 1, Chapter 27 

1. Introduction
The cover article, How Science goes wrong, of the October 19th 2013 issue of The Economist

describes the growing concern that the proportion of incorrect research results in many research 
domains is much higher than we would normally suppose, or like to think. If the proportion of incorrect 
results is high, the usefulness and trustworthiness of the research within the whole domain may be at 
stake. The much debated and cited paper from 2005, by J. P. A. Ioannidis, with the telling title: “Why 
most published research findings are false” [1], is the origin of much of the recent discussions and 
concerns. There is, however, nothing new with concerns related to data fabrication [2], publication bias 
(not publishing statistically non-significant results) [3, 4], researcher bias (flexible analyses that lead 
initially statistically non-significant results to become significant) [2, 5] and low statistical power (low 
likelihood of rejecting the hypothesis of no difference, the null hypothesis, even when there actually is 
a difference) [6]. Already in 1830, Babbage wrote about the decline in science, including what he 
called the “fraud of the observers” [7]. Babbage’s list of questionable practices (frauds) is similar to 
those discussed in this paper. Researchers may feel a strong pressure to publish results, which 
sometimes leads to questionable or even unethical researcher practices [8]. 

Although the use of questionable research practices is not a new phenomenon, an increasingly 
competitive research environment, a “publish or perish” culture, may have increased the amount of 
such practices over the years [9], i.e., increasingly competitive academic environments seem to 
increase not only the scientists’ productivity, but also their biases [10]. The use of questionable 
practices is hardly just a result of lack of knowledge about proper research practices. The survey 
reported in [11], for example, finds the amount of questionable research practices to be similar or, for 
some aspects, even increasing for researchers in the later stages of their research career. 
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The goal of this paper is to examine to what extent the trustworthiness problems observed in a 
wide range of research domains [8, 12-16] are present in the context of software engineering 
experiments. If such problems are present, there may be a need for changes in the current research 
practices. 

The trustworthiness of a particular result of a study depends on the quality of the research method 
of that study and to what degree the result has been replicated by other, preferably independent, 
studies. In this paper, we assess the trustworthiness of the results within a domain as a whole. The 
approach we apply is limited to research results from statistical hypothesis testing and is based on a 
model that estimates the expected proportions of statistically significant results [1, 17, 18]. Input to this 
model includes the level of publication and researcher bias, and the statistical power of studies 
conducted in a research domain. A high level of publication and researcher bias increases the 
proportion of incorrect research results and inflates the effect sizes [19, 20]. Similarly, low statistical 
power is also likely to increase the proportion of incorrect results [21].  

An illustration of the unfortunate consequence of strong publication bias, strong researcher bias 
and low statistical power on result trustworthiness is provided in Box 1. 

 
Box 1: Do authors with longer names write more complex papers? 
We wanted to test the following hypothesis: Researchers with longer names write more complex 

texts than researchers with shorter names. To test the hypothesis, we randomly selected twenty 
research papers using Google Scholar. For each of the papers, we collected information about the first 
author’s family name and the complexity of the text in the paper. We found a strong and significant 
(p<0.01) correlation between the length of the name and the complexity of the text, where the 
complexity of the text was measured either using the Flesch-Kincaid [22] reading level or the number 
of words per paragraph. The correlation with name length was 0.6 for both complexity measures. 

While our study contains no fabricated data, we do not believe that authors with longer names 
actually write more complex papers. It is more likely that our result is a consequence of three 
questionable, but perhaps not uncommon, research practices. The first questionable practice, which is 
an example of publication bias, was that we did not publish all the (fourteen!) complexity measures we 
tested, only the two ones that gave significant results. The second questionable practice, which is an 
example of researcher bias, was that we removed two outliers because we were unable to calculate the 
Flesch-Kinkaid measure on the text. While in principle defendable, we made the decision after looking 
at the effect it had on the results. Without the removal of these outliers, our results would not have been 
statistically significant. The third questionable practice, also an example of researcher bias, was that we 
changed the definition of the length of the name from the sum of the length of the first name and the 
family name, to the length of the family name only. This was defended by the observation that the first 
name was not available for all authors. We knew, however, that this decision would strengthen our 
results.  

All the questionable research practices we used to create statistically significant results in this 
study would, we think, easily go unnoticed or feel well motivated by the reviewers and readers. In this 
case, where collecting data is inexpensive, a reviewer may question why the sample is not larger or 
why no replications have been conducted. While this may be a valid comment for this study, the 
sample size used (n=20) or less is common in software engineering experiments where collecting data 
is typically more costly. (X % of the 150 experiments in the review reported later in this article had a 
sample size ≤ 20.) 

A similar experience of how easy it is to generate statistically significant, but incorrect, results 
when willing to use questionable practices and studies with low statistical power is reported in [23]. 

 
The remaining part of the paper is organized as follows: Section 2 reports on a small-scale survey 

on questionable statistical practices of software engineering researchers. Section 3 introduces models 
of the expected proportion of statistically significant results and the expected proportion of incorrect 
results. Section 4 reports on a review of the results of hypothesis tests of a random set of 150 software 
engineering experiments. Section 5 uses the models described in Section 3 to argue that there is a 
substantial amount of researcher and publication bias, and consequently a high rate of incorrect results 
in software engineering experiments. Section 6 uses the results to suggest improved research practices. 
Section 7 concludes. 

 
 

2. A small-scale survey of questionable research practices 
A web-based survey was conducted with questions about statistical research practices likely to 

contribute to publication and researcher biases. We sent a questionnaire to the 80 participants and 



program committee members of the joint conference of the 23rd International Workshop on Software 
Measurement (IWMS) and the 8th International Conference on Software Process and Product 
Measurement (Mensura). In addition, we sent the questionnaire to a few members of the Dutch 
Software Measurement Association. We clarified that the respondents would be anonymous and that no 
one, not even the researchers analysing the responses, would be able to identify their names. 

We received 36 complete responses. For the purpose of the analysis in this section, we removed 
two responses where the researchers stated that they never used statistical hypothesis testing in their 
own research, leaving 34 responses. The four first questions (P1–P4) of the questionnaire were related 
to publication bias and the last three questions (R1–R3) to researcher biases. The questions and the 
responses are displayed in Table 1. 
 
