
The Journal of Systems and Software 109 (2015) 229–242

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

A general theory of software engineering: Balancing human, social and

organizational capitals

Claes Wohlin a,∗, Darja Šmite a, Nils Brede Moe a,b

a Blekinge Institute of Technology, SE-371 79 Karlskrona, Sweden
b SINTEF, NO-7465 Trondheim, Norway

a r t i c l e i n f o

Article history:

Received 4 December 2014

Revised 30 July 2015

Accepted 7 August 2015

Available online 13 August 2015

Keywords:

Software engineering theory

Intellectual capital

Empirical

a b s t r a c t

There exists no generally accepted theory in software engineering, and at the same time a scientific discipline

needs theories. Some laws, hypotheses and conjectures exist, but yet no generally accepted theory. Several

researchers and initiatives emphasize the need for theory in the discipline. The objective of this paper is to

formulate a theory of software engineering. The theory is generated from empirical observations of industry

practice, including several case studies and many years of experience in working closely between academia

and industry. The theory captures the balancing of three different intellectual capitals: human, social and or-

ganizational capitals, respectively. The theory is formulated using a method for building theories in software

engineering. It results in a theory where the relationships between the three different intellectual capitals are

explored and explained. The theory is illustrated based on an industrial case study, where it is shown how

decisions made in industry practice are explainable with the formulated theory, and the consequences of the

decisions are made explicit. Based on the positive results, it is concluded that the theory may have a good

explanatory power, although more evaluations are needed.

© 2015 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

i

d

p

h

p

e

t

F

i

u

t

e

t

e

h

c

n

r

(

e

1

t

t

n

e

S

t

o

m

z

t

z

o

I

h

0

. Introduction

Software development is a very knowledge-intensive activity. It

s an engineering endeavour involving a lot of design, and the pro-

uction is relatively simple. To develop software many different peo-

le interact within an organization. Thus, software development is

ugely dependent on people (DeMarco and Lister, 2013). However,

eople alone are insufficient. Software development is to a very large

xtent a team effort, and hence the interaction between people and

he complementarity in expertise are prerequisites to be successful.

urthermore, the organization in which the people work provides the

nfrastructure and environment to be able to leverage on the individ-

al skills and their combined value. The organizational aspects relate

o processes, methods, techniques and tools being part of the work

nvironment. These three aspects are captured in the concept of in-

ellectual capital. The objective of the paper is to formulate a gen-

ral theory of software engineering from empirical observations of

ow industry actively works with human, social and organizational

apitals (components of intellectual capital) to help explaining and
∗ Corresponding author. Tel.: +46 455 385820.

E-mail addresses: claes.wohlin@bth.se (C. Wohlin), darja.smite@bth.se (D. Šmite),

ils.b.moe@sintef.no (N.B. Moe).

c

c

w

T

ttp://dx.doi.org/10.1016/j.jss.2015.08.009

164-1212/© 2015 The Authors. Published by Elsevier Inc. This is an open access article unde
easoning about combinations of intellectual capital components

ICCs) to be successful in software development.

Intellectual capital may be defined as: “the sum of all knowl-

dge firms utilize for competitive advantage” (Nahapiet and Ghoshal,

998; Youndt et al., 2004). The sum of all knowledge means that

he concept of intellectual capital encompasses all assets available

o a company. Different divisions of intellectual capital into compo-

ents exist. Here it is chosen to use the division discussed by Youndt

t al. (2004). Some alternative divisions are briefly introduced in

ection 2.1. Youndt et al. (2004) divide the general concept of in-

ellectual capital into three ICCs: human capital, social capital and

rganizational capital. They are depicted in Fig. 1 together with the

ain level where it primarily resides, i.e., individual, unit and organi-

ational, respectively. The ICCs are described in Section 2.

Here, the concept of a unit is used to denote an entity utilizing the

hree components of intellectual capital: human, social and organi-

ational capitals, respectively. The unit may be a team, a department

r any other entity for which it is relevant to discuss the concept of

CCs. A unit includes people, who possess a certain level of human

apital through their experiences and expertise. It also has a social

apital both in terms of how it can leverage on the social interaction

ithin the unit, and how it uses its external contacts to create value.

he external contacts and networks may include customers, internal
r the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.jss.2015.08.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.08.009&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:claes.wohlin@bth.se
mailto:darja.smite@bth.se
mailto:nils.b.moe@sintef.no
http://dx.doi.org/10.1016/j.jss.2015.08.009
http://creativecommons.org/licenses/by-nc-nd/4.0/


230 C. Wohlin et al. / The Journal of Systems and Software 109 (2015) 229–242

Fig. 1. Intellectual capital and its three components.

T

t

T

i

b

a

i

w

t

t

S

r

n

s

a

p

p

h

d

i

t

r

t

s

M

s

t

b

a

t

c

n

d

g

d

a

r

i

l

a

a

v

m

b

l

i

t

b

A

f

t

s

d

w

g

p

p

t

people in the organization, or external networks (including commu-

nities of practice, blogs and other external contacts and information).

The unit exists in a context, which provides the organizational capi-

tal, for example, the support available to software engineers in terms

of infrastructures. The latter includes all aspects of an organization

that remain if removing all humans.

From the above reasoning, it becomes clear that the different com-

ponents of intellectual capital are what make it possible to develop

software. Based on this observation, this article contributes with for-

mulating a theory of software development that captures the balanc-

ing of the ICCs that software organizations use in practice. Thus, the

formulation of the theory is based on observations of practice and the

insight that although organizations are different, they have a simi-

lar challenge. They need to balance the ICCs to be able to conduct

their business in a cost-effective and competitive way. Balance refers

to compensating loss in one ICC with improving either the same ICC

or at least one of the other ICCs. The article presents the theory for-

mulated and its constituents. Furthermore, it illustrates the theory in

a real industrial case and also provides some examples taken from

industrial collaboration.

The remainder of the article is structured as follows. Related work

is presented in Section 2. Section 3 introduces the theory based on

the steps recommended by Sjøberg et al. (2008). The theory is exem-

plified and illustrated by an empirical case in Section 4. In Section 5,

a discussion is provided and the article is concluded in Section 6.

2. Related work

2.1. Intellectual capital and software engineering

In software engineering, there has been much discussion about

how to manage knowledge, or foster “learning software organiza-

tions”. In this context, Feldmann and Althoff have defined a “learn-

ing software organization” as an organization that is able to “create a

culture that promotes continuous learning and fosters the exchange

of experience” (Feldmann and Althoff, 2001). Dybå places more em-

phasis on action in his definition: “A software organization that pro-

motes improved actions through better knowledge and understand-

ing” (Dybå, 2001).

Because software development is knowledge-intensive work, in-

tellectual capital is a particularly relevant perspective for software

companies. Intellectual capital is called the main asset of software

companies (Gongla and Rizzuto, 2001; Rus and Lindvall, 2002). It is

seen as a construct with various levels (individual, network, and or-

ganizational) (Youndt et al., 2004). As mentioned above, Youndt et al.

(2004) divide intellectual capital into three components: human, so-

cial and organizational capitals. This is not the only proposal for how

to describe intellectual capital. Stewart (2001) describes the essential

elements or assets that contribute to the development of intellectual

capital as:

• Structural capital: Codified knowledge that can be transferred

(e.g., patents, processes, databases, and networks).
• Human capital: The capability of individuals to provide solutions

(e.g., skills and knowledge).
• Customer capital: The value of an organization’s relationships

with the people with whom it does business and share knowledge

with (e.g., relationships with customers and suppliers).

he possession of each of these assets alone is not enough. Intellec-

ual capital can only be generated by the interplay between them.

herefore, Willcocks et al. (2004) propose a framework, which also

ncludes a fourth kind of ICC—social capital. Social capital helps to

ring structural, human and customer capital together and encour-

ges interplay among them.

Here it has been chosen to use the division of intellectual cap-

tal advocated by Youndt et al. (2004) for two main reasons. First,

e agree with Youndt et al. that organizational capital is more fitting

han the term structural capital because this is capital the organiza-

ion actually owns (human capital can only be borrowed or rented).

econd, both frameworks define social capital to consist of knowledge

esources embedded within, available through, and derived from a

etwork of relationships. We support Youndt et al.’s argument that

uch relationships are not limited to internal knowledge exchanges

mong employees, but also extend to linkages with customers, sup-

liers, alliance partners, and the like. We then see customer capital as

art of social capital.

