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Abstract

In this paper we describe and evaluate an isogeometric finite element program,
IFEM-FSI, for doing coupled fluid-structure interaction simulations. We in-
vestigate the role played by employing higher polynomial orders and higher
regularity for solving a well known benchmark problem for flow past a circular
cylinder with an attached flexible bar at Reynolds number Re = 100. Further-
more, we investigate the sensitivity to resolution in the fluid mesh as well as
stiffness distribution in the mesh movement algorithm. Mesh quality is also as-
sessed. Our simulations indicate that quadratic and cubic spline elements give
better estimation of lift, drag and displacements than linear spline elements.
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1. Introduction

Interaction between fluids and marine structures like monopiles and turbine
support structures results in vortices which cause problems like scouring ([1])
of the seabed and vortex-induced stresses in the structures. Various techniques
([2, 3, 4, 5]) are being used to prevent the scouring phenomena ranging from
the use of different materials to cover the seabed to the use of smart designs of
the monopile’s base to break the vortices. Most of the time these techniques
depend on rigid structures. Optimizing their design is relatively simpler because
state-of-the-art Computational Fluid Dynamics (CFD) codes can simulate the
flow structures and hence the design effectiveness. Other methods for breaking
or weakening the vortices can also be thought of; like the use of flexible struc-
tures attached to the monopiles to alter the behavior of the shedded vortices.
Modelling the effectiveness of such concepts will involve coupled fluid-structure
interaction simulations. The simulations are complicated by the fact that they
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require a dynamic mesh and an accurate representation of the deformed ge-
ometry under the influence of forces throughout the simulation time. Classical
simulation methods based on linear finite elelments do not represent the geome-
try in an exact sense and introduce errors which can be reduced only by using a
very high resolution. Fortunately, a new discretization method based on isogeo-
metric analysis appears promising in this context. Isogeometric analysis (IGA),
introduced in [6], has demonstrated that much can be gained in this respect by
replacing the traditional low-order finite elements (FE) by volumetric NURBS
(Non-Uniform Rational B-Splines). Spline approximations have some desirable
properties both with respect to geometrical representation and analysis, since
both the order and the smoothness of the basis functions can be easily changed.
In particular, numerical results indicate that increased continuity of the finite
element basis improve the approximation of both material stresses in structural
analysis and sharp boundary layers in CFD analysis [7]. An overview of recent
developments in the field of isogeometric analysis can be found in [8].

In this paper we apply the isogeometric finite element approach to the well
known FSI benchmark problem presented in [9, 10] as a first step to demon-
strating its benefits. The paper starts with a mathematical description of the
method in solving fluid structure interaction problems. The description includes
the fluid and structure solvers based on mass and momentum conservation equa-
tions. The equations are solved on a dynamic mesh to accommodate the ge-
ometry changes so a mesh mover is explained in the same section. Finally the
set-up is described followed by results and conclusions.

2. Theory

Here we present the theory behind our fluid and structural solvers, along
with details of how they are coupled and how the mesh movement is done. Mesh
generation is also explained. The fluid domain, consisting of an incompressible
Newtonian fluid, is denoted Ωf , while the structural domain, consisting of an
elastic solid, is denoted Ωs.

2.1. Fluid solver
The flow is mathematically described by the incompressible Navier-Stokes

equations which read

ρ
∂uf

∂t
+ ρ

(
uf · ∇

)
uf −∇ · σ

(
uf , p

)
= ρf in Ωf

∇ · uf = 0 in Ωf .
(1)

In this setting Ω ∈ Rd, d = 2, 3, is a suitable, sufficiently regular and open
domain, ρ is the constant fluid density, p is the pressure, uf is the fluid velocity
vector and f a volumetric body force. The Cauchy stress tensor can be written
as

σ(uf , p) = −pI + 2µε(uf ),

where I is the identity tensor, µ the dynamic viscosity and the strain rate ε is
defined as

ε(uf ) = 1
2
(
∇uf + (∇uf )T

)
.

2



Furthermore we define the boundary to be ∂Ωf = Γf = ΓfD∪ΓfN∪ΓfM in order to
handle boundaries with Dirichlet, Neumann or mixed boundary conditions. We
denote ΓfD the boundaries with Dirichlet conditions, ΓfN the boundaries with
Neumann conditions and ΓfM the boundaries with mixed conditions. Mixed
boundary conditions are used in situations where the normal velocity component
is given, usually zero, together with the tangential stresses, and can model
symmetry planes and slip or friction conditions.

The variational formulation can now be expressed as: Find (uf , p) ∈ U ×Q
such that(

ρ
∂uf

∂t
,v

)
+ c(uf ;uf ,v) + b(p,v) + a(uf ,uf ) + b(q,uf ) = f(v) (2)

for (v, q) ∈ V ×Q. We have defined the spaces

U = HΓD,Γ⊥
M

(Ω) =
{
v ∈H1(Ω) | v = ufD on ΓD and v · n = uf⊥ on ΓM

}
V = HΓD,Γ⊥

M
;0(Ω) =

{
v ∈H1(Ω) | v = 0 on ΓD and v · n = 0 on ΓM

}
Q = L2(Ω),

where ufD and uf⊥ both are given functions and n is the unit outer normal on
Γ. We have also defined the forms

a(uf ,v) = 2
∫

Ω
µε(uf ) : ε(v) dx

b(q,v) = −
∫

Ω
(∇ · v)q dx

c(w;uf ,v) =
∫

Ω
ρ(w · ∇)uf · v dx

f(v) =
∫

Ω
ρf · v dx +

∫
ΓN

t · v ds ,

where t = σ · n is the traction vector on Γ.