Table 1: Results from a survey on statistical practices 

 
Research Practice 

Have experienced/done this in my own research 
Never Seldom Occas. Often Don’t  

know 
P1: Paper rejected due to non-significance1 14 6 8 4 4 
P2: Paper not submitted due to non-significance2 16 6 8 4 1 
P3: Not reported non-significant results3 17 8 4 4 2 
P4: Not reported undesired results4 18 8 0 4 4 
R1: Post hoc hypotheses5 11 4 12 6 1 
R2: Post hoc outlier criteria6 14 5 9 3 3 
R3: Flexible reporting of measures and analyses7 10 10 5 7 2 
1: Reviewers stated that a reason for rejecting your paper was that the results of one or more hypothesis tests gave statistically 
non-significant results. 
2: You chose not to summarize and submit a paper, because the results of one or more of the hypothesis tests gave statistically 
non-significant results. 
3: You chose not to report the outcome of one or more of the hypothesis tests (but submitted/published a paper with other 
statistically significant results from the same study or on the same topic), because the tests gave statistically non-significant 
results. 
4: You chose not to report the outcome of one or more of the hypothesis tests (but submitted/published a paper with other 
statistically significant results from the same study or on the same topic), because the tests gave undesired results, e.g., results 
conflicting with the main message of the paper. 
5: You reported the results of one or more hypothesis tests where at least one of the hypotheses was formulated after you had 
looked at the data. 
6: You developed or changed the rules for whether to exclude data or not (e.g., outlier removal) after looking at the impact of 
doing so on the results. 
7: You used several variants of a measure or several tests and reported only the measures and tests that gave the strongest results. 

 
As can be seen in Table 1, practices likely to lead to publication bias were common among the 

respondents. A summary of the publication bias responses (excluding the category “Don’t know”) 
showed that 56% had experienced the rejection of a paper because it reported non-significant results, 
53% had chosen not to submit a paper due to non-significant results, 48% had not reported non-
significant results when reporting from a study and 40% had chosen not to report undesired results. 
Practices potentially leading to researcher bias were also common. We found that 67% had statistically 
tested and reported post hoc hypotheses, 55% had developed or modified outlier criteria after looking 
at the impact of doing so on the results, and 69% had only reported the best among several measures on 
the same test. 

Self-report surveys on questionable research practices, even when reporting anonymously, are 
likely to underrepresent the true occurrences. Still, we found that between 40% and 69% of the 
respondents admitted to experiencing or using all these practices. The practices reported in our survey 
correspond well with those from a survey with similar questions in psychology [24]. In that survey, 
63% of the respondents admitted that they had failed to report all of a study’s dependent measures, 
46% that they had selectively reported studies that “worked”, and 38% that they had decided whether 
to exclude data after looking at the impact of doing so on the results1. The presence of researcher and 
publication biases also corresponds with responses from a health education research survey [25, 26], 
where 46% had witnessed first-hand that statistical techniques were selected “for [their] ability to 
provide [a] more favourable outcome” and 59% “reported only significant findings in published 
research”. 

The researchers in our study were allowed to comment on their answers. The comments included 
the following two very honest explanations of practices leading to publication and researcher bias: 

                                                             
1 The results are those from the control group of the survey of the psychology researcher. The respondents of the “truth-

telling incentive” group report slightly higher use of questionable practices. 



•   “It's extremely hard to publish a journal paper without 'massaging' the data and the hypotheses 
first. If you do not do this, you will end up with no publications at all. I think journal editors and 
reviewers should do something, so that they encourage honest accounts of empirical work, and 
make researchers with non-significant results feel welcome.” 

•   “… unless authors do something really stupid, it's very easy to get away with post-hoc 
interventions. Sneaking up and making it to a journal publication is common and if many fellows 
practice it, why should we discriminate against ourselves by discarding the practice? The price 
appears to be too high for this.”  
 
We should be careful about generalizing the results in Table 1 to most software engineering 

researchers. The respondents of our study do, however, resemble a typical population of empirically-
oriented software engineering researchers, and we may at least use the results to argue that practices 
that lead to publication and researcher bias are present in the domain of software engineering. The 
results give us reason to suspect that the amount of questionable research practices can be a serious 
problem for the trustworthiness of the research results in software engineering experiments. 

 
 

3. Modelling the impact of publication and researcher bias 
We describe three models in this section. Section 3.1 describes a model of how publication and 

researcher bias affects the proportion of observed statistically significant findings. Section 3.2 
describes a model of the proportion of correct findings. Section 3.3 describes a model of the strength of 
the evidence when reporting a statistically significant finding. The models are applied in Section 5, 
with input from the review in Section 4. 

 
3.1 A model of the proportion of statistically significant tests 
We consider situations where the correctness of simple hypotheses is evaluated, 
e.g., a hypothesis stating that there is no difference between to experimental 
procedures or no effect of a variable. If such a simple null hypothesis is false, we 
consider it a true relationship. 

We use the concepts and variables described in Tables 2 and 3 to describe a model of the 
proportion of statistically significant hypothesis tests. The model is similar to the model in [1], with the 
exception that we add a variable for publication bias. 
 
Table 2: Combinations of reported and actual relationships 

 
Reported relationship 

Actual relationship 
True relationship False relationship  

Statistically significant 
(positive tests) 

True positives (TP) False positives (FP) 
(Type I error) 

Statistically non-significant 
(negative tests) 

False negatives (FN) 
(Type II error) 

True negatives (TN) 

 
A domain with reliable research results has few false negatives (Type II errors), i.e., true 

relationships not reported as statistically significant, and in particular few false positives (Type I error), 
i.e., non-existent relationships reported as statistically significant (“false alarms”). When the sample 
size of a study is given, there will be a trade-off between the elements in Table 2. Requiring a lower p-
value of a study to claim statistical significance means that the proportion of false positives decreases 
(which is good) at the cost of an increase of false negatives (which is not so good) [27].  

The observed proportion of significant tests (PST) equals the sum of true positive and false 
positive tests, divided by the total number of tests, i.e.,  

 
(1)   PST = (TP+FP)/(TP+FP+TN+FN) 

 



Table 3: Variables used in the model 
Variable Description 
ptr Proportion of true relationships among those tested. If, for example, 

we have a domain where half of the hypotheses test true relationships, 
then ptr = 50%. The ptr-value is typically not known and will differ 
from domain to domain.  