Creating intellectual capital is more complicated than simply

iring bright people. The importance of intellectual capital can be

emonstrated by the ratio of intellectual capital to physical capital

nvolved in the production of software. Symptomatically, the ratio of

he software development industry is found to be seven times the

atio of other industries that are heavily reliant on physical capi-

al, such as the steel industry (Bontis, 1997, 1998; Tobin, 1969). In a

tudy on intellectual capital in Systematic Software Engineering Ltd,

ouritsen et al. (2001) found that the main motivation for under-

tanding the different elements of intellectual capital was to make

he company’s knowledge resources and key competency areas visi-

le and to monitor management’s efforts to develop these. Also, man-

gement wanted to establish a new basis for deciding about the fu-

ure of the company.

Youndt et al. (2004), through their review of intellectual capital,

onceptualize intellectual capital through the three distinct compo-

ents: human, social, and organizational. Human capital refers to in-

ividual employee’s knowledge, skills, and abilities. In software en-

ineering these are often associated with technical skills including

esign expertise, domain knowledge and product knowledge (Faraj

nd Sproull, 2000; Moe et al., 2014). Organizational capital rep-

esents institutionalized knowledge and codified experience stored

n databases, routines, patents, manuals, infrastructures, and the

ike. Many traditional software companies that follow plan-driven

pproaches believe that a good process leads to a good product,

nd thus standardized and well-documented processes support de-

elopers, while interaction among software developers is usually

inimized. Finally social capital consists of knowledge resources em-

edded within, available through, and derived from a network of re-

ationships possessed by an individual or a social unit. Social capital

s both the network and the assets that may be mobilized through

hat network (Bourdieu, 1986). It enables achievements that would

e impossible without it or could only be achieved at an extra cost.

lso, because social capital increases the efficiency of information dif-

usion, a company can have less redundancy in, e.g., skills or roles if

he social capital is strong. An organization supports the creation of

ocial capital when it brings its members together in order to un-

ertake their primary task, to supervise activities, and to coordinate

ork, particularly in the context requiring mutual adjustment.

Different ICCs belong on different levels—individual, unit or or-

anizational levels. While human and organizational capital com-

onents are rather straightforward, social capital is a more com-

lex phenomenon. In the research on social capital, scholars have

ended to adopt either an external viewpoint (the relations an actor



C. Wohlin et al. / The Journal of Systems and Software 109 (2015) 229–242 231

Table 1

Types of intellectual capital based on the synthesis by Youndt et al. (2004) and examples by Moe et al. (2014).

Intellectual capital Definition Specific examples

Human capital The “skill, knowledge and similar attributes that affect particular human

capabilities to do productive work” which can be improved through

health facilities, on-the-job training, formal education and study

programmes (Schultz, 1961, pp. 8–9). This capital resides with, and is

utilized by individuals.

Domain knowledge; Knowledge about programming, practices,

languages and architecture.

Social capital The actual and potential resources embedded within, available through,

and derived from the network of relationships possessed by an

individual or social unit.

Relationship between team-members, network of experts,

participating in external forums, communication coding and

architectural conventions; Trust in people outside the unit; Pride of

and identification with product.

According to Nahapiet and Ghoshal (1998) social capital have three main

dimensions: structural (including network ties, network configuration

and appropriable organization), cognitive (including shared codes and

language and shared narrative) and relational (including trust, norms,

obligations and identification) (ibid).

Organizational capital The possessions remaining in the organization when people go home

after work. This includes the “institutionalized knowledge and codified

experience residing within and utilized through databases, patents,

manuals, structures, systems and processes” (Youndt et al., 2004).

Software source code; Documentation; Documented work processes.

m

o

T

c

s

a

c

f

u

(

t

o

I

Y

o

m

i

a

i

c

f

r

t

o

T

a

k

i

“

n

t

s

s

f

f

t

c

t

a

2

h

b

w

t

t

i

s

e

f

h

b

l

t

o

t

f

t

w

a

s

1

s

l

m

c

d

w

a

w

l

n

o

e

i

e

t

n

3

3

p

aintains with other actors) or an internal viewpoint (the structure

f relations among actors within a grouping) (Adler and Kwon, 2002).

he distinction between the external and internal views on social

apital is, to a large extent, a matter of perspective and unit of analy-

is. The relations between an employee and colleagues within a unit

re external to the employee but internal to the unit. Because, the

apacity for effective software development in a unit is typically a

unction of both its internal linkage and its external linkage to other

nits and experts, we have adopted the view of Nahapiet and Ghoshal

1998), who describe the social capital as both internal and external

o a unit.

A summary of the definitions of the three different components

f intellectual capital as described by Youndt et al. is given in Table 1.

n this table, the information on how the concepts synthesized by

oundt et al. (2004) link to software engineering is provided as based

n Moe et al. (2014).

It is possible that organizations can develop these individual di-

ensions of intellectual capital independently. For example, target-

ng hiring strategies of experts in specialized areas could help to

cquire human capital. Similarly, procuring particular databases or

nvesting in the installation of specific systems and processes could

reate organizational capital. Accumulation of social capital can be

ostered by, e.g., establishing communities of practice and regular fo-

ums for interaction. However, there are strong interdependencies in

he creation, development, and leveraging of the three components

f intellectual capital. Organizational learning theorists (Nonaka and

akeuchi, 1995; Schön, 1983) point out that organizations do not cre-

te knowledge; rather people, or human capital, is the origin of all

nowledge. And when people share or exchange tacit knowledge, this

s most likely to be done through discussions. Also it is suggested that:

individual learning is a necessary but insufficient condition for orga-

izational learning” (Argyris and Schön, 1996). In order for organiza-

ional level learning to occur, individuals should exchange and diffuse

hared insights and knowledge, that is, use their social capital. Also,

ocial capital helps in creating new knowledge among individuals and

or organizational learning to occur. Therefore social capital has been

ound to be important in the development of human capital. And ul-

imately, much of the knowledge individuals create through human

apital and diffuse through social capital becomes codified and insti-

utionalized in organizational databases, routines, systems, manuals,

nd the like, thereby turning into organizational capital.

.2. Theories in software engineering

The need for a firm theoretical basis for software engineering

as been emphasized since the infancy of the area as exemplified
y Freeman et al. (1976). Specific theories for software engineering

ere also proposed such as Musa’s (1975) theory with respect to es-

imation of software reliability. The field has progressed since but

here are still no commonly accepted theories for software engineer-

ng (Ralph et al., 2013). The need to build theories has been empha-

ized by, for example, Sjøberg et al. (2008) and more lately by Johnson

t al. (2012). Thus, there is a drive to obtain a stronger theoretical

oundation in software engineering.

In addition to theories, laws and empirical observations have

elped to increase the understanding of the discipline as described

y Endres and Rombach (2003). Some examples include Conway’s

aw (Conway, 1968) with respect to the relationship between sys-

em structure and organization, and Lehman’s laws (Lehman, 1979)

n software evolution.

Conway’s law describes how the organization and software struc-

ure mirror each other. Endres and Rombach (2003) take it one-step

urther and explain how the law can be interpreted as a theory, since

here is a logical explanation to the law. Their explanation is that soft-

are system development is more of a communication problem than

technical problem, and hence the organization and the software

tructure are highly likely to be aligned.

Lehman puts forward five laws on software evolution (Lehman,

979). His first two laws are used as examples here. The first law

tates that a system that is used will be changed. The second law re-

ates to complexity and describes how a software system will become

ore complex as it evolves if specific actions are not taken to reduce

omplexity. Both these laws have logical explanations, and hence En-

res and Rombach describe how they can be interpreted as theories.

Some of the laws described by Endres and Rombach (2003) are

ell established in both research and practice and others are not,

nd some of them can be turned into theories. However, since soft-

are development is a very knowledge-intensive activity involving a

ot of people, there is a need for a theory that relates software engi-

eers, software engineering team(s), software engineering project(s),

r software engineering organization(s) etc., to the development and

volution of software system(s). A software engineering theory tak-

ng human, social and organization capitals into account in software

ngineering is lacking. This article attempts to fill this gap by con-

ributing with a theory taking a broad perspective on software engi-

eering, including human, social and organizational capitals.

. Theory formulation

.1. Background

The theory is inspired by the authors’ observations of industry

ractice. Research conducted by the authors in the past five years has



232 C. Wohlin et al. / The Journal of Systems and Software 109 (2015) 229–242

o

n

o

m

c

f

t

t

o

a

e

t

i

c

m

t

d

e

m

h

t

c

t

o

i

S

i

S

c

i

f

3

m

e

o

2

a

r

n

a

a

q

a

a

h

b

t

c

t

c

t

w

w

c

brought about vivid manifestations of the ways software organiza-

tions approach ICCs in practice (Moe et al., 2014; Šmite and Wohlin,

2011, 2012). Specifically, the research conducted has focused on how

several industrial partners practice global software development, ex-

ecute software product transfers (relocation of development from

one team or set of teams to a new team(s), often in different lo-

cations) and manage the challenges related to such transfers (ibid).