2.1.1. Isogeometric finite element approximation
In this work we employ an isogeometric finite element method similar to

what was introduced in [6] and presented in [11]. The isogeometric finite element
method approximates the solution by using a spline basis of polynomial order
p and regularity Cp−1. In traditional finite element formulations C0 Lagrange
polynomials of low order (typically p = 1 or p = 2) are used. Our approach is
based on a conforming finite element approximation, i.e.

Uh ⊂ U , Vh ⊂ V , Qh ⊂ Q.

The discrete approximation spaces Uh, Vh, Qh are chosen as the isogeometric
finite element spaces. This gives the semi-discrete formulation of the variational
problem stated in Eq. (2): Find (ufh, ph) ∈ Uh ×Qh such that(

ρ
∂ufh
∂t

,vh

)
+ c(ufh;ufh,vh) + a(ufh,u

f
h) + b(p,vh) + b(q,ufh) = f(vh) (3)
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for all (vh, qh) ∈ Vh ×Qh.
As described in [12] we have developed a block-structured B-spline isogeo-

metric finite element approximation of the Navier-Stokes equations described
above. A domain Ω can be subdivided into a number of patches Ωe such that
Ω = ∪Ne=1Ωe, where what we call a patch is equivalent to a block. To construct a
B-spline basis for Ω we associate for each patch a knot-vector in each coordinate
direction

Ξek =
{
ξe1,k, ξ

e
2,k, . . . , ξ

e
ne

k
+pe

k
+1,k

}
for k = 1, . . . , d. Here, nek is the number of B-spline basis functions associated
with the knot span. The B-spline basis for patch Ωe on the parametric domain
Ω̂ = (0, 1)d is written as Ŝ

pe

αe where the multi-indices αe = (αe1, . . . , αed) and
pe = (pe1, . . . , ped) denote the regularity and order for the basis in each coordinate
direction, respectively. The corresponding basis for the physical domain Ωe can
be expressed using the coordinate mapping φe : Ω̂→ Ωe as

Sp
e

αe =
{
vh | vh ◦ φe ∈ Ŝ

pe

αe

}
.

If the variational formulation allows a discontinuous approximation the spline
finite element basis for the domain Ω can be defined as

Sh =
{
vh | vh|Ωe

∈ Sp
e

αe

}
.

If we assume that the knot-vectors and geometrical mapping φe for all the
patches are consistent on common edges and faces we can define a continuous
basis

Sh =
{
vh ∈ C(Ω) | vh|Ωe

∈ Sp
e

αe

}
.

We use the same basis for the geometry as for the discretization of the velocity
and the pressure.

2.1.2. Projection method
In order to solve the mixed variational problem given in Eq. (3) the following

inf-sup condition

inf
qh∈Qh,qh 6=0

sup
vh∈Vh,vh 6=0

b(qh,vh)
‖qh‖L2(Ω)‖vh‖H1(Ω)

≥ C > 0.

needs to be satisfied in order to avoid spurious pressure modes [13]. This imposes
restrictions on the choices of Vh and Qh.

Traditionally a mixed finite element method with different approximation
spaces for pressure and velocity is required. In this work we use a pressure
correction projection scheme which allows for equal-order approximation of the
velocity and pressure. This is based on the work pioneered by Chorin [14] and
Temam [15] in the late 1960s. In order to stabilize the equal-order approximation
we employ Minev stabilization as described in [16]. A backward differentiation
formula of order 2 (BDF2 scheme) is used for the time integration.
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2.2. Structural solver
In a Lagrangian description, the balance equation (conservation of linear

momentum) of the structure can be written as

ρs
∂2us

∂t2
= ∇ ·

(
JF−1 · σ(us)

)
+ ρsg in Ωs, (4)

where us denotes the displacement of the structure, ρs is the mass density, and
g is the gravitation vector. The deformation gradient tensor, F , is given by

F = I + ∂us

∂X
= I +∇us,

and J = detF .
We use a Total Lagrangian formulation for the structural solver, in which

the second Piola-Kirchhoff stress tensor (S) is a more convenient stress measure
in the constitutive relation. It is related to the Cauchy stress tensor (σ) through

σ = 1
J
F · S · F T .

Assuming isotropic linear-elastic material, the constitutive relation for the struc-
ture can be written

S = λs(TrE)I + 2µsE,

where E denotes the Green-Lagrange strain tensor

E(us) = 1
2(F TF − I).

Furthermore, λs and µs are the Lamé coefficients defined by

λs = νsE

(1 + νs)(1− 2νs) , µs = E

2(1 + νs) , (5)

where E and νs are the Young’s modulus the Poisson’s ratio, respectively.
The weak form of Equation (4) is obtained by taking the product with a test

function vs, and integrating over the undeformed reference configuration, Ωs0.
This results in∫

Ωs
0

ρs
∂2us

∂t2
· vsdX +

∫
Ωs

0

S(us) : E(vs)dX

=
∫

Ωs
0

ρsg · vsdX +
∫

Γs
0

t̄ · vsdX , (6)

where t̄ is the prescribed traction vector on the Neumann boundary Γs.
The structural problem is solved by integrating in time the linearized version

of Equation (6), using a BDF2 scheme. Alternatively, the Hilber–Hughes–Taylor
method [17] may be employed, but has not been used in the current study. As of
the fluid solver, an isogeometric FE discretization based on spline basis functions
is used in the numerical implementation.
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2.3. Solver coupling
We couple the fluid and the structural solver at the interface using a Dirichlet-