α Probability of Type I error or significance level. α corresponds to the 
expected proportion of false positives among actually false 
relationships. Typically α is set to 5% in software engineering 
experiments, which means that we should expect, in the long run, that 
5% of the tests give a statistically significant result when there is no 
true relationship. 

β Probability of Type II error. β corresponds to the expected proportion 
of false negatives. In software engineering experiments the median β 
has been estimated to be about 70% [28], which means that we should 
expect, in the long run, that as much as 70% of the true relationship 
gives a statistically non-significant test result. The statistical power 
equals (1 – β) [29]. 

rb Researcher bias. rb is the proportion of statistically non-significant 
results that becomes significant through questionable research or 
analysis practices, such as those described as R1-R3 in Table 1. For a 
more complete set of research practices that lead to researcher bias, 
see [24]. 

pb Publication bias. pb is the proportion of statistically non-significant 
results that are not reported. Not reporting non-significant results 
includes both the situation where papers are not accepted or submitted 
due to non-significant findings and the situation where one or more 
non-significant results within a study are not reported, i.e., all the 
situations described as P1-P4 in Table 1. 

 
Figure 1 illustrates the relationships between the variables. Each of the 1000 cells represents one 

hypothesis test. As can be seen, we have assumed that 50% of the tested hypotheses are actually true 
(ptr = 0.5), a significance level (α) of 5% and a statistical power (1–β) of 30%. The left-hand part of 
Figure 1 illustrates the situation with no researcher and publication bias, the middle part a situation 
with 20% researcher bias and no publication bias, and the right-hand part a situation with 20% 
researcher and 30% publication bias. The cells above the thick horizontal black line (grey background) 
are the relationships that are actually true, while those below the line (yellow background) are those 
that are actually false. White cells denote tests that are non-significant, while the coloured cells (green 
= true positives, red = false positives, blue = initially non-significant test appearing significant due to 
researcher bias) denote statistically significant tests. 

We assume that a statistical power of 30% means that 30% of the true relationships, i.e., 500 x 0.3 
= 150 (15%) of the cells in Figure 1, are true positives (green cells) for a situation with no researcher or 
publication bias (left-hand situation). The remaining true relationships should correspond to negative 
tests; i.e., there are 500–150 = 350 false negatives (white cells, upper half). A significance level of 5% 
means that we will expect that 5% of the tests will (falsely) show a positive test when there is no 
relationship; i.e., 500 x 0.05 = 25 (2.5%) of the cells are false positives (red cells). The remaining false 
relationships correspond to negative tests; i.e., there are 500–25 = 475 true negatives (white cells, 
lower half). The expected number of statistically significant tests, assuming no researcher or 
publication bias, is consequently 150 (true positives) + 25 (false positives) = 175; i.e., 17.5% of the 
total tests are expected to be statistically significant in the situation with no researcher and publication 
bias. 

More generally, the expected proportion of statistically significant relationships given no 
researcher and publication bias (PST0) can be expressed as: 

 
2 	  𝑃𝑆𝑇& = 1 − 𝛽 𝑝𝑡𝑟 + 𝛼(1 − 𝑝𝑡𝑟) 

 
 
 
 
 



Figure 1: Illustration of the effect of researcher and publication bias 

 
 

Adding 20% researcher bias, as we do in the middle part of Figure 1, means that 20% of the 
initially statistically non-significant relationships become statistically significant. We assume in our 
calculations that the researcher bias affects the true negatives and the false negatives equally.2 The 
researcher bias implies that 20% (=70) of the 350 false negatives and 20% (=95) of the 475 true 
negatives become statistically significant. There will now not be 175 (as in the left-hand part of Figure 
1) statistically significant results, but instead 175 + 70 + 95 = 340; i.e., 34% of the total tests will be 
expected to be statistically significant. The expected observed proportion of statistically significant 
findings (PST1) when adding researcher bias can be expressed as: 
 
 3 	  𝑃𝑆𝑇3 = 𝑃𝑆𝑇& + 𝛽 ∙ 𝑟𝑏 ∙ 𝑝𝑡𝑟 + (1 − 𝛼) ∙ 𝑟𝑏 ∙ (1 − 𝑝𝑡𝑟) 

 
Adding 30% publication bias, as we do in the right-hand part of Figure 1, means that 30% of the 

statistically non-significant relationships are removed from the total set of hypothesis testing. As for 
the researcher bias, we assume that this will affect the true negatives and the false negatives equally. 
Adding publication bias implies that 30% of the remaining 660 (=1000–340) statistically non-
significant tests, i.e., 30% x 660 = 198 non-significant tests, are removed. There are now just 1000–198 
= 802 tests left. There are still 340 statistically significant tests, but they now constitute not 34% of the 
total number of reported tests, but instead 340/802 = 42%. The expected observed proportion of 

                                                             
2 This assumption may not be valid if the studies with initially false negatives tend to have much lower p-values than the 

studies with initially true negatives. In that case, it may be easier to achieve statistically significant tests for false negatives (tests 
on true relationships) than for true negatives (tests on false relationships). An improvement of the model would, consequently, be 
to allocate a higher proportion of researcher bias to the false than to the true negatives. For a situation with studies with low 
statistical power, as in our context, we expect that the difference in the ease of achieving statistically significant results through 
researcher bias is approximately the same for these two situations, which defends our assumptions. 



statistically significant findings (PST2) when adding researcher and publication bias can be expressed 
as: 

 
4 	  𝑃𝑆𝑇7 = 𝑃𝑆𝑇3 ( 𝑃𝑆𝑇3 + (1 − 𝑃𝑆𝑇3) ∙ 1 − 𝑝𝑏 )  

 
We will use the expression in (4) to examine the levels of researcher and publication bias needed to 

produce the observed proportion of statistically significant results. 
 
3.2 A model of the proportion of correct tests  

In Figure 1 we have that the situation without researcher and publication bias (left-hand part), 
gives 150 true positives and 475 true negatives. This means that 150 + 475 = 625 of the 1000 tests 
(62.5%) are correct. Perhaps even more important, as many as 150 out of the 175 (=86%) statistically 
significant tests are correct.3 When adding 20% researcher bias and 30% publication bias (right-hand 
part), the expected number of true positives (blue and green cells in the upper half) becomes 220, and 
the number of true negatives (white lower half) becomes 266. The number of tests is now reduced to 
802, which means that the tests give the correct results (266 + 220)/802 = 61% of the times. This is 
about the same proportion as in the situation without researcher and publication bias, and is mainly a 
result of the low statistical power assumed in the illustration. The inclusion of researcher and 
publication bias gives, on the other hand, that only 220 (65%) of the 340 statistically significant tests 
now give the correct result; i.e., 35% of the statistically significant results are incorrect. 