As a side effect, it has over the years been observed how companies

make decisions to compensate for issues related to consequences of

transfers, often in terms of the ICCs. In general, it has been observed

that if actions are not taken, a transfer will mean a loss of experience

and expertise in relation to the product, and hence a decline in hu-

man capital (in this case product knowledge and potentially domain

knowledge), which has often a direct impact on development capa-

bilities and a secondary impact on quality. Furthermore, it has been

observed that after a transfer the new teams involved with a product

are more dependent on the documentation and support in the organi-

zation than the experienced developers used to be before the transfer,

i.e. the new teams depend more heavily on the organizational capital

and the social capital (in particular in relation to the teams conduct-

ing the development before the transfer). Some specific examples:

• Example 1: The product documentation was deemed insufficient

for a transfer, and hence nine person-months were spent on im-

proving the product documentation before transferring a software

product (Šmite and Wohlin, 2010).
• Example 2: A gradual transfer (Wohlin and Šmite, 2012) was

conducted, i.e., joint development between sites was organized

before transferring the software product. This resulted in a com-

petence build up in the receiving site, while leveraging on the

presence and active involvement of the original developers.
• Example 3: Temporal relocation of experts from the sending site

with the product to the receiving site has been seen as a common

practice to ensure the presence and accessibility of expertise and

to transfer knowledge to the teams receiving the software product

(Šmite and Wohlin, 2010).

The three examples together with access to both product and project

artifacts, and continuous discussions with practitioners in different

roles at the companies have resulted in a general observation: com-

panies try to compensate a potential loss in one component of intel-

lectual capital with different countermeasures, either in relation to

the same component of intellectual capital (e.g., human capital—send

an expert) or in another component of intellectual capital (e.g., orga-

nizational capital—improve the software product documentation, or

social—foster interaction with remote experts from the original site).

Thus, it has been observed that there is an interplay between differ-

ent components of intellectual capital that companies try to master

to ensure that the setting for the software product development or

evolution is fit for its purpose, including the type of tasks to accom-

plish and the objectives in terms of, for example, delivery time and

quality.

Based on the observations from the long-term collaboration with

industry, in particular in the area of global software engineering, the

objective here is to formulate a general theory for software engineer-

ing including the different components of intellectual capital.

3.2. General theory formulation

Based on the above, the following theory is put forward, the

theory of:

Balancing Human, Social and Organizational Capitals for Software

Development and Evolution

Software may be developed and evolved by having different combi-

nations of the components of intellectual capital, i.e., a combination
f human, social and organizational capitals. Many different combi-

ations of the capitals may help to solve a given task with a specific

bjective in a given context. Changes in the task, objective or context

ay result in the changes in demand of the intellectual capital, or

hanges in one or two of the components of intellectual capital may

orce a need to change one or two of the other components, to adjust

o the new situation. A balancing of the different components of in-

ellectual capital is needed to ensure that software engineers, teams,

r organizations are sufficiently equipped to carry out the task, with

specific objective at hand, in the given context.

Companies strive for finding the right balance, which in a cost-

fficient way gives a sufficient level of intellectual capital to carry out

he tasks under the given constraints (features, time, cost and qual-

ty) with a specific objective in the given context. Too low intellectual

apital means that the tasks cannot be carried out adequately, and too

uch intellectual capital results most likely in the costs being higher

han desired. This gives a delicate balance to master for companies

eveloping software.

According to the different types of theories described in Sjøberg

t al. (2008), the theory of balancing the ICCs for software develop-

ent and evolution is primarily explanatory, although it may also

elp managers to answer “what if”—questions, and hence at least par-

ially help in prediction, or at least in reasoning about the effects of

hanges. The theory is formulated based on abduction from observa-

ions in industry with the objective to capture and help explain the

bservations. The theory is presented below according to the follow-

ng steps:

1. Constructs of the theory.

2. Propositions of the theory.

3. Explanations to justify the theory.

4. Scope of the theory.

5. Testing the theory through empirical research.

jøberg et al. (2008) proposed these steps as suitable for formulat-

ng theories (in software engineering). Steps 1–4 are presented in

ections 3.3– 3.6, followed by a summary of the theory and a dis-

ussion about its use in practice. An empirical case study is presented

n Section 4 to illustrate the theory, and hence act as a starting point

or step 5 above.

.3. Constructs

The constructs of the theory relate to the building blocks that

ake up the theory. Thus, the question is: What are the basic

lements?

When developing software, it is possible to have different levels

f ambition from an organizational perspective (Rajlich and Bennett,

000); ambition is here used in a general sense. For example, if having

n old piece of software that is intended to be phased out shortly and

eplaced with a new software system, then the ambition of the orga-

ization may not be very high. It may be sufficient to keep it afloat

nd do some corrective maintenance, and it may not be perceived

s critical to fix any issues immediately. Thus, the organization has a

uite low ambition level. Another example may be when launching

new software system and trying to increase the market share for

specific type of product. In this case, it may be very important to

ave a high quality product and if problems occur then they should

e addressed very quickly. Thus, the ambition level of the organiza-

ion may be considerably higher than in the first case. This leads to a

onstruct denoted as objective, which relates to the ambition level in

erms of performance levels; see Section 3.3.1, where objective is fo-

used on a specific performance level. This leads to performance being

he second construct. Meeting the objective is referred to as success,

here success in this context refers to the ability to conduct a soft-

are development task under a given objective with the intellectual

apital available meeting the goals set by the organization. Thus, it



C. Wohlin et al. / The Journal of Systems and Software 109 (2015) 229–242 233

i

g

s

w

l

t

n

t

t

i

t

p

i

s

i

c

l

l

s

e

l

i

a

l

a

p

s

h

p

i

f

t

r

b

t

h

3

m

t

l

t

w

o

n

e

T

t

t

p

p

m

m

c

t

3

s

k

c

s

Table 2

Performance levels.

Level Description

1 It is almost impossible to handle the task, and it takes a long time. The

development is more or less in survival mode.

2 It is hard time to handle the tasks. Major problems occur more often

than not.

3 The task requires some effort. Occasionally, major problems may occur.

In most cases, it works quite smoothly.

4 The task is handled without any major problems.

5 The task is very easy to handle.

n

w

a

p

a

i

p

k

s

b

a

b

d

3

g

s

d

e

c

p

t

i

(

T

t

i

t

t

s

p

j

(

o

t

s chosen to use “success” in a generic sense given that different or-

anizations may have different criteria for being successful in their

oftware development.

The actual development to be conducted is referred to as the task,

hich is the third construct for the theory. Some tasks are more chal-

enging than others, and hence the objective should be set in relation

o the task to conduct. For example, to work with corrective mainte-

ance is a different task than adding new features to a software sys-

em. These tasks may be differently complex to carry out and hence

he task to be conducted should be taken into account when decid-

ng how to carry out the development. However, it should be noted

hat task complexity/difficulty is hard to measure objectively, and in

articular the ability to conduct a task is highly dependent on the

ntellectual capital available. Thus, it is chosen to have task as a con-

truct and not task complexity/difficulty, since the conduct of the task

s handled through the ICCs in the theory, see Section 3.4. The task is

onnected to the objective through the development and evolution

evels (performance levels) presented in Section 3.3.1.

To be able to conduct the task with the given objective, the intel-

ectual capital should be carefully considered, in particular given that

oftware development is a very knowledge-intensive discipline. For

xample, it may be obvious that taking a group of new graduates and

etting them form a new team to develop a new feature for an exist-

ng large, complex and poorly documented software system may be

n overwhelming task for them. This illustrates that a certain intel-

ectual capital is needed to be able to perform the task. As described

bove, intellectual capital has been categorized into different com-

onents by different researchers. Here, it is chosen to follow the divi-

ion by Youndt et al. (2004), where intellectual capital is divided into:

uman, social and organization capitals. These ICCs make up three im-

ortant constructs of the theory. These three constructs are presented

n Table 3 and discussed in more detail in Section 3.3.2.

Finally, the mixture of the objective and the task sets the target

or the needed intellectual capital. In total, the intellectual capital has

o be at a certain level to enable that the task may be performed in

elation to the objective set, and if meeting the objective it should

e viewed as a success. Thus, the performance is a construct in the

heory, since it ties together objective and task with the three ICCs:

uman, social and organizational capitals.