Neumann coupling as presented in [18] in constrast to the monolithic approach
employed in [19, 20] and [21]. An overview of different partitioned methods can
be found in [22]. The coupling conditions employed here are

vfΓ = duΓ

dt
σfΓ · n = σsΓ · n,

where n is the unit normal vector to the interface Γ.
For the benchmark case we investigate we have ρf = 0.1ρs, i.e. the fluid

density is relatively large compared to the structural density. This known to
give added mass effects [23, 24], and such cases can have slow convergence
[25]. To stabilize the partitioned approach we use relaxation [26] and define a
convergence criteria for the subiterations as

c
(
un+1

Γ,i ,u
n+1
Γ,i+1

)
=

maxj
(∣∣∣un+1

Γ,i+1 − u
n+1
Γ,i

∣∣∣)
j

maxj
(∣∣∣un+1

Γ,i+1

∣∣∣)
j

< εsubit,

where we use a convergence criteria of εsubit = 10−6 for all the simulations in
this paper.

Next the partitioned algorithm for solving the FSI problem is presented.
Equal time step size ∆t is applied for both the fluid and structural fields. Fur-
thermore, we define nmax as the maximum number of subiterations. For every
time step we use the algorithm
1: while c

(
un+1

Γ,i ,u
n+1
Γ,i+1

)
> εsubit and n+ 1 <= nmax do

2: Solve fluid problem and determine fluid forces on the interface f̃n+1
Γ,i+1

(
un+1

Γ,i

)
.

3: Transfer relaxed fluid forces to the structural solver

fn+1
Γ,i+1 = ωif̃

n+1
Γ,i+1 + (1− ωi)fn+1

Γ,i

4: Solve structural problem for structural displacements ũn+1
i+1

5: Check convergence
6: Solve grid problem for the new positions
7: Compute the new grid velocity
8: Derive new fluid velocity along surface to be used as Dirichlet boundary

condition
9: end while

For all subiterations the relaxation parameter ω is kept constant.

2.4. Arbitrary Lagrangian-Eulerian description and mesh movement
We employ the Arbitrary Lagrangian-Eulerian (ALE) concept, as first pre-

sented in [27], to handle the movement of the structure within the fluid mesh.
Our implementation of the ALE concept herein are based on the work done
earlier by our group, see [28], [29] and [30]. For more information about the
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ALE concept we refer to [31], [32], [33] and [34]. The ALE description uses a
reference domain which we denote Ω̂d. Coordinates in the reference domain are
written x̂. Following the notation used in [34] the fluid spatial domain Ωft is
given by

Ωft =
{
x | x = φ(x̂, t) ∀x̂ ∈ Ω̂, t ∈ (0, T )

}
,

and the mapping used is given by

φ(x̂, t) = x̂+ ŷ(x̂, t).

Here, ŷ is the time-dependent displacement of the reference fluid domain. The
fluid domain velocity is thus given by

ûf = ∂ŷ

∂t

∣∣∣∣
x̂

,

and is taken while x̂ is being held fixed. The ALE description of the incom-
pressible Navier-Stokes equations can now be written as

ρ
∂uf

∂t

∣∣∣∣
x̂

+ ρ
((
uf − ûf

)
· ∇
)
uf −∇ · σ

(
uf , p

)
= ρf in Ωf

∇ · uf = 0 in Ωf .
(7)

However, for successful application of the ALE description a mesh movement
algorithm is needed. Herein, we solve a linear elasticity problem at each time
step. Our implementation is based on the developments made by our group first
presented in [30] and later extended to handle two moving structures in [35].
A similar approach is used in [36]. Regarding the stability of the chosen mesh
movement approach we refer to [31]. The linear elasticity equations can be
written as

∇ · σs + f = 0 on Ω,

where σ is the Cauchy stress tensor and f is the external force. The Cauchy
stress tensor for an isotropic material and for linear elasticity reads

σs = 2µsε(u) + λs Tr(ε)I,

where λs and µs are the Lamé constants, u the displacement, I the identity
tensor and ε(u) the strain tensor. The strain tensor is given by

ε(u) = 1
2

(
∇u+ ((∇u)T

)
,

and the Lamé coefficients are defined in Eq. (5) Here, νs is the Poisson ratio
and E the Young modulus. We will specify our mesh problem through these
two parameters. Notice, that we might alternatively use a non-linear elasticity
solver, similar to the one used to solve the structural displacements above, in
the mesh movement algorithm. However, in our numerical tests the linear solver
turned out to be more robust.
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2.5. Mesh generation
Generation of a high quality block-structured mesh can often be challenging.

The computational domain shall be decomposed into 2D quadrilaterals which
are not too skewed or distorted. Furthermore, distorted elements and abrupt
changes in the element size should be avoided. Such cases can lead to unwanted
grid effects. Also, we would like to have smaller elements at parts of the bound-
ary with high curvature and close to solid walls in order to capture boundary
layers.

2.5.1. Block-structured mesh generation
A bottom-up approach is often preferred for constructing a block-structured

mesh. For two-dimensional problems the procedure can be described as

1. Define the corner nodes for the blocks.
2. Connect the corners to form the edges.
3. Refine the edges with a suitable grading.
4. Connect the edges to form surfaces.