We can express the proportion of observed correct results of a set of tests, i.e., the Proportion of 
Correct Results (PCR) 4  and Proportion of Correct Results among those statistically Significant 
(PCRS)5, as: 

 
5 	  𝑃𝐶𝑅 = ;<;=;>?

;<;=;>?=;>;=;<?
 and 

 
6 	  𝑃𝐶𝑅𝑆 = ;<;

;<;=;>;
, 

 
where PTP is the proportion of true positives, PFN the proportion of false negatives, PFP the 

proportion of false positives and PTN the proportion of true negatives. These proportions can be 
expressed as: 

 
7 	  𝑃𝑇𝑃 = 𝑝𝑡𝑟 ∙ 1 − 𝛽 + 	  𝑝𝑡𝑟 ∙ 𝛽 ∙ 𝑟𝑏 

 
8 	  𝑃𝐹𝑁 = 𝑝𝑡𝑟 ∙ 𝛽 ∙ (1 − 𝑟𝑏) ∙ (1 − 𝑝𝑏)	   

 
9 	  𝑃𝐹𝑃 = (1 − 𝑝𝑡𝑟) ∙ 𝛼 + (1 − 𝑝𝑡𝑟) ∙ (1 − 𝛼) ∙ 𝑟𝑏	   

 
10 	  𝑃𝑇𝑁 = (1 − 𝑝𝑡𝑟) ∙ (1 − 𝛼) ∙ (1 − 𝑟𝑏) ∙ (1 − 𝑝𝑏)	   

 
The above expressions are based on the same ideas as those reported in [30], but add the effect of 

publication and researcher bias. Note that, with publication bias, the sum of the proportions will not be 
100%; i.e., we calculate the proportion of correct results among the reported tests, not among all tests 
actually conducted. 

 
3.3 A model of the strength of the evidence from a statistically significant test 

Expression (6), which estimates the proportion of correct results among the statistically significant 
tests, includes no reference to the level of publication bias. This is as expected, since publication bias 
affects only the non-significant results, but should not be taken to mean that publication bias is 
harmless for the reliability of reported statistically significant results.  

A potential side-effect of publication bias is, for example, that it makes it easier to publish studies 
that test many hypotheses on topics where the proportion of true relationships (ptr) is low. As can be 
derived from (6), a decrease of ptr will decrease the proportion of correct, statistically significant 
results. 

                                                             
3 This illustrates how misleading it is to think that the significance level of a hypothesis test tells us how probable it is that a 

null hypothesis is true. In this scenario, the proportion of true null hypotheses when observing p<0.05 is 14%. Adding researcher 
and publication bias, as we do in Figure 1, increases this proportion to 35%. 

4 Frequently denoted Accuracy (ACC) 
5 Frequently denoted Positive Predictive Value (PPV) 



We will now demonstrate the effect of publication bias on result correctness through the use of a 
Bayes Factor [31] (see expression (11)). The considerations leading to Expression (11) are described in 
Appendix 1. 

 
(11) BF = 3GH =H∙IJ

3GH∙KJ =	  H∙IJ∙KJ
L= 3GL ∙IJ

3GKJ =L∙KJ=(3GL)∙IJ∙KJ
 

 
The Bayes Factor tells us how much the odds6 of the alternative hypotheses (true relationship) 

increase after observing that a test gave statistically significant results. While classical hypothesis 
testing only considers the evidence against the null hypothesis, i.e., how unlikely it is to observe the 
data actually observed or more extreme data given that there is no difference, the Bayes Factor 
compares the strength of the evidence in favor of the null hypothesis (false relationship) with the 
strength of the evidence of the alternative hypothesis. The Bayes Factor may consequently be 
interpreted as a measure of how much we should update our belief, or how much our a priori odds 
should change, based on the collected evidence. A Bayes Factor of 1 means that the evidence equally 
favours the null and the alternative hypothesis. Values between 1 and 3 are typically interpreted as “not 
worth more than a bare mention”, between 3 and 20 as “positive”, between 20 and 150 as “strong”, and 
higher than 150 as “very strong” [31]. As pointed out in [32], while the Bayes Factor and traditional 
hypothesis testing almost always agree on which hypothesis is better supported by the data, they may 
disagree about the strength of this support. In [32], examining 855 t-tests from experiments in 
psychology, p-values between 0.01 and 0.05 corresponded with Bayes Factors of less than 3, i.e., “not 
worth more than a bare mention”, in as much as 70% of the tests. 

 
 

4. The proportion of statistically significant results in software 
engineering experiments 

To find the proportion of reported statistically significant tests among all reported tests in software 
engineering experiments, we conducted a systematic literature review. The design of the review 
process is displayed in Table 4. 
 

                                                             
6 Odds = Probability / (1-Probability) 



Table 4: The review process 
Characteristic Description 
Population All reported software engineering experiments applying statistical hypothesis 

testing, including quasi-experiments (experiments without random allocation 
of treatment) in the period 2002-2013. 

Sample 25 randomly sampled papers from each of the periods: 2002–2003, 2004–
2005, 2006–2007, 2008–2009, 2010–2011, and 2012–2013. In total, 150 
papers. 

Search process Full text search with Google Scholar using the term: “software engineering” 
AND “experiment” AND “hypothesis” for each of the sample periods. 

Inclusion criteria At least one statistical hypothesis test. 
Exclusion criteria Studies with all hypotheses stated “post hoc” (derived from analyses of the 

collected data) and studies with “unfocused” hypotheses, i.e., where a large 
number of hypotheses derived from a very general hypothesis were tested. 

Data collected For each experiment, we collected the following information: 
1)   Paper reference (year, authors, title and source) 
2)   Study unit (students, professionals, projects, etc.) 
3)   Sample size (total number of subjects in study) 
4)   Number of treatments, including control group 
5)   Significance level chosen for study (1%, 5%, etc.) 
6)   Number of hypotheses tested 
7)   Number of non-significant tests 
8)   Number of tests with p-value less than 0.01 
9)   Number of tests with p-value between 0.01 and 0.05 
10)   Number of tests reported as significant, but without exact p-value 
A paper could include more than one experiment. 