.3.1. Performance levels

To describe the objective, five performance levels have been for-

ulated, although in practice the scale is continuous. Furthermore,

he levels are qualitative although numbers are associated with the

evels to ease the discussion about them and to help in ordering

he levels. The continuity of the scale has emerged in discussions

ith practitioners where it became evident that although being on

ne performance level (e.g., level 3), they were closer to one of the

eighbouring levels than the other. However, discrete qualitative lev-

ls were used as a starting point for the discussions with industry.

he intention is to capture the ambition of an organization related

o desired performance for a given task. An organization is expected

o have different ambition levels for different software development

rojects or products, and it may also vary over time. In Table 2, five

erformance levels have been defined with five being the highest and

ost ambitious level, i.e., the organization tries to ensure the level by

anaging the intellectual capital accordingly. The levels relate to the

apability to meet the objectives set by the organization developing

he software.

.3.2. Intellectual capital

As stated earlier the intellectual capital may be described as con-

isting of three components. The human capital captures the skills,

nowledge, expertise and experience of the individuals and unit’s

apital. Social capital is concerned with the network outside and in-

ide the unit (e.g., outside and inside the team). The third compo-
ent is the organizational capital that is the assets in the organization

ithout the people. This includes documentation in relation to the

ctual software being developed, but also supporting aspects such as

rocesses, tools and culture. These three constructs are divided into

reas and specific aspects in relation to each capital as exemplified

n Table 3. It should be noted that ICCs are intended to cover all as-

ects of knowledge available to a company, i.e. it is the “sum of all

nowledge” (Nahapiet and Ghoshal, 1998; Youndt et al., 2004). The

um should not be viewed in mathematical terms; instead it should

e seen as a metaphor for balancing the qualitative judgment of the

spects making up the different ICCs.

The theory is centred around these three ICCs and the processes of

alancing them for performance on a software development task un-

er a given objective. In relation to this, several things may be noted:

• In any situation involving more than one software developer, all

three components are important.
• The qualities of each of these components, its categories and as-

pects for a given unit form the unit’s intellectual capital profile.
• For any non-trivial software development task, there is a mini-

mum “sum” of the components, and none of the components adds

zero value. Unfortunately, there is no mathematical way of adding

ICCs together quantitatively so the sum should be interpreted as a

perceived combination of the “values” of the components.
• There is a maximum sum of the components.
• In normal cases, there is a sum of the three ICCs that is per-

ceived as sufficient for the objective set and the task at hand.

This is referred to as the target level to reach when combining the

ICCs, which can be achieved through different intellectual capital

profiles.

.4. Proposition

The constructs interact through that a software development or-

anization may set a goal of what to achieve in terms of what

oftware to be delivered (task) and how well and fast it should be

one (objective). The ability to reach the goal, i.e. to develop and

volve a software product, and thus the resulting performance is a

ombination of the objective, task and the sum of ICCs. Thus, the

roposition is that the performance is a result of the objective,

he task and the sum of ICCs. Fig. 2 illustrates the theory. The task

s in the centre, and it is going to be performed with a given objective

desired level of performance) using the intellectual capital available.

he objective sets the expectations on the conduct of the task, i.e. in

erms of scope, quality, time and cost. The ICCs taken together facil-

tate the conduct of the task in solving it with respect to the objec-

ive. The outcome is a performance, which should be compared with

he objective of the organization and based on their view of being

uccessful in software development. The reasoning could be com-

ared with requirements coming into software development (ob-

ective) and the available resources to implement the requirements

available intellectual capital). Performance is the outcome in terms

f the objectives set by the organization.

Thus, Fig. 2 illustrates how the goal in terms of objective and the

ask and its difficulty require a certain combination of ICCs to reach



234 C. Wohlin et al. / The Journal of Systems and Software 109 (2015) 229–242

Table 3

The three intellectual capital components (ICCs) and examples of their categories and aspects.

ICC Categories Examples of aspects

Human capital Skills and knowledge Technical skills (programming and tools, patterns, basic computer science principles)

Domain knowledge (including understanding of solutions to domain problems)

Software product knowledge (program properties, existing software architecture, concept location within the code)

Knowledge about ways of working (coding conventions, development tools etc.)

Creativity Development of new, innovative ideas

Social capital The unit skills of working together Solving problems together

Making decisions together

Shifting workload

Common goals

Performance of the unit

Sharing knowledge within the unit

Give each other feedback

Knowing what others are doing

Learning from experience

External relations Collaboration with other units

Collaboration with experts

Collaboration with customers

Collaboration with product owners and program managers

Networking through communities of practice

Organizational capital Software Software source code

Software architecture

Documentation Documentation supporting understandability and maintainability of the software

Process documentation

Organization’s culture Stories, rituals that contain valuable ideas, ways of working

General infrastructure Development environment

Knowledge-based infrastructure

t

t

m

l

n

T

c

t

u

a

i

a

t

t

t

i

the target. This is further illustrated in Fig. 3. To the left in Fig. 3,

the starting point is the desired level of performance. The scale is

in reality continuous, but for reasons of approximation and simplic-

ity, it has been chosen to use five performance levels as described

in Section 3.3.1. Here, the levels are not shown, since the objective

is to illustrate the relationships rather than to describe a real case.

The performance levels are used in the discussion of the usage of the

theory in Section 3.6 and in the actual case described in Section 4.

Once the performance level is set, the difficulty of the task has to be

judged, and depending on the difficulty and the objective a certain

sum of intellectual capitals is needed as shown with the arrow go-

ing from performance to intellectual capital. The needed intellectual

capital becomes the target to be able to perform the task. If exactly

meeting the target intellectual capital by balancing human, social

and organizational capitals respectively, then the actual performance

for the task at hand is equal to the objective. Fig. 3 illustrates the

principal relationships, and some scenarios are discussed below to

further illustrate the theory about the balancing of the different in-
Fig. 2. Illustration of the theory proposition.

l

G

c

i

t

t

e

o

i

p

a

i

t

p

t

F

r

s

ellectual capitals to achieve the intended performance (objective for

he task).

It is worth noting that the angle of the arrow going from perfor-

ance to intellectual capital, and the arrow going back from intel-

ectual capital to performance, will have the same angle, although

ot necessarily being in the same place as illustrated in Fig. 4 below.

he actual angle of the arrows between performance and intellectual

apital is given by the difficulty of the task. It should be noted that

he difficulty of the task does not imply whether the arrow should go

p, down or be on the same level. An easier task will of course have

lower requirement on the intellectual capital than a more challeng-

ng task. However, the arrow from performance can still go down for

challenging task, since the starting point for the arrow depends on

he objective (in terms of performance level) and not the task as such.

Fig. 3 illustrates how it is possible to set an objective in relation to

he performance levels introduced in Section 3.3.1. Given the objec-

ive and then taking the task into account, a certain target level of the

ntellectual capital is set. The target level indicates the level of intel-

ectual capital needed to perform the task under the given objective.

iven that the intellectual capital may be described in terms of three

omponents: human, social and organizational capitals, the challenge

s then to identify a combination of the ICCs or a suitable ICC profile

hat in total gives the intellectual capital needed.

Different scenarios may occur as illustrated in Fig. 4. If having

oo little intellectual capital (Fig. 4(a)), then the development and

volution will be challenged in relation to either fulfilling the task

r reaching the objective in terms of performance levels. Fig. 4(a)

llustrates this situation where the objective and task taken together

oint to a targeted intellectual capital (combination of human, social

nd organization capitals), which is higher than actually having. This

s shown by the intellectual capital being lower than the target (illus-

rated with the arrow denoted “acquired sum of ICCs”, and hence the

erformance will not be in accordance with the objective for the task

o be conducted.

On the other hand, if having too much intellectual capital (see

ig. 4(c)), the development and evolution may go easier than

equired, which may be good, but it may result in being a too costly

olution. For example, it may be too costly in terms of having too



C. Wohlin et al. / The Journal of Systems and Software 109 (2015) 229–242 235

Fig. 3. A summary of the theory constructs and the proposition of the interaction.