To define the grading of the mesh a geometrical factor r can be defined as the
ratio of the element size of two consecutive elements, i.e. if {xi}mi=1 are the
points on the edge or curve and ∆si = ‖xi − xi−1‖2 defines the cell size, then

r = ∆si/∆si−1,

for i = 2, . . . ,m. To impose a smooth change in element size, we typically have
that 0.8 < r < 1.2, and for sharp boundary layers we may even use 0.9 < r < 1.1
to capture the rapid change in the solution.

2.5.2. Spline curves
In this section we define spline curves, which form the foundation of the

mesh generation, as in [11]. Assume that we have a knot-vector

Ξ = {0 = ξ1, ξ2, . . . , ξn+p+1 = 1} .

and a set of control points C = {c1, . . . , cn} which defines the spline curve

c(ξ) =
n∑
i=1

ciBi,p(ξ),

where {Bi}ni=1 are the basis functions. The parameter p is the polynomial order
of the spline curve, and each knot ξi may be repeated several times, but the
knot-span should be non-decreasing

ξ1 ≤ ξ2 ≤ · · · ≤ ξn+p+1.

For p = 0 the basis functions are piecewise constants

Bi,0(ξ) =
{

1, ξi ≤ ξ < ξi+1,

0 otherwise.
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The higher order B-spline basis functions are defined as a linear combination of
splines of lower order using the Cox-de Boor recursion formula

Bi,p(ξ) = ξ − ξi
ξi+p − ξi

Bi,p−1(ξ) + ξi+p+1 − ξ
ξi+p+1 − ξi+1

Bi+1,p−1(ξ). (8)

We restrict our attention to open knot-vectors, i.e. splines that are interpolatory
at the end points, and then the first and last knots are repeated p + 1 times.
Furthermore, if the spline is Cp−1 continuous then all the internal knots have
multiplicity one and the knot-vector can be written as

Ξ = {ξ1, . . . , ξ1︸ ︷︷ ︸
p+1

, ξ2, . . . , ξm−1, ξm, . . . ξm︸ ︷︷ ︸
p+1

},

where the number of unique knots is given by q = n− p+ 1. The corresponding
knot-vector without repeated knots is

Ξ̄ = {ξ̄1, ξ̄2, . . . , ξ̄q}.

2.5.3. Cubic spline interpolation
The mesh generation process is dependent on standard cubic spline inter-

polation [37]. The starting point is a set of m points {xi}mi=1 that we want to
approximate by a cubic spline curve c(ξ) such that
• c(ξ̃i) = xi for ξ̃i ∈ [0, 1].

• c(ξ) ∈ C2([0, 1]).
The points {ξ̃i}qi=1 where the spline curve interpolates the data are called the
Greville points. Two extra conditions are needed to uniquely define the inter-
polation, and we thus use natural boundary conditions (c′′(0) = c′′(1) = 0).
the spline curve at the endpoints. This leads to an n × n linear system with
n = m + 2, which can be solved for the unknown control points {ci}ni=1. The
interpolation is not uniquely defined since the parametrization can be different.

The entire meshes presented in this paper are made for polynomial order
p = 3, and only lowered to orders p = 1 and p = 2 once all patches and
refinements have been completed.

2.5.4. Surface generation
For surface generation we employ the concept of Coons patches [38]. Given

four boundary curves u0(ξ), u1(ξ), w0(η), w1(η) as given in Figure 1. These
curves have normalized knot vectors and are connected such that u0(ξ1) =
w0(0), u0(1) = w1(0), u1(1) = w1(1), u1(0) = w0(1), thus forming a closed
loop. By defining the surfaces

S1(ξ, η) = (1− η)u0(ξ) + ηu1(ξ)
S2(ξ, η) = (1− η)w0(η) + ξw1(η)
S3(ξ, η) = (1− ξ)(1− η)u0(0) + ξ(1− η)u0(1) + η(1− ξ)u1(0) + ξηu1(1)

the Coons surface paths is given by

Sc(ξ, η) = S1(ξ, η) + S2(ξ, η)− S3(ξ, η).

The Coons surface patch approach is a quick and easy way of building the
surfaces. Being able to define the geometry through the boundary curves of
each surface or patch is a great advantage.
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u0(ξ)

u1(ξ)

w0(ξ) w1(ξ)

Figure 1: Boundary curves for Coons surface patch.

2.6. Calculation of time-dependent quantities
We calculate mean value and amplitude of the time-dependent quantities

as in [9]. The mean value of quantity x is denoted x̄ and calculated from last
period of oscillations as

x̄ = 1
2(xmax + xmin).

Similarly, the amplitude of quantity x is denoted xamp and calculated as

xamp = 1
2(xmax − xmin).

Frequencies are calculated by the Lomb-Scargle algorithm [39, 40].

3. Simulation setup

3.1. Problem description
In this paper we aim to simulate the FSI2 benchmark case defined in [9], with

updated results given in [10], with our isogeometric code IFEM. The benchmark
case is defined for flow past a fixed circular cylinder with a flexible bar attached,
see Figure 2. The computational domain is identical to the domain in [9], except

(−0.2,−0.2)

H

L

h

l

(0, 0)

r

Figure 2: Cyl2DBar: Computational domain. The dimensions are H = 0.41, L = 2.5,
r = 0.05, h = 0.02 and l = 0.35.

that the origin is shifted from the lower left corner to the centre of the cylinder.