Review process Three of the authors participated in the review process. The first author 
reviewed all the studies, while the second and fourth authors reviewed 50% of 
the studies each; i.e., all studies were reviewed by two of the authors. When 
there were disagreements on data collection or interpretations of study results, 
the paper was re-reviewed and discussed until agreement on the data collection 
was reached. 

Synthesis The data was summarized and the number of experiments, the median sample 
size, the number of hypothesis tests and the proportions of test results with 
p<0.01 and p<0.05 were calculated. 

 
The results from the review are summarized in Table 5. 
 

Table 5: Results from the review 
 Total 2002–

2003 
2004–
2005 

2006–
2007 

2008–
2009 

2010–
2011 

2012–
2013 

No. papers 150 25 25 25 25 25 25 
No. experiments 196 30 31 32 37 35 31 
Median sample size 29 47 33 32 23 26 27 
No. hypothesis tests 1279 212 210 251 220 215 171 
p<0.051 52%  53% 59% 52% 46% 52% 54% 
p<0.012 29%  27% 32% 31% 25%  33% 26%  
1: Proportion of statistical hypotheses tests with reported p-value lower than 0.05 
2: Proportion of statistical hypotheses tests with reported p-value lower than 0.01. A few tests only reported that p<0.05 without 
reporting the exact p-value. We assumed that half of these tests had p-values less than 0.01 and half had p-values between 0.01 
and 0.05. 
 

Table 5 shows that 52% of the hypothesis tests in the reviewed software engineering experiments 
resulted in statistically significant results when assuming a significance level of 𝛼 = 0.05. Furthermore, 
29% of the hypothesis tests had p-values less than 0.01. The median sample size is 29 subjects only.7 

                                                             
7 The low sample size may reflect the typical number of students in a software engineering class. Availability of subjects 

may consequently be the practical reason for the very low statistical power of software engineering experiments. This is further 
supported by the observation that around 90% of the experiments in our review used students as subjects; that is, the proportion 
of professionals as subjects in software engineering experiments has not increased since the previous decade (1993–2002) 
[Sjøberg et al. 2005]. 



Among the 150 studies, 140 (93%) reported at least one statistically significant hypothesis test. 
This is consistent with a situation where software engineering experiments are more likely to be 
published when they produce a statistically significant result. The alternative explanation is that nearly 
all experiments include the test of at least one true relationship and have sufficient statistical power to 
produce a positive test. The low sample size, and consequently low statistical power, of many of the 
experiments suggest that the first explanation is more likely than the second one. 

The study reported in [33] found a proportion of statistically significant results in the field of 
computer science of about 80%, i.e., a much higher proportion than we found. This difference in results 
may be caused by a difference between the broader field of computer science and its subset of 
experimental software engineering. More likely, it is caused by a difference in review methods. It 
seems as if the review in [33] only examines whether a paper’s “main” hypothesis is fully or partly 
supported, i.e., one hypothesis per paper. We, on the other hand, study all reported hypothesis tests of 
an included experiment. Only examining the hypothesis reported as the “main” one may easily lead to 
a new type of “publication bias”, because an author may tend to emphasize the result that is statistically 
significant as the main result. 

 
5. Researcher and publication bias and result correctness 

To estimate the presence of researcher and publication bias in software engineering experiments 
and its effect on result correctness, we apply the models introduced in Sections 3.1–3.3. For this 
purpose, we need to make assumptions about the significance level (𝛼), the statistical power (1-𝛽) and 
the proportion of true relationships test (ptr). Table 6 displays and motivates the assumptions. 

 
 
 

Table 6: Variable value assumptions 
Variable Value Motivation 

𝛼 0.05 In our review of software engineering experiments, we found that almost 90% of 
the tests used 0.05 as the threshold for statistical significance. 

(1-	  𝛽) 0.3 A median statistical power of about 0.3, for medium–large effect sizes, was 
reported from a review of software engineering experiments in [28]. A medium– 
large effect size for software engineering experiments was documented in an 
analysis of the same experiments in [34]. The similarity between our set of 
studies and those in [28] with respect to sample size and the proportion of 
statistically significant results motivates the use of 0.3 as the median statistical 
power; i.e., there has not been much change since the previous review was 
conducted. (The median sample size was 34 in the previous review and 29 in our 
review, and the proportion of statistically significant results was 49% in the 
previous review [34] and 52% in our review.) 

ptr 0.7 The proportion of true relationships tested by statistical hypothesis testing in 
software engineering experiments is unknown. To be on the safe side, i.e., to 
avoid the critique that we make assumptions that make the reliability of results 
from software engineering experiments look worse than it is, we assume a ptr-
value that corresponds to a situation where as much as 70% of the tested 
hypotheses are true.8 A ptr-value of about 0.7 is what is assumed to be the 
proportion of true relationships in a confirmatory meta-analysis situation in [1], 
i.e., in situations where one has good reasons to believe that there is a true 
relationship. 

 
The expected proportions of statistically significant findings for different levels of researcher and 

publication bias by using the expression in (4) and the values in Table 6, are displayed in Table 7. The 
values in bold type are examples of combinations of researcher and publication bias with values close 
to the observed proportion of statistically significant results (52%).  
 

                                                             
8 It may be argued that there will always be a true relationship, i.e., that it is unlikely that something is exactly the same, and 

that it is only a matter of sampling size whether we find a statistically significant difference or not. While this points out the 
problem of using statistical significance as a measure of practical significance, the validity of our model estimates is not affected. 
In our context, we may assume that a true relationship means a relationship that will be found to be significant for reasonable 
sample sizes. 



Table 7: Expected median proportions of significant findings 
 Researcher bias 

0 0.1 0.2 0.3 0.4 0.5 
Publication 
bias 

0 23% 30% 38% 46% 54% 61% 
0.1 24% 33% 41% 48% 56% 63% 
0.2 27% 35% 43% 51% 59% 66% 
0.3 29% 38% 47% 55% 62% 69% 
0.4 33% 42% 50% 58% 66% 72% 
0.5 37% 46% 55% 63% 70% 76% 
0.6 42% 52% 60% 68% 74% 80% 
0.7 49% 59% 67% 74% 79% 84% 
0.8 59% 68% 75% 81% 85% 89% 

 
Table 7 shows that 52% of the statistically significant tests that we observed in our review do not 

match a situation with no or low researcher and publication bias. In the case of no researcher and 
publication bias (rb=pb=0), we should observe only 23% of statistically significant findings. Even if all 
the hypotheses in software engineering experiments test true relationships (ptr = 1.0), we should not 
observe more statistically significant tests than are predicted by the typical statistical power, i.e., 
around 30%.  