Act
ual

'

per
form

anc
e'

Performance'
Intellectual'

capital'
Acquired'

sum'of'ICCs'

Objec9ve'
Targeted'

sum'of'ICCs'

Tas
k'd

em
and

s'

on'
IC'f

or't
he'

obj
ec9

ve'

Performance*
Intellectual*

capital*

Acquired*

sum*of*ICCs*
Objec9ve*

Targeted*

sum*of*ICCs*

Tas
k*d

em
and

s*

on*
IC*f

or*t
he*

obj
ec9

ve*

Act
ual

*

per
for

ma
nce

*

Act
ual

'

pe
rfo
rm
anc

e'

Objec2ve'

Performance'
Intellectual'

capital'

Targeted'

sum'of'ICCs'

Acquired'

sum'of'ICCs'
Tas

k'd
em

and
s'

on'
IC'f

or't
he'

obj
ec2

ve'

Fig. 4. (a) Targeted ICCs sum not reached. (b) Targeted ICCs sum reached. (c) Targeted ICCs sum is overreached.

m

m

m

o

w

t

b

T

t

c

t

t

t

t

i

a

t

q

w

c

e

t

F

i

1

c

h

3

p

r

u

i

l

q

b

e

i

t

t

o

l

d

(

t

a

w

3

w

i

any highly qualified people with long experience in the unit (hu-

an capital higher than the needs), investing too much in evolving or

aintaining the social network (social capital higher than the needs),

r putting too much effort into documenting well-documented soft-

are or refactoring well-structured software (organizational capital

han the needs). In Fig. 4(c), it is shown how the intellectual capital

ecomes higher than the target, i.e. the acquired sum of the ICCs.

hus, the actual performance becomes higher than the objective. In

his scenario, it is possible to consider lowering the total intellectual

apital or go with having an expected performance that is higher than

he objective.

In Fig. 4(b), a scenario is shown where the acquired sum of the in-

ellectual capital is equal to the targeted. Thus, in this situation the in-

ellectual capital matches the needs given through the objective and

he task. At the same time, it is important to not only optimize the

ntellectual capital in relation to the current situation (Fig. 4(b)), but

lso plan for the future needs. The latter should be captured in the

ask when it is formulated.

The balancing of ICCs implies that a certain human capital may re-

uire a certain level of organizational capital for reaching the target,

hile the same level of organizational capital may be deemed insuffi-

ient for a different human capital. For example, developers with less

xperience in the software will most likely need better documenta-

ion of it than those having worked a long time with the software.

urthermore, social capital plays an interesting role since it may facil-

tate the development of intellectual capital (Nahapiet and Ghoshal,

998), for example, good networking with experts outside a unit fa-

ilitates learning, the human capital may increase accordingly, and

ence increasing the intellectual capital as a whole.
 t
.5. Theory justifications

The theory is justified through its importance. It provides both

ractitioners and researchers with a terminology to reason about the

elative importance of different ICCs. Furthermore, practitioners may

se the theory to profile their units, and to reason about how changes

n one ICC may be compensated by improving the same ICC or at

east one of the others. Alternatively, it is possible to judge the conse-

uence of changes in intellectual capital profiles using the theory as a

asis for reasoning. The theory makes the relationships between ICCs

xplicit for software engineering.

The theory is based on industrial observations and logical reason-

ng. As indicated in Section 3.4, it is quite evident that a newcomer

o a software development project would rely more on the organiza-

ional capital and the expertise of others (social capital), than some-

ne who has been involved in the development of the software over a

ong period of time. Furthermore, it is no surprise that having a more

ifficult task and setting, e.g., higher goals in terms of performance

objective) will result in a need for a higher intellectual capital, and

hus a higher sum of ICCs than having a very simple task and a lower

mbition, e.g., due to that the software is going to be phased out any

ay.

.6. Scope of theory

The objective is that the theory is applicable for all types of soft-

are development and evolution in which more than one individual

s involved. Thus, the theory is not targeting one-person projects or

rivial software development. This is also discussed in Section 3.3.2.



236 C. Wohlin et al. / The Journal of Systems and Software 109 (2015) 229–242

m

t

t

t

s

s

t

i

e

c

A

o

S

h

h

t

t

c

s

c

t

t

j

t

a

a

c

b

r

t

f

m

d

a

d

t

m

i

c

t

e

m

w

v

i

p

f

d

c

b

c

4

a

i

4

i

The challenges of balancing the ICCs are independent of, for exam-

ple, the type of software being developed; the development approach

used or project constellations (single- or multi-team projects). The

theory is hence general for software development and evolution.

3.7. Usage of theory

The theory may be used in several different ways from a practi-

cal management perspective. Based on the experience from working

with industry (Wohlin et al., 2012) in general, and in particular the

research in relation to global software engineering in close industrial

collaboration that may be exemplified with the work related to soft-

ware transfers as reported by Šmite and Wohlin (2012), it is clear that

managers in practice do balance different components of intellectual

capital. It may not be done explicitly in these terms, but based on

experience, expertise and common sense. However, the formulation

of the practice as a theory helps managers to make the importance

of ICCs and relations between ICCs explicit. The theory systematizes

and explicates the common industrial practice, and it will help man-

agers to reason about these issues and also make it easier to com-

municate the tacit knowledge of an experienced manager. Further-

more, it makes the relationships between different components of

intellectual capital explicit so that software engineering researchers

better can understand how their research may contribute to industry

practice.

The theory will, for example, help managers in relation to answer-

ing questions such as:

1. Where are we?

Managers could reflect on the current performance achieve-

ments. By reasoning about the current objective and the diffi-

culty of the task, it is possible to then judge the targeted situa-

tion in terms of the different ICCs. Reflection on the sufficiency

of the actual ICCs would then explain the performance level. If

the situation is not satisfactory actions may be taken, either if

being below the target when looking at the sum of the intel-

lectual capital or if being substantially above the target. In the

latter case, the manager may choose to pull out some experts

to put on another project.

2. Where will we end up (without actions)?

It is possible to conduct a consequence analysis and reason

around the different ICCs. The manager may have a current

situation and some change is foreseen or planned, and hence

the manager could estimate the consequence of the change.

For example, if planning to transfer development from one site

to another site, the intellectual capital will most likely change

and hence actions may be taken to mitigate this, including im-

proving the organizational capital or moving an expert with

the software development for some time (social capital) to

work with knowledge transfer (strengthening the human cap-

ital). Experiences of similar changes documented according to

the theory concepts might help to deal with such consequence

analyses.

3. Where do we want to be (what is the target)?

It is also possible to use the theory to explicate where the de-

velopment ought to be, i.e., which is the target? The manager

may choose different actions to ensure that the target is met. In

a given situation with a certain objective and with some tasks

at hand, the manager could ensure that there is sufficient intel-

lectual capital to meet the target. The manager could also rea-

son around different alternatives to reach the target, i.e., which

ICCs could be most cost-efficiently changed to meet the target?

In summary, the theory makes the tacit knowledge of managers more

explicit and it supports managers in their reasoning around the com-

plex challenges related to software development and evolution. The
anager is able to reason around the function and dependencies be-

ween an objective, a task and the different ICCs, or change the target

o something more realistic under the given circumstances. Changing

he target may imply either accepting a lower ambition (objective) or

implifying the task if it is deemed impossible to find a cost-efficient

olution when it comes to the combination of the ICCs that meets

he current target. Furthermore, the theory helps software engineer-

ng researchers better understand the relationships between differ-

nt intellectual capitals and hence put their own research in a larger

ontext.

An illustration of the usage of the theory can be found in Fig. 5.

ssume that the organization is prepared to aim for level 3 in terms

f the development and evolution levels with the given task (see

ection 3.3.1 for the different levels). Level 3 implies that tasks are

andled with some effort and occasionally major issues appear that

ave to be solved. The software developers are not struggling, but

hey are definitively challenged occasionally. The objective and the

ask set the target for what to achieve. Given the target, the manager

an now look at the intellectual capital available and reason about

trengths, weaknesses and different options to reach the target in a

ost-efficient way.

In the example in Fig. 5, it can be seen how the manager judge

hat the software developers have reasonably strong human capi-

al, and the organizational capital is also quite good. The manager

udges that the weakest ICC is the social capital. However, in total,

he three components should be sufficient to reach the target (shown

s perceived intellectual capital). As development goes on the man-

ger may monitor the progress and evaluate whether the judgment is

orrect. If it turns out that, for example, the organizational capital has

een overestimated and in reality the combination of ICCs does not

each the target, the manager now has an explicit mental model of

he situation and could discuss actions to address the concerns hope-

ully more easily (shown as actual intellectual capital). The manager

ay evaluate different alternatives, i.e. improvement actions, to ad-

ress the concerns that it seems like the target is not met. The in-

bility to meet the target may show through that it seems like the

evelopment is rather on level 2 than as intended on level 3. Thus,

he manager may either accept the situation or lower the target, or

aybe the development tasks can be changed or the intellectual cap-

tal has to be strengthened to ensure that the target is met with the

urrent objective and the development task assigned. Independently,

he formulation and illustration of the theory give the manager an

xplicit framework for conducting a root-cause analysis for perfor-

ance gaps, reasoning about the balancing of the ICCs, as well as a

ay of communicating why certain decision are made.