10



Inflow is from the left only and we prescribe a parabolic velocity profile

vin
x (0, y) = 1.5Ū (y + 0.2)(H − (y + 0.2))(

H
2
)2

= 1.5Ū 4.0
0.1681(y + 0.2) (0.41− (y + 0.2)) , (9)

where Ū is the mean inflow velocity. The top and bottom wall, circle and fluid-
structure interface Γ0

t is prescribed the no-slip condition. At the outflow, i.e.
the right boundary, the pressure is prescribed to be 0.

The inflow velocity is ramped up through as smooth increase of the velocity
profile as suggested in [9] through

vin
x (t, 0, y) =

{
vin
x (0, y) 1−cos(πt)

2 if t < 1.0
vin
x (0, y) otherwise.

Our main quantities of interest are the vertical position, y(t), of the end of
the flexible bar, identified by the letter A in Figure 3, and the lift, FL, and drag
forces, FD, on the cylinder and flexible bar considered as one single object. The
coordinates of the reference point A at time t = 0 is (0.4, 0). The drag and lift

h

l

r

A

Figure 3: Cyl2DBar: Structural part of the domain

forces, FD and FL are the horizontal and vertical force components acting on
the cylinder and flexible bar respectively. The force components are computed
as

F = [FD, FL]T =
∫

Γ
σ · n ds,

where Γ is the surface of the cylinder and the flexible bar. Compare with the
expression given in Turek.)

The flow and material properties given in Table 1 are used throughout the
simulations. As can be incurred from the table, the Reynolds number for all
simulations is 100.

3.2. Mesh description
The patch structure along with the refinement edges e1 − e8 are shown in

Figure 4. Detailed refinement information can be found in Table 2.
The resulting number of elements and degrees-of-freedom for the different

meshes and polynomial orders are shown in Table 3. The meshes are designed
such that the number of fluid and structural elements double for each refinement
level.

The mesh for the coarsest grid, G1, for p = 2 along with a zoomed view of
the mesh close to the cylinder and the flexible are shown in Figure 5. In both
figures the fluid domain is light blue, whilst the structural domain is light red.
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Table 1: Cyl2DBar: Flow and material properties.

Parameter Quantity Unit
ρs 10000 kg/m3

νs 0.4 -
Es 1.4 · 106 Pa
ρf 1000 kg/m3

νf 0.001 m2/s
Ū 1.0 m/s

e1
e2e3e3

e3

e3
e3 e3

e4e5e6e7

e8

Figure 4: Cyl2DBar: Refinement edges.

(a) Cyl2DBar: Mesh G1, p = 2.

(b) Cyl2DBar: Zoomed view of mesh G1 close to the cylinder and the
flexible bar, p = 2.

Figure 5: Cyl2DBar: Grid G1. The fluid domain is light blue and the structural domain is
light. Patch boundaries are drawn with thick black lines.

3.3. Time step determination
All simulations use a non-dimensional time step of ∆t = 0.025 and a fixed

relaxation parameter ω = 0.1.
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Table 2: Cyl2DBar: Detailed refinement information for the simulations meshes. Edge grading
factor (geometric stretching factor) is given by r and n is the number of inserted knots along
the given edge.

Edge / Mesh G1 G2 G3 G4 G5

e1
r 0.61 0.74 0.82 0.909 0.9605
n 5 7 9 13 18

e2
r 1.0 1.0 0.97 0.97 0.97
n 5 7 8 13 20

e3
r 1.0 1.0 1.0 1.0 1.0
n 2 4 7 10 15

e4
r 0.94 0.97 0.99 0.985 0.99
n 25 40 80 98 133

e5
r 1.0 1.0 1.0 1.0 1.0
n 2 3 5 7 9

e6
r 0.95 0.96 0.97 0.96 0.96
n 4 6 8 15 20

e7
r 1.0 1.0 1.0 1.0 1.0
n 4 6 8 12 18

e8
r 1.0 1.0 1.0 1.0 1.0
n 3 5 7 10 15

Table 3: Cyl2DBar: Number of elements and degrees-of-freedom for simulation meshes G1-G5
and polynomial orders p = 1, 2, 3.

Structure Fluid
Mesh p nel ndof nel ndof

G1 1 52 140 1936 3144
G2 1 108 266 4012 6381
G3 1 192 450 8020 12612
G4 1 407 912 15870 24597
G5 1 800 1734 31832 48849
G1 2 52 204 1936 4281
G2 2 108 352 4012 7959
G3 2 192 560 8020 14862
G4 2 407 1066 15870 27657
G5 2 800 1944 31832 53079
G1 3 52 280 1936 5586
G2 3 108 450 4012 9705
G3 3 192 682 8020 17280
G4 3 407 1232 15870 30885
G5 3 800 2166 31832 57477
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3.4. Simulation length
We run all simulations up till non-dimensional time 200, i.e. 8000 time steps.

A plot of the cumulative standard deviation is shown in Figure 6 for grid G1.
This indicates that the simulations are run long enough.
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Figure 6: Cyl2DBar: Cumulative standard deviation for grid G1 calculated from t = 120.