To estimate the reliability of reported findings in software engineering experiments, we use the 
four scenarios (combinations) of researcher and publication bias with the best match between the 
observed and the expected proportion of statistically significant findings, i.e., those corresponding to 
the values in bold letters in Table 7. These are the scenarios with researcher bias 0.4 and publication 
bias 0.0, researcher bias 0.3 and publication bias 0.2, researcher bias 0.2 and publication bias 0.4, and 
researcher bias 0.1 and publication bias 0.6. The scenario with no publication bias is unlikely. We 
therefore include only the other three scenarios in the following discussion of the result correctness. 

Table 8 displays the values for the expressions in (5)–(10), i.e., proportion of true positives (PTP), 
proportion of false negatives (PFN), proportion of false positives (PFP), proportion of true negatives 
(PTN), proportion of correct results (PCR) and proportion of correct results among those that are 
statistically significant (PCRS) for the three chosen scenarios. We denote the proportion of not reported 
test results “PNP”. 
 
Table 8: Result reliability for selected scenarios 
Scenario rb pb PTP PFN PFP PTN PNP PCR PCRS 
1 0.3 0.2 36% 27% 10% 16% 11% 58% 78% 
2 0.2 0.4 31% 24% 7% 14% 25% 59% 81% 
3 0.1 0.6 26% 18% 4% 10% 42% 62% 86% 
 

In [1] it is claimed that “most published research findings are false”. While this is not the case for 
software engineering experiments, the situation is, we believe, unsatisfactory. As can be seen in Table 
8, the proportion of correct outcomes (PCR) is only 58–62%, i.e., slightly more than 50-50 of correct 
and incorrect results. The low proportion is, as indicated by the high proportion of false negatives 
(PFN), to a large degree caused by the low statistical power of most software engineering experiments. 
The correctness of findings reported to be statistically significant (PCRS) is 76–86%; i.e., 14–24% of 
the statistically significant results will be incorrect. As pointed out earlier, the PCRS measure fails to 
take into account the decrease in evidence strength in situations with high publication bias, such as in 
Scenario 1. We discuss this effect later in this section. 

Our assumption on 70% true relationships (ptr = 0.7) among those tested is very conservative. If 
we, perhaps more realistically, assume that there are 50% true relationships among those examined (ptr 
= 0.5), the PCR value does not change much (the new interval is 59–64%), but the PCRS value does. It 
is now 60–72%; i.e., as much as 28–40% of the claimed statistically significant results will in this case 
be incorrect! We will hardly ever know the actual ptr value, but there seem to be a few research 
domains where they think it is reasonable to assume a ptr value higher than 0.5. If there are topics or 
sub-domains where the proportion of true relationships is as low as 30% (ptr = 0.3), then the claim 
“most published research findings are false” may be the case for software engineering experiments as 
well (PCR between 34 and 40%, and PCRS between 48 and 61%).  

To test the robustness of the results in Tables 7 and 8, we re-calculated PCR and PCRS with the 
following two changes in assumption: 



•   It may be argued that the chosen level of significance places too little emphasis on tests that are 
highly significant; i.e., the calculations do not sufficiently acknowledge that many tests will be 
significant at, for example, the 1% level. The consequence is that our model may give a too 
negative estimate of the research correctness (see [35] for a discussion on this critique). Our 
review of the software engineering experiments gave that about 50% of the statistically significant 
(p <	  𝛼 = 0.05) results had p-values less than 0.01. We therefore modelled a situation where 50% of 
the studies had an 𝛼 of 0.01 and 50% of the studies an 𝛼 of 0.05, applying the same assumptions as 
before. This gave results very similar to those reported in Tables 7 and 8. 

•   The statistical power of software engineering experiments varies and it may give a biased outcome 
to use the median statistical power to represent the set of all experiments, especially if the 
distribution of statistical power values is strongly skewed. We therefore re-calculated the 
proportion of correct results using the empirical distribution of statistical power of the software 
engineering experiments reported in [28], i.e., for a similar set of software engineering 
experiments. This simulation, where we randomly selected 1000 statistical power values from the 
empirical distribution, again gave results that were very similar to those reported in Tables 7 and 8.  

 
Applying the Bayesian Factor expression in (11) for selected levels of researcher and publication 

bias, and assuming as before a statistical power of 0.3 and a significance level of 0.05, further supports 
the unsatisfactory situation resulting from researcher and publication bias (see Figure 2).  

 
Figure 2: Decrease in strength of evidence with publication and researcher bias 

 
 

Figure 2 indicates that particularly the researcher bias affects the strength of the evidence from 
statistically significant findings. The three scenarios in Table 8, for example, result in Bayes Factors 
between 1.5 and 2.0, i.e., results categorized as “not worth more than a bare mention”. A Bayes Factor 
of 1.0 means that the evidence supports the alternative hypothesis (true relationship) and the null 
hypothesis (false relationship) equally, while a Bayes Factor of 2.0 means that the data is just twice as 
likely to observe when the relationship is true compared with when the relationship is false. Clearly, 
Bayes Factors in the interval 1.5 to 2.0 cannot be considered to provide strong evidence in support of 
claiming a relationship based on a statistically significant finding.  

Figure 2 also shows that the maximum strength of evidence is a Bayes Factor of 6, which is 
categorized as “positive” but not as “strong evidence”. The low strength of evidence, even in an 
unbiased situation, is due to the very low average statistical power of software engineering 
experiments. As a comparison, a situation where studies have a statistical power of 0.8, where we 
observe statistical significance at p <	  𝛼 = 0.01, and where there is no researcher bias and publication 
bias, would give a Bayes Factor of 80, i.e., “strong evidence”. 



 
6. What should be done to improve research practices? 

A high level of reliability of research results is a prerequisite for the use of scientific studies as 
input to evidence-based practices in software engineering [36]. Undoubtedly, there are many software 
engineering experiments of high quality. The results from the analyses of this paper suggest, 
nevertheless, that there is a need to improve research practices. Meta-studies on a particular research 
question, replications and/or careful reviews of the research quality of individual studies may improve 
the reliability of applied research results, but cannot fully remove the unfortunate effects of low 
statistical power and strong publication and researcher bias within a research domain. 