In this section reasoning regarding the usage of the theory is pro-

ided, while a practical illustration of how the theory can be observed

n many of the decisions taken in a software development project is

rovided in the next section. The case presented includes a trans-

er of software development from one development site to another

evelopment site within a company, as well as other organizational

hanges, such as merging two business units, scaling up the num-

er of development teams and distributing development or related

omponents.

. Empirical case

In this section, a case that illustrates a potential use of the theory

nd how to operationalize the theoretical constructs and propositions

s described.

.1. Research design

Empirical cases are used in the theory-building process for exam-

nation of the validity of theories (Sjøberg et al., 2008). Besides the



C. Wohlin et al. / The Journal of Systems and Software 109 (2015) 229–242 237

Fig. 5. An illustration of the use of the theory.

v

p

o

b

p

p

a

t

r

p

t

w

a

t

T

e

r

p

o

4

(

l

s

o

i

t

h

t

s

r

d

v

s

d

v

p

s

v

t

o

I

d

4

t

t

c

h

i

T

t

t

t

h

alidation of the predictive and explanatory powers of a theory, em-

irical studies can help testing the ability to operationalize the the-

retical constructs and propositions. Having said that, validation is

est conducted by others to avoid researcher bias, and hence the case

resented is focused on the operationalization of the constructs and

ropositions put forward in the theory. The case study was designed

s an exploratory study (Yin, 2009) to investigate the interplay be-

ween the human, social and organizational capitals, as well as its

elation to the organization’s ability to develop and evolve software

roducts. Thus, the case study was not originally designed to illus-

rate the theory. However, given that the constructs in the theory

ere used in the case, it became a good case to illustrate the theory

s such. In particular, the empirical research was designed to explore

he following questions:

• How do developers evaluate their intellectual capital profile of the

unit they work in, in relation to the assigned tasks? Are there any

events that change the intellectual capital profile during the prod-

uct evolution?
• How do developers rely on different components of intellectual

capital in relation to the assigned tasks? Does it change in differ-

ent phases of product evolution?
• How do developers perceive their performance in relation to the

assigned tasks? Does it change in different phases of product evo-

lution?

he researchers used open-ended questions to explore the phenom-

na later used in the theory, and sought explanations behind the

elationship between the performance and the intellectual capital

rofiles.

The empirical case described in this article has not been previ-

usly reported.

.2. Context, data collection and analysis

The context of the case study is a multinational software company

below referred to as “the company”) and the study object is the evo-

ution of a relatively small sub-system (∼100 KLOC) of a compound

oftware system. The sub-system has been transferred from one site

f the company to another site belonging to the company—the event

nvestigated as the major event with the strongest impact on the in-

ellectual capital profile of the staff involved in the development. The

istory of the product evolution is illustrated in Fig. 6.

In this article, the data collected (see Table 4) are used to illustrate

he applicability and validity of the theory constructs and propo-

itions. First, individual interviews were conducted with different

epresentatives to capture the questions related to product history,
evelopment process and environment, and gathered some obser-

ations from visiting the onshore site of the company. In the next

tep, focus group discussions were held with the Swedish and Indian

evelopment teams involved in the evolution to elicit the perceived

alue of their intellectual capital profiles, reliance on different com-

onents of intellectual capital and perceived performance. The unit

elected for profiling according to Table 3 was the software teams de-

eloping the sub-system (two Swedish teams before the transfer, and

wo Indian teams after the transfer), and hence their internal collab-

rative skills are referred to as teamwork skills.

The data generated by the focus groups contained:

• Categorization of ICC aspects from Table 3 (into three groups:

strong, medium and weak), which formed an IC profile:

◦ Human capital, including Skills and knowledge.

◦ Social capital, including Skills of the unit in terms of ability to

work together, and External relations.

◦ Organizational capital, including Software, Documentation,

Organizational culture, and General infrastructure.
• Events that influenced the ICCs, actions that organizations took

to balance the ICCs, and consequent changes in the intellectual

capital profiles.
• Analysis of reliance on different components of intellectual cap-

ital, in which the participants determine the importance of

different components (human, social and organizational) dur-

ing different stages of evolution (before and after the identified

events),
• Perceived performance in different stages of evolution (before and

after the identified events) using the five performance levels listed

in Section 3.3.1.

n Section 4.3, the data gathered in the case study are reported and

iscussed in the light of the theory constructs.

.3. Balancing intellectual capital components in practice

Official start of sub-system development: In the beginning, the

wo Swedish teams that developed the sub-system characterized

heir intellectual capital (in the group interview) by strong human

apital, medium teamwork skills, but weak relations with the stake-

olders external to the development teams, and organizational cap-

tal with a variety of strong, weak and medium characteristics (see

able 5). In relation to the tasks the performance level determined by

he teams as low (level 2—the teams had a hard time to handle the

asks and major problems occurred more often than not). As one of

he developers characterized—“It was a one large chunk of code. It was

ard to work with it". Since the organizational capital related to the



238 C. Wohlin et al. / The Journal of Systems and Software 109 (2015) 229–242

Fig 6. Product history.

Table 4

Empirical data collection.

Method Number Duration Participants Timeframe

Formal interviews 1 1 h Transfer manager from Sweden (shortly after the transfer) October 2012

6 1.5 h Swedish developers, an architect, a product owner, a tester May–June 2013

Survey on knowledge transfer 13 – Swedish participants (after the transfer) November 2012

8 – Indian participants (after the transfer) November 2012

Group interviews 1 1.5 h 4 team members from 2 development teams in Sweden October 2013

1 2 h 6 team members from 3 development teams in India (conducted via a video-conference) September 2013

Follow-up interviews 2 1 h Release manager and a product manager from Sweden October 2013

Table 5

Starting IC profile of the Swedish teams.

ICC Categories Evaluation Reliance on ICCs Performance

Human capital Skills and knowledge Strong Human capital 2

Creativity Strong

Social capital Teamwork skills Medium

External relations Weak

Organizational capital Software Weak

Documentation Medium

Organizational culture Strong

General infrastructure Medium

b

m

i

r

t

d

u

t

t

o

N

a

c

i

m

n

w

d

f

c

t

o

software was weak, external relations of the teams were weak and

documentation and teamwork were medium, the developers relied

primarily on their skills (human capital), which deemed to be insuf-

ficient to reach high performance.

Several mitigating actions were taken to improve the performance

as described below (see also Table 6).

First refactoring—Action to mitigate gaps in organizational

capital: In order to improve performance, it was decided to orga-

nize refactoring, which targeted the source code structure and hence

readability, implementation of coding conventions, and a few archi-

tectural improvements. Thus the organizational capital increased and

the perceived value of these efforts could be observed by the raise in

performance from level 2 (the developers have a hard time handling

their tasks and major problems occur more often than not) to level

3 (the tasks require some effort and occasionally, major issues may

occur, but in most cases, it works quite smoothly). As a developer de-

scribed: “It [refactoring] helped a bit but it could have been much more.

But there was no time for that. It is still one big chunk of code." Addition-

ally, more frequent collaboration between the team and the architect

(not in the team) was reported as a positive side effect of refactoring.

Integration of the two Swedish teams—Action to mitigate gaps

in social capital: The disintegration of the two teams was addressed

by organizational changes. Because the teams from the beginning
elonged to different managerial structures, there was very little

utual collaboration. Although the teams were located in close prox-

mity (neighbouring workspaces), they received the tasks from their

espective product owners, who occasionally had conflicting priori-

ies. The integration of the two teams under one management was

one to avoid the coordination overhead. When the teams were

nited, it had a positive side effect on the collaboration and interac-

ion with other roles outside of the teams. The cooperation between

he teams improved and so did the collaboration with the product

wners and program managers, who now represented a joint interest.

onetheless, the teams did not associate these improvements with

ny significant changes in performance.

Second refactoring—Action to mitigate gaps in organizational

apital: The main product architect initiated a second refactoring to

mprove the software architecture and further improve the perfor-

ance. Unfortunately, this program was cancelled in the light of the

ew organizational changes, i.e., a transfer of the sub-system to India,

hich was a strategic management decision not announced to the

evelopment level beforehand. As one manger explained the reason

or the cancellation: “We also started another refactoring that was can-

elled because when we heard news that we are transferring we realized

hat it is better to do the refactoring on the receiving side than doing a lot

f changes and stopping half way and handling over half of the work and



C. Wohlin et al. / The Journal of Systems and Software 109 (2015) 229–242 239

Table 6

Mitigating actions before the transfer.