3.5. Mesh stiffness
Ensuring mesh quality consistent with the model in use is the key to getting

accurate results. In the case we are interested in the geometry is expected to
undergo deformations and hence the mesh elements can change in shape and
size. Fortunately, the quality of the mesh can still be controlled by cleverly
choosing the distribution of mesh stiffness throughout the mesh domain. Mesh
stiffness is defined as Young’s modulus in Eq. (5). When a constant value of
mesh stiffness is applied, specified displacements are homogeneously diffused
throughout the mesh. On the other hand when the mesh stiffness is specified as
varying throughout the domain, nodes in regions of high stiffness move together,
i.e. there is little relative motion. Variable mesh stiffness is particularly useful
to preserve the mesh distribution (and quality) near fine geometrical features,
such as sharp corners, or in boundary layers. In principle, the computed spatio-
temporal deflections, drag and lift force should be independent of the choice
of mesh stiffness distribution. However, it has been observed that some mesh
distributions, like constant mesh stiffness everywhere, resulted in divergence
in solution. In this work seven different stiffness distributions were tried. In
all the cases the mesh stiffness distribution was maximum close to the wall so
that the initial mesh quality in the vicinity is preserved over the full course of
simulation and then it decreased as a function of the distance from the wall R
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to zero.Expressions given below give a mathematical description of the mesh
stiffness as a function of R.

1. Base case: Ebc = 1 + 200e−100R

2. E1 = 1 + 200e−50R

3. E2 = 1 + 1000e−100R

4. E3 =
{

201 if R < 0.025
1 + 200e−100(R−0.025) otherwise

5. E4 =
{

201 if R < 0.015
1 + 200e−100(R−0.015) otherwise

6. E5 =
{

201 if R < 0.035
1 + 200e−100(R−0.035) otherwise

7. E6 =
{

1001 if R < 0.035
1 + 1000e−100(R−0.035) otherwise

Stiffness contours are presented in Figure 7 and a more quantitative profile of
the stiffness as a function of the distance R is given by the Figure 8 for grid G3
for easier comparison. Ebc is the least stiff mesh while E6 is the stiffest mesh
of all the cases simulated here. The basecase mesh stiffness has been used for
all other simulations in this paper, and it was chosen based on experience of
stability and required solution time. More specifically, it was found that in order
to maintain a low element distortion close to the solid, the mesh stiffness should
have a constant level close to the solid and then decay exponentially away from
there.

3.6. Definition of test cases
Effects of changing the order of the elements (linear, quadratic and cubic)

was investigated for five different mesh resolutions resulting in a total of fifteen
simulations. Six additional simulations were conducted to understand the effect
of changing the mesh stiffness.

4. Results and discussion

A comparison of lift, drag and displacements with respect to grid resolution
and element order is presented here. Although the computational efficiency was
not the main focus of attention in this work we include this information for one
particular grid. Finally, a subsection demonstrates the effect of changing the
mesh stiffness.

4.1. Mesh stiffness and quality
The accuracy of simulation involving stationary bodies depend on the quality

of the rigid mesh. However, for an FSI simulation involving deformations of solid
bodies it is necessary to ensure that all the intermediate mesh configurations
resulting during such movements are of high quality. To this effect, during the
mesh generation step we applied four different criteria to obtain high quality
meshes. It is worth mentioning that we have used only quadrilateral elements in
all the simulations. Therefore, all subsequently mentioned mesh quality metrics
are for quadrilaterals. In this paper we use four different mesh metrics for
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(a) Ebc

(b) E1 (c) E2

(d) E3 (e) E4

(f) E5 (g) E6

Figure 7: Cyl2DBar: Mesh stiffness distributions for grid G3.
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Figure 8: Cyl2DBar: Different mesh stiffnesses investigated.

assessing the quality of the finite element meshes. Firstly, the scaled Jacobian
can vary from −1 to 1 [41]. A positive value is necessary for the mesh to have
the minimum quality. Typically, the acceptable range is [0.3, 1] [42]. A negative
value signals an invalid element. Secondly, the shape quality metric is defined
in [43]. This metric attains the value 1 if the quadrilateral is a square and 0 if
it is degenerate. Thirdly, the skew quality metric is also defined in [43]. This
metric aims to detect element distortions arising from large or small angles. It
attains the value 1 if the quadrilateral is a rectangle and 0 if it is degenerate.
Lastly, the stretch quality metric is a measure of the aspect ratio. This also
attains values between 0 and 1.

Seven different mesh stiffness distribution were investigated and ensured that
the mesh quality is maintained throughout the whole cycle considered. Although
such investigations were conducted for all the grids and orders, in Figure 9 we
just present the case for G3 grid and quadratic elements. The scaled Jacobian
mesh metric for grid G3 is shown for the minimum quality element in Figure
9a. It is clear from the figure that the scaled Jacobian is always positive and
therefore there are no intersecting grid lines which could result in unphysical
results. The shape mesh metric for grid G3 is shown for the minimum quality
element in Figure 9b. Since the boundary layer close to the solid structure was to
be resolved, very fine resolution in the direction normal to the wall was required.
It is therefore natural to expect that some cells close to the junction between
cylinder and bar will have some degree of degeneracy. Similarly, the skew mesh
metric for the worst quality element is shown in Figure 9c. It is clear that even
for the worst element the skewness value never gets below 0.7 throughout the
cycle. Finally the stretch mesh metric for the worst quality element is shown in
the Figure 9d. It is worth mentioning that the aspect ratio can easily be in of
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Figure 9: Cyl2DBar: Mesh quality

the order of 105 and the solvers used in this work can easily handle such aspect
ratios, see [12]. In light of that the stretch mesh metric is highly adorable.
Satisfied with the quality of intermediate mesh configurations, seven different
simulations were conducted to quantify the effects of different mesh stiffness
distributions (Ebc,E1,E2,E3,E4,E5,E6). The results are presented in the Table
4. As expected all the different mesh stiffness distributions predicted the drag,
lift and deformations characteristics within acceptable limits when compared
to the reference data. Investigations of total CPU and number of subiterations
required at each time step for the simulations show no major differences for the
various mesh stiffnesses.