To address the identified challenges related to publication and researcher bias, we recommend the 
following improvement in researcher and reviewer practices (described in more detail in Table 9): 
•   Avoid studies with low statistical power 
•   Avoid studies with many statistical tests 
•   Emphasize effect sizes and their confidence intervals 
•   Improve the reporting of the study design, analysis and results 
•   Increase the acceptance of non-significant research results 
•   Increase the number of replications and meta-analyses of studies 
•   Make the raw data and details about the research process available  

 
There is no shortage of recommendations on how to conduct empirical software engineering 

studies (see, for example, [37-40]), and all our advice is included in previously reported, more general 
and more comprehensive guidelines and textbooks. What we add is a focus on the need to reduce 
researcher and publication bias by quantifying its negative effects. We also suggest changes in 
reviewer and editorial practices to help overcome the problem. We are aware that our suggestions, to 
some extent, are in conflict with the need for more empirical studies to answer the set of questions of 
high industrial importance [41]. Higher statistical power of studies, for example, means that a study 
may be more costly and require greater research competence, and, therefore, fewer empirical studies 
may be conducted. In spite of this consequence, we believe that it is not acceptable to ignore the 
identified challenges of research reliability. 

Previously published advice has typically not had much impact on research practice. The 
similarity, or even decrease, in sample size from the survey on software engineering experiments from 
1993–2002 [28] and 2002–2013 (this paper), for example, suggests that the clear advice about the need 
to increase statistical power has had little impact on actual statistical power. Reasons for the deviations 
between best and actual practice may include: 
•   Lack of capability, e.g., due to a lack of financial resources or access to a large number of 

developers, to conduct large-scale experiments with sufficient statistical power. Classes of student 
programmers are consequently the easiest, and perhaps the only feasible, option.  

•   Publication mechanisms implicitly reward the use of questionable practices [8]. As an illustration, 
there is an increased probability of finding at least one statistically significant (publishable) finding 
when conducting many small studies with many hypotheses instead of one larger study with a 
fewer, well-defined hypotheses. 

•   Questionable practices, including very low statistical power, are common even among senior 
researchers. If they can, why shouldn’t I, i.e., “do as the others”. 

•   It is harder to publish a replication of the findings of other researchers than to be the first one with 
an interesting, statistically significant, finding.  

•   There is little to gain and much to lose from making data available. Hiding their own data, e.g., 
claiming that they are confidential, makes it much harder for other researchers to find 
embarrassing errors or weaknesses in the analyses. 
 
Changing software engineering researchers’ behaviour from questionable to more proper research 

practices is, we believe, not so much about better training in empirical studies, although that is 
important as well. Even more important is the creation of mechanisms that reward good practices. Such 
mechanisms must include changes in the reviewing process and paper acceptance criteria. For each 
recommended practice in Table 9, we therefore include what we believe are useful changes for 
reviewing policies.  
 
Table 9: Improved research practices, and suggested consequences, for software engineering 
experiments with hypothesis testing 
Advice Practical consequences 



Avoid low 
statistical power 
[21, 40, 42] 

Researchers: 
•   Carry out analyses of statistical power before running a study. 
•   Cancel or re-design studies with unsatisfactory low statistical power. 
•   Do not use the observed (post hoc) statistical power as an indicator for 

the statistical power of the study. 
Reviewers: 

•   Require that papers include a discussion on the desired level of 
statistical power and the implied sample size as part of the design of 
the study. 

•   Reject studies with unsatisfactory low statistical power for reasonable 
effect sizes, e.g., studies with statistical power of less than 0.6 for 
meaningful effect sizes, regardless of statistical significance.  

Avoid complex 
studies with many 
statistical tests [39, 
43] 

Researchers: 
•   Keep the design of the experiment simple and transparent.  
•   Include few hypotheses and variables in your study. Know that an 

increase in the number of hypothesis tests reduces the strength of 
evidence from each test. 

Reviewers: 
•   Reward studies with a simple design and few hypotheses and variables.  
•   Reject studies with a high number of statistical hypothesis tests, 

especially when it is likely that a substantial proportion of the 
statistical significant tests are due to chance or formulated post hoc, or 
when there are indications of publication bias. 

Improve the 
reporting of study 
design, analyses 
and results [39, 44, 
45] 

Researchers: 
•   Make it clear whether a hypothesis was stated in advance or derived 

after looking at the data (exploratory hypothesis to be tested in follow-
up studies).  Avoid statistical tests on exploratory hypotheses. 

•   Report on all evaluated tests and measures, especially when measures 
are on variants of the same construct. 

•   Decide on inclusion/exclusion (outlier) criteria and statistical 
instruments in advance. 

•   Avoid confusing statistical and practical significance. 
Reviewers: 

•   Request that the authors make a statement where they declare that, for 
all experiments, they have accurately reported all hypothesis tests, 
measures, conditions, data exclusions, and how they determined their 
sample sizes. Making such a statement may be a mandatory step in the 
submission process for papers that report experimental studies, 
similarly to the declaration of vested interests in many research 
domains. 

Emphasize effect 
sizes and their 
confidence intervals 
[46] 

Researchers: 
•   Many, probably most, research questions are better formulated as 

“How large is the effect?” rather than “Is there an effect?” Such 
questions should be answered by reporting confidence intervals of 
effect sizes, rather than by the use of p-values. 

•   Use the confidence intervals of the effect sizes as the main means to 
interpret the importance and precision of the results, not the p-values.  

Reviewers: 
•   Request that confidence intervals and their effect sizes are reported. 

Acknowledge that a confidence interval of effect sizes that includes 
“no effect”, e.g., zero difference in mean values, can be very 
informative. This is especially the case when the confidence interval is 
narrow. 

Accept non-
significant results 
[47, 48] 

Researchers: 
•   Report well-powered studies and tests with statistically non-significant 

results the same way you would do when finding statistically 
significant results.  