Actions Comments Affected ICCs Reliance Performance

and aspects (cf. Table 3) on ICCs changes (cf. Table 2)

First refactoring Action to mitigate gaps in

org. capital

+ OC: Source code Human capital 2 → 3

+ OC: Software architecture

+ SC: Collaboration with experts

Integration of the two

Swedish teams

Action to mitigate gaps in

social capital

++ SC: Collaboration with POs and program

managers

Social capital No change

+ SC: Solving problems together

+ SC: Making decisions together

+ SC: Shifting workload

+ SC: Common goals

+ SC: Performance of the unit

SC: Give each other feedback

SC: Knowing what others are doing

Second refactoring Action to mitigate gaps in This refactoring was cancelled due to the subsequent transfer of the sub-system to a new group of

org. capital developers that did not have enough human capital to finish the refactoring.

Notations used for effect illustration: a small increase: +, a large increase: ++, a small decrease: –, a large decrease: ––.

l

h

d

i

f

j

s

t

a

i

f

t

n

I

i

i

p

w

fi

d

p

t

v

k

w

d

t

h

p

l

e

e

t

r

i

m

a

t

d

i

f

t

d

d

c

c

e

b

p

[

f

t

w

p

s

p

d

a

o

n

t

t

f

p

[

O

p

n

p

i

e

i

t

d

i

p

a

T

w

m

f

T

d

d

m

etting them continue”. This meant that the original developers who

ad the human capital to raise the level of the organizational capital

id not manage to implement the needed improvements and make

t strong, before it was too late. Notably, the teams that received the

urther evolution of the sub-system were not ready to perform a ma-

or refactoring, and thus the improvement program was delayed for

everal years.

In Table 6, the evolution of product development is illustrated

hrough different events and actions (column 1), changes brought

bout on the ICCs (column 3), developers’ reliance on different ICCs

n the light of the events and actions (column 4) and perceived per-

ormance (column 5). Additionally, we comment on the intentions of

he organization in relation to the events (column 2).

Transfer: Due to a shortage of resources in the Swedish site and

ew upcoming projects, it was decided to transfer the sub-system to

ndia. A transfer means a relocation of the sub-system from the orig-

nal developers, i.e., the two Swedish teams, to the new developers,

.e., two Indian teams. After a transfer, new people are working on the

roduct, and hence the level of human and social capital components

ill change. Thus a transfer means that the intellectual capital pro-

le needs to be updated based on the intellectual capital of the new

evelopers being responsible for the software. The managers antici-

ated a decrease of the human capital as a result of the transfer, and

ook preventive actions to compensate the unavoidable gaps. One de-

eloper explained why they started cleaning up the code: “Since we

new about the transfer we tried to clean up these things what we are

orking with as good as we can. So, it would be easier for others to un-

erstand." Furthermore, it was decided to choose the destination of

he transfer to an Indian site within the same company, which already

ad experience and expertise within the product domain (similar

roducts) and transfers. Employment of developers working on re-

ated products resulted in them obtaining important domain knowl-

dge, which ensured a certain level of human capital. Their joint work

xperience ensured ability to leverage on the social capital in terms of

eamwork skills. Some of the Swedes also already knew people on the

eceiving side in India, which gave a positive impact on the social cap-

tal (seen from India). As a system manager explained: “In this case [a

ember of a team] knew some of the people already. He had transferred

product to the same site before. … We knew each other. At least on the

op level”.

Even though preventive actions were planned the performance

ecreased. As the architect explained: “then a lot of new guys came

n and they were not doing any work at the start”. To be able to improve

ast, the new developers were also supported by improved documen-

ation supporting the product and the processes. While the Swedish

evelopers did not depend on the documentation and thus many
ocuments were outdated, the transfer meant that the organizational

apital in terms of the software and documentation would become

rucial as the prime source of reliance for the new developers. How-

ver investments in documentation, although important, will never

e enough to avoid a decrease in performance. As the architect ex-

lained: “Some of the changes they [Indian developers] made affected

a specific feature], for example, and they spent a lot of time fixing [that

eature] before they could commit the changes. That of course, is a mis-

ake you make when you are new to the product. You do not really know

hat you can do and what you cannot do without affecting, for exam-

le, performance [of the system]. That comes with the experience. This is

omething that you really cannot document; you have to get to know the

roduct and how to do the stuff”.

Finally, to ensure the necessary access to expertise a few Swedish

evelopers were partially devoted to support the new Indian teams,

nd the main product architect was relocated for a half year long

nsite support in India to answer questions and act as the safety

et for the new team. While this did not raise the human capital in

he two Indian teams, it ensured the leverage on the social capital

hrough availability of experts, which helped keeping the level of per-

ormance. One Swedish expert explained how he helped out solving

roblems and tried strengthening the organizational capital: “They

Indian developers] had some issues […] then I stepped in and helped.

therwise, I was talking about the next step: what could you do to im-

rove the product and giving them tips for, for example, refactoring”.

As a result of having Swedes available for the Indian teams, the

ew development unit consisting of two teams in India has the IC

rofile described in Table 7. Since the two Indian teams received ex-

sting software for further development, they had no product knowl-

dge and only medium domain knowledge. Hence the teams primar-

ly relied on the organizational capital. The first months after the

ransfer the new site climbed the learning curve building their un-

erstanding and knowledge of the product (human capital). Interest-

ngly, despite the improvements, the Indian developers perceived the

arts of organizational capital related to documentation to be weak

nd not sufficient to rely on when performing the development work.

he transfer evidently resulted in deficiencies in comparison with

hat was achieved by the Swedish teams, and the resulting perfor-

ance was on level 2 again.

Several mitigating actions and improvements improved the per-

ormance of the new development unit after the transfer (see

able 8).

Assignment of less complex tasks—Action to mitigate task

ifficulty: To alleviate the problems with performance, the Indian

evelopers were assigned less difficult and critical tasks and more

inor product improvements while climbing the learning curve. The



240 C. Wohlin et al. / The Journal of Systems and Software 109 (2015) 229–242

Table 7

IC profile of the Indian teams after the transfer.

ICC Categories Evaluation Reliance on ICCs Performance

Human capital Skills and knowledge Medium Organizational capital 2

Creativity Medium

Social capital Teamwork skills Strong

External relations Medium

Organizational capital Software Medium

Documentation Weak

Organizational culture Strong

General infrastructure Medium

Table 8

Mitigating actions after the transfer.

Actions Comments Affected ICCs Reliance Performance

and categories on ICCs changes

Assignment of less

complex tasks

Action to mitigate task difficulty No change Organizational

capital

2 → 3

Further investment into

documentation

Action to mitigate gaps in organizational

capital

+ OC: Product documentation Social capital No change

+ OC: Process documentation

Gain in working

experience

Growth of human capital over time + HC: Domain knowledge Social capital 3 → 4

+ HC: Software product knowledge

+ HC: Creativity

Notations used for effect illustration: a small increase: +, a large increase: ++, a small decrease: –, a large decrease: —.

c

o

p

h

b

h

v

t

o

d

m

I

i

a

m

l

d

t

t

t

p

5

i

a

t

m

i

t

fl

f

5

m

t

Indian teams reflected that this improved their performance to level

3. However, the tasks still required some effort and occasionally, ma-

jor problems occurred.

Further investment into documentation—Action to mitigate

gaps in organizational capital: The deficiencies in documentation

were targeted by a continuous improvement program, which facili-

tated the learning too. The documentation was perceived to be im-

proved from being weak to a medium level. However, this did not

have any impact on performance, therefore further improvements

were planned. As an Indian developer explained: “Slowly, slowly we

improved the documents. New documents were created too. – Now it is

OK, but we need to improve more.”

Gain in working experience—Growth of human capital over

time: As the product and domain knowledge grew, the tasks could

be handled with less effort. An Indian designer commented in the

group interview: “It is still the same teams. Not a single person has left.

The work is interesting. We are growing, we rotate people in different

tasks, we are able to balance the workload, and we all sit together”. The

Indian teams said to have gained creativity and performance im-

proved to level 4, when the simple tasks were handled without any

major problems.

4.4. Discussion of the illustrative case study

The ICCs and their assessment scales were defined for the case

study, as well as the scales for assessing performance. In practice it

was observed that the case study subjects could easily understand

the concepts, and that ICCs are all relevant for them. Furthermore, the

performance evaluation did not cause any difficulty. However, the as-

sessment of the ICCs into strong, medium and weak, and the strength

of the impact of certain events on the intellectual capital profile were

subject to many questions and disagreements. Thus, how to actually

assess the performance should be further evaluated and in particular

whether it is possible to measure actual outcome and not only the

perception of the participants.