The qualitative differences between spline elements of order p = 1, p = 2
and p = 3 is shown in Figure 10 for grid G1 in a deformed state. It is clear
from the figures that the use of higher order spline elements (p = 2, 3) gives a
smoother representation of the interface between the fluid and structure leading
to smaller error when the forces are transferred at the interface.

4.2. Velocity and pressure contours
Figures 11 and 12 give the velocity and pressure distribution, respectively, in

the domain for a complete oscillation period T . One can notice the existence of a
consistently high pressure on the leading side of the cylinder. The high pressure
zone is created due to the impingement of flow on the surface of the cylinder.
After the impingement the flow bifurcates and flows around the cylinder. In the
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Table 4: Cyl2DBar: Results for mesh stiffness investigations

FD FD,amp FL FL,amp ux ux,amp uy uy,amp

Ebc 214.94 78.97 1.20 230.5 −0.01486 0.0128 0.0013 0.0813
E1 214.60 78.69 1.09 229.6 −0.01476 0.0128 0.0013 0.0811
E2 214.80 79.03 1.21 230.6 −0.01485 0.0128 0.0013 0.0813
E3 214.60 78.73 1.24 229.2 −0.01475 0.0128 0.0013 0.0810
E4 214.79 78.89 1.23 229.9 −0.01481 0.0128 0.0013 0.0812
E5 213.98 77.96 1.69 232.1 −0.01444 0.0124 0.0013 0.0803
E6 214.49 78.67 1.19 229.7 −0.01475 0.0128 0.0013 0.0811
Ref. 215.06 77.65 0.61 237.8 −0.01485 0.0127 0.0013 0.0817

(a) p = 1 (b) p = 2

(c) p = 3

Figure 10: Cyl2DBar: Deformed G1 grid for spline element order p = 1, p = 2, p = 3.

absence of the bar on the trailing side, the flow would have reached a statistically
steady state characterized by a repeating pattern of swirling vortices caused by
the unsteady flow separation. The vortices shed on the upper side of the cylinder
interact with those shed on the lower side giving rise to a von Karman vortex
street. When the bar is attached to the cylinder such an interaction between
the vortices is delayed. However, because of the elastic nature of the material
and inherent instability in the flow the equilibrium of the bar is disturbed and
it starts oscillating in an up-and-down motion. In Figure 12, one can see that
for t = 0T when the bar is in the uppermost extremity, the bar begins to
obstruct the flow resulting in a retardation of flow and the development of a
high pressure zone. A corresponding low pressure zone exists on the bottom side
of the bar. The imbalance in the pressure on the two sides of the bar pushes
the bar downward resulting in the neutralization of the pressure. However, as
the bar starts approaching the horizontal position it, owing to inertia, continues
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to move downward. This results in the development of a high pressure zone on
the lower side of the bar and the downward motion is stopped once the pressure
value increases to a level where it can prevent further downward motion. At
this point the motion once again sees a complete reversal in direction. In Figure
11 one can notice that the flow accelerates in the region close to the lateral
surface of the bar when it attains a convex shape while the flow accelerates in
the region close to the tip in the concave side. The flow on the either side of
the bar thus accelerates on either side of the bar in a periodic fashion and have
no interactions till they have passed a distance close the length of the bar.

4.3. Drag
Figure 13 gives a detailed comparison of the drag force for different grids

and order of elements. Figure 13a shows the drag forces averaged over the
last two cycles along with the variations over the cycles. It is clear that for
quadratic and cubic elements (p = 2, 3) the predicted average drag forces are in
excellent agreement with the reference data. For linear elements (p = 1), the
grid resolution has a relatively bigger impact on the predicted drag. It is not
entirely clear if grid independence was in fact realized or not. However, even
with the coarsest grids, a switch to quadratic elements improves the prediction
remarkably. It can also be inferred from the figure that quadratic elements are
sufficient for producing the results in good agreement with the reference data.

Figure 13b, 13c and 13d give a better insight into the evolution of the drag
forces over time. It appears that for linear elements different grids predict
very different evolutions of the drag force. However, a promotion to quadratic
elements diminishes the differences. Except for the coarsest grid G1, all the
grids predict similar evolution. Further promotion to cubic elements results in
the collapsing of all the evolution profiles of the drag force to a single curve.
When one looks at Table 5, where all the frequency results are gathered, one
finds that the predictions of drag frequency for quadratic and cubic elements
are within 5% while the error goes up to 15% if linear elements are used with
coarsest grid G1.

4.4. Lift
A detailed comparison of the lift forces for different grids and orders of

elements with the reference data is presented in Figure 14. Figure 14a shows
the lift forces averaged over the last two cycles along with the variations over
the cycles. Because of the statistical symmetry in the case under symmetry
the profile of lift over the upstroke should be exactly the same but opposite in
direction during the downstroke. Therefore the lift force averaged over a full
cycle will get cancelled resulting in zero net lift force. This can be seen in Figure
14a. Although the simulations conducted with linear elements did not result
an exact cancellation of lift forces over a full cycle it is still very small. To get
better insight into the evolution of lift forces as a function of time, the temporal
profiles of lift, for different grids, for linear, quadratic and cubic elements are
presented in Figures 14b, 14c and 14d respectively. It can be seen that for linear
elements, grids G1, G2 and G3 show oscillations which vanish when the grid
resolution is increased (G4 and G5). In fact the profiles of lift force for G4 and
G5 are very close to the reference profile. A promotion from linear to quadratic
and then subsequently to cubic elements improves the predication remarkably
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(a) t = 0T (b) t = 1
12 T

(c) t = 2
12 T (d) t = 3
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(e) t = 4
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(m) Common legend for ux.