Reviewers: 
•   Accept non-significant results from studies with good research quality 



and reasonable statistical power.  
More replications 
and meta-studies 
[39, 49] 

Researchers: 
•   Conduct replications of your own and others’ studies to increase result 

robustness. Replications do not have to be, and frequently should not 
be, identical replications. Publish results even if you do not manage to 
find the same result as the original study. Emphasize the replication of 
effect size, less than the statistical significance.9 

•   Conduct meta-studies based on the original study and its replications. 
Adjust for strength of study, publication bias and look for indicators of 
researcher bias in individual studies. 

Reviewers: 
•   Replications, especially of other researchers’ studies, and meta-studies 

should be welcomed, even when presenting non-significant results. As 
with other experiments, the statistical power of replications should be 
explicitly considered as part of the design of the replication. 

Make data available 
[39] 

Researchers: 
•   Unless there are very good reasons for not disclosing the raw data, 

make them openly available, at least on request to the author. Include 
information about the data collection and analysis that might be needed 
to properly use the results of your study. 

Reviewers: 
•   To publish a paper, it should be required that the data is made openly 

available unless strong confidentiality reasons prohibit it. 
 

5. Conclusion 
Experiments in software engineering are subject to publication and researcher biases. We 

document these biases found in our small-scale survey in a follow-up literature review that 
demonstrates that an unbiased situation does not match the observed proportion of statistically 
significant tests. The biases are also found in meta-studies of software engineering topics [50, 51]. As a 
consequence, the reliability of results reported in software engineering experiments, even when 
assuming a best-case (conservative) scenario, is unsatisfactory. The unsatisfactory reliability of the 
research results implies that there is a need for improvement in research and review practices.  

If followed, our advice, we believe, has the potential to lead to a substantial improvement in the 
reliability of research results. Unfortunately, the current publishing mechanisms do not always reward 
good research practices. Consequently, we urge the research community to change the review 
practices, i.e., reconsider what is accepted and not accepted by software engineering journals and 
conferences. In particular, researchers in software engineering need to strengthen the statistical power 
of their studies, and reviewers of software engineering experiments should require that the researchers 
derive the population size of their studies based on consideration of reasonable levels of statistical 
power. 
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Appendix: The effect of significance level, statistical power, researcher bias and 
publication bias on the reliability of statistically significant results 

 
In the following, we assume that our null hypothesis (H0) is that there is no relationship, and the 

alternative hypothesis (Ha) is that there is a relationship between two variables. The observation that a 
test is statistically significant at level α is denoted Sα. The other variables are as described in Table X, 
Section Y. Notice that the model is based on the same structure and assumptions as the one in Section 
X. 

 
Scenario 1: No researcher or publication bias (BF0) 
The Bayes Factor is in this case the probability of observing a statistically significant relationship 

when there is one, i.e., the statistical power of a study, divided by the probability of observing a 
statistically significant relationship if there is none, i.e., the significance level of a study. 

 
𝐵𝐹& = 𝑝 𝑆∝	   	  𝐻P) 𝑝 𝑆∝	   𝐻&) = 	   (1 − 𝛽) 𝛼 

 
Scenario 2: Researcher bias, no publication bias (BF1) 
The probability of observing significant results given that the relationship is true, i.e., p(𝑆∝ | Ha), 

increases with the probability of observing true negatives multiplied by the researcher bias, i.e., with  β 
∙  rb. The probability of observing significant results given that the relationship is not true, p(𝑆∝ | H0), 
increases with the probability of false negatives times the researcher bias, i.e., (1- α) ∙  rb.  

 
𝐵𝐹3 = 𝑝 𝑆∝	   𝐻P 	  ∧ 𝑟𝑏) 𝑝 𝑆∝	   𝐻& ∧ 𝑟𝑏)= ( 1 − 𝛽 + 𝛽 ∙ 𝑟𝑏) 𝛼 + 1 − 𝛼 ∙ 𝑟𝑏  
 

Scenario 3: Researcher and publication bias (BF2) 
The probability of observing non-significant tests decreases and, accordingly, the probability of 

observing significant tests increases. The Bayes Factor expression is based on the following elements, 
which are assumed to be true for both H = H0 and H = Ha: 
•   The probability of observing a non-significant finding = 1 – the probability of observing a 

significant finding = 1 - p(𝑆∝ | H). 
•   A publication bias means that the probability of not reporting a non-significant finding, given that 

a non-significant finding has been found, is (1- p(𝑆∝ | H)) ∙  pb. The new (reduced) bias is the 
initial probability of reporting a finding minus the probability of not reporting a finding, i.e., 1 - (1 
- p(𝑆∝ | H)) ∙  pb. 
 
 

𝐵𝐹7 =
𝑝 𝑆∝	   𝐻P 	  ∧ 𝑟𝑏)

1 − (1 − 𝑝 𝑆∝	   𝐻P 	  ∧ 𝑟𝑏)) ∙ 𝑝𝑏
𝑝 𝑆∝	   𝐻& ∧ 𝑟𝑏)

1 − (1 − 𝑝 𝑆∝	   𝐻& ∧ 𝑟𝑏)) ∙ 𝑝𝑏
 

 

=
1 − 𝛽 + 𝛽 ∙ 𝑟𝑏

1 − 1 − ( 1 − 𝛽 + 𝛽 ∙ 𝑟𝑏 ) ∙ 𝑝𝑏
𝛼 + 1 − 𝛼 ∙ 𝑟𝑏

1 − 1 − (𝛼 + 1 − 𝛼 ∙ 𝑟𝑏 ) ∙ 𝑝𝑏
 

 
 

To better illustrate the effect of publication bias on evidence strength, we may express this as: 
 

=
1 − 𝛽 + 𝛽 ∙ 𝑟𝑏

1 − 𝛽 ∙ 𝑝𝑏 + 	  𝛽 ∙ 𝑟𝑏 ∙ 𝑝𝑏
𝛼 + 1 − 𝛼 ∙ 𝑟𝑏

1 − 𝑝𝑏 + 𝛼 ∙ 𝑝𝑏 + (1 − 𝛼) ∙ 𝑟𝑏 ∙ 𝑝𝑏
 

 
 
As can be derived, the higher the publication bias, i.e., the closer pb is to 1, the lower the Bayes 

Factor. In the extreme case, applying the BF-expression with a total publication bias (pb = 1) gives a 
Bayes Factor of 1, i.e., there is no added value from observing a significant finding in a domain where 
none of the statistically non-significant findings are reported. This corresponds well, we believe, with 
common sense. 

 
 