In the illustrative case above several events and actions were stud-

ied. A transfer that had a profound negative impact on the intellectual

capital profile led to a decrease in performance. The case study il-

lustrates how changes in different ICCs change the performance. No-

tably, some of the mitigating actions that were implemented to in-
rease the performance through improvements of different aspects

f the ICCs did not increase the performance. This means that not all

ositive or negative changes in the level of intellectual capital will

ave immediate impact on performance, and that the changes shall

e substantial. Notably, the case study also illustrates that the theory

as its limitations. There is no mathematical way of calculating the

alue of each ICC and expressing their combination quantitatively, the

heory is unable to clearly explain exactly why certain changes in one

r several ICCs are sufficient to improve performance, and why others

o not. However, the theory helps to explain and reason about perfor-

ance after major events (the transfer and changes in task difficulty).

t is noteworthy that the theory is on a general level and hence it lim-

ts its predictive capabilities. More fine-grained theories and models

re needed to be able to make predictions based on actual changes

ade in a specific context.

Due to the inability to make accurate predictions, the theory is

imited in terms of exactness, but it helps in explaining and better un-

erstanding the relationships between different key components in

he engineering of software. In other words, the changes to ICCs and

ask difficulty in different contexts should be carefully judged and in

he long-term help in improving the predictive power, although the

redictive power of the theory will be highly context-dependent.

. Discussion

It may be observed that the three components of intellectual cap-

tal relate to education and research in software engineering as well

s organizational specific aspects that cannot be taught directly at

he university. In summary, in software engineering, education is pri-

arily focused on the human capital, software engineering research

s primarily aimed at organizational capital and the social capital has

o be gained by interaction of individuals and to a large extent is in-

uenced by the context in which the individuals develop their pro-

essional career.

.1. Human capital

The main focus of most university education is to increase the hu-

an capital of the students and, hopefully, makes students aware of

he need for social capital. The human capital is built through courses



C. Wohlin et al. / The Journal of Systems and Software 109 (2015) 229–242 241

a

m

T

g

f

a

a

5

a

h

d

e

w

p

p

m

c

m

b

k

p

o

p

v

v

r

a

o

a

h

m

a

5

g

m

H

r

i

o

s

p

o

o

a

c

r

6

S

n

i

r

u

o

f

o

t

e

c

a

i

o

a

t

u

t

r

G

s

o

g

b

a

g

i

s

t

(

t

h

fi

h

i

p

i

w

t

o

a

t

n

t

b

t

A

p

F

E

T

t

2

R

A

A

B

B

B

C
D

D

E

t the university as well as the lifelong learning of individuals as hu-

ans make a career and obtain different experiences and expertise.

hrough education and lifelong learning, humans do increase their

eneral experience, knowledge and competence. Specific knowledge,

or example, related to a specific domain (such as telecom or process

utomation), product, system or service to a large extent should be

cquired at the workplace.

.2. Social capital

The social capital is not necessarily taught directly at universities,

lthough students often implicitly become well aware of the need to

ave good contacts with fellow students and the faculty. Most stu-

ents leverage on their contact network throughout their studies, for

xample, by knowing which fellow student to discuss certain courses

ith and so forth. Furthermore, the social capital is a natural part of

roject- and team-oriented learning, which is suggested as a com-

lementary responsibility for an educational curriculum. This shall

ake students understand the importance and the need for social

apital when developing software. However, the social capital is very

uch context-dependent, and hence the social capital is primarily

uilt from the current work. From an educational point of view, the

ey with respect to social capital is to make students aware of its im-

ortance, while their actual social capital will be highly dependent

n their future workplace. Notably, training mechanisms exist to im-

rove the social capital of development teams at work. Certain de-

elopment approaches (such as agile software development) and de-

elopment practices (such as pair programming, daily meetings and

eview meetings) foster frequent networking and extensive inter-

ction inside the development teams. Furthermore, communities

f practice and participation in different forums foster networking

cross development teams and units. Organizations that have gaps in

uman or organizational capital shall take into consideration invest-

ents into social capital that can become the source of competitive

dvantage.

.3. Organizational capital

The organizational capital is largely addressed by software en-

ineering research, i.e., research targets providing better processes,

ethods, techniques and tools to support software development.

owever, the formulated theory implies that software engineering

esearch should take both human aspects as well as social aspects

nto account. An example of the former is the need for different types

f empirical studies with respect to new ideas emerging from re-

earch. For example, new tools developed by a PhD student should be

roperly evaluated by humans and not only proposed, i.e., new tools

ught to become part of the human capital and not only a potential

rganizational capital. Otherwise there is a risk that tools developed

s part of research projects end up on the shelf. Thus, the research

omplements the educational responsibility of a university in a natu-

al way.

. Conclusions

From empirical observations in industry as described in

ection 3.1, it is concluded that industry does balance the compo-

ents of intellectual capital, i.e. human, social and organizational cap-

tals respectively. In practice frequent changes such as restructuring,

etirements, transfers, as well as technical product evolution, contin-

ously challenge the companies’ abilities to reach the development

bjectives and performance. This article packages the observations

rom industry into a general theory for software engineering. The the-

ry captures the technical aspects of software development through

he concept of organizational capital. It acknowledges that software
ngineering is a human- and knowledge-intensive discipline by in-

luding human capital. Furthermore, challenges related to scalability

nd complexity of software systems make it impossible for a single

ndividual to handle a system of any reasonable size. Development

f these systems requires a combination of expertise and experience,

nd hence interactions between individuals. This is captured in the

heory through the inclusion of social capital. The theory could be

sed by industry to reason about different options when it comes

o having a sufficient intellectual capital in a given situation, and by

esearchers to improve their work in a larger context, i.e. the ICCs.

iven the general nature of the theory and the diversity under which

oftware is developed, the theory as such is not aimed at predicting

utcomes based on changes in any of the three ICCs. Thus, more fine-

rained theories and models are needed to obtain a predictive capa-

ility. The proposed theory is focused on understanding, explaining

nd reasoning about the relationships between human, social and or-

anizational capitals.

It should be noted that the theory emphasizes the importance of

ntellectual capital in software engineering. It helps to realize that

taffing projects is not a straightforward task, and is not only a mat-

er of ensuring individual skills. It is a relationship between the task

its nature and difficulty), and the balance and dynamics between the

hree ICCs.

The general theory is formulated as a balancing of the three ICCs:

uman, social and organizational capitals respectively. The theory is

rmly based in industry practice, and constructs and propositions

ave been formulated to structure and systematize the often implic-

tly handled balancing conducted in industry. The theory helps by

roviding an explanatory power of the observations in industry, and

t may work as a tool to also in general reason about consequences

hen changing the intellectual capital profile.

Further research is needed in particular others have to test the

heory’s usability in other settings than those available to the authors

f this article, and to find ways to evaluate the theoretical constructs,

nd hence the theory as a whole. Thus, the further operationaliza-

ion of the theory still remains. Furthermore, the theory points to the

eed for software engineering research and education to preferably

ake all three components of intellectual capital into consideration

oth when developing new solutions and evaluating them, and when

eaching software engineering.

cknowledgments

We are thankful to Dag Sjøberg for his useful advice that sup-

orted us in describing the formulation of the theory. The Knowledge

oundation, Sweden funds the research through the TEDD (Technical

xcellence in Distributed Development) Project (grant no. 20120200).

he research is also supported by the Smiglo project, which is par-

ially funded by the Research Council of Norway under the grant

35359/O30.

eferences

rgyris, C., Schön, D.A., 1996. On Organizational Learning II: Theory, Method and Prac-
tise. Addison Wesley, Reading, MA, USA.

dler, P.S., Kwon, S.W., 2002. Social capital: Prospects for a new concept. Acad. Manage.

Rev. 27 (1), 17–40.
ontis, N., 1997. Royal Bank Invests in Knowledge-based Industries 2, 1–4.

ontis, N., 1998. Intellectual capital: An exploratory study that develops measures and
models. Manage. Dec. 36 (2), 63–76.

ourdieu, P., 1986. The forms of capital. In: Richardson, J. (Ed.), Handbook of Theory
and Research for the Sociology of Education. Greenwood, New York, pp. 46–58.

onway, M., 1968. How do committees invent? Datamation 14 (4), 28–31.
eMarco, T., Lister, T., 2013. Peopleware: Productive Projects and Teams, third ed.

Addison-Wesley Professional, Boston, MA, USA.

ybå, T., 2001. Enabling Software Process Improvement: An Investigation on the Im-
portance of Organizational Issues. (Dr. ing thesis). Norwegian