Figure 11: Cyl2DBar: x-component, ux of velocity for twelve timeshots in an oscillation cycle.
The oscillation period is denoted T .
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Figure 12: Cyl2DBar: Pressure for twelve timeshots in an oscillation cycle. The oscillation
period is denoted T .
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Figure 13: Cyl2DBar: Drag force FD over the last two cycles for p = 1, 2, 3 compared against
reference results from [44].

and the effect is more pronounced for the coarser grids G1 and G2. For the cubic
elements, once again, like the drag force, the lift force profiles for different grids
collapse on each other. When one looks at Table 5 one finds that the predictions
of lift frequency for quadratic and cubic elements are within 3% while the error
goes up to 11% if linear elements are used with coarsest grid G1.

4.5. Lateral and transverse displacements
Figures 15 and 16 present the comparison of lateral and transverse displace-

ments of the center of the tip against the reference values. Once again the
comparison is first made of the displacements averaged over a full cycle and
then for their evolution as a function of time. A similar trend as above is ob-
served where the linear elements fail to give precise estimates even with very
high resolution while the higher order elements give excellent estimates even
with the coarsest grid. Frequency results for the displacements are also listed
in Table 5.

4.6. Computational cost for linear, quadratic and cubic elements
All the simulations were conducted using our in-house CFD code IFEM.

The linear solvers are based on the PETSc package [45] version 3.4.2 and are
compiled with the Intel C++ compiler version 13.0.1, using the SGI MPT MPI
implementation, all running on SUSE Linux Enterprise Server 11. The simu-
lations were run on the “Vilje” supercomputer at the Norwegian University of
Science and Technology which is currently ranked as number 99 on the top 500
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Figure 14: Cyl2DBar: Lift force FL over the last two cycles for p = 1, 2, 3 compared with
reference results from [44].

Table 5: Cyl2DBar: Frequency results

p fFD
fFL

fux fuy

G1
1 4.52 2.24 4.50 2.24
2 3.92 1.94 3.87 1.94
3 3.90 1.94 3.88 1.94

G2
1 4.23 2.11 4.22 2.11
2 3.86 1.95 3.92 1.95
3 3.88 1.94 3.89 1.94

G3
1 4.09 2.06 4.11 2.06
2 3.87 1.94 3.89 1.94
3 3.90 1.94 3.87 1.94

G4
1 3.95 2.01 3.99 2.00
2 3.87 1.94 3.89 1.94
3 3.90 1.94 3.87 1.94

G5
1 3.91 1.98 3.99 1.98
2 3.88 1.94 3.89 1.94
3 3.91 1.94 3.87 1.94

Ref. 3.86 1.93 3.86 1.93
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Figure 15: Cyl2DBar: x-displacement ux over the last two cycles for p = 1, 2, 3 compared
with reference results from [44].

list (June 2014). This is an SGI Altix system with Intel Xeon E5-2670 (Sandy
Bridge) processors. The 1404 computational nodes in the system consists of 2
octa-core processors in SMP, with 20MB L3 cache per processor. The nodes are
connected using a high-speed infiniband network. A plot of the total CPU time
required for running the simulations for all grids is shown in Figure 17.

5. Conclusions

In this work we have presented a validation of our isogeometric finite element
based FSI code against the benchmark FSI case proposed by Turek in [9] and
[10]. Effects of different mesh resolutions, stiffness distributions and orders of
elements on the estimation of drag, lift and displacements were investigated.
Furthermore, four different criteria for mesh generation were imposed resulting
in the simulations providing good agreement with the reference data. Most
important conclusions from the work can be enumerated as follows:

1. Different mesh stiffness distributions were tested out of which seven were
presented in this paper. It turned out that if for a particular mesh stiff-
ness distribution value, the solution converged then they gave the same
estimate of quantities of interest, i.e. drag, lift and displacements in the
current case. Furthermore, the different mesh stiffness distribution re-
sulted in similar computational cost associated with them.

2. Linear elements are not good even with reasonably fine grid. This can be
attributed to the errors associated with interpolation of forces when trans-
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Figure 16: Cyl2DBar: y-displacement uy over th last two cycles for p = 1, 2, 3 compared with
reference results from [44].
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Figure 17: Cyl2DBar: Total CPU time for grids G1-G5 and polynomial orders p = 1, 2, 3.

ferred from fluid to solid domain because of the fact that the geometry
can not be represented in an exact form using linear elements. Switching
to quadratic or cubic elements led to an exact representation of the geom-
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etry in combination with better numerical accuracy resulting in a better
estimation of drag, lift and displacements.

3. A switch to quadratic from linear elements resulted in a three-fold increase
in the computational time and a seven-fold in the case of cubics. However,
from the results it is apparent that the associated accuracy with quadratics
was sufficient and gave estimates of the relevant quantities within 5%
accuracy.

However, we want to underline the fact that the cases investigated herein were
for low Reynolds number (Re = 100). Since the ultimate goal of this devel-
opment work is to understand the fluid-structure interaction of monopile flap
under operational meteorological conditions, one will always encounter a higher
Reynolds number flow which can be characterized by turbulence. Work is under-
way to implement a turbulence model similar to Large Eddy Simulation (LES)
known as Variational Multiscale Models (VMS) in an isogeometric framework.
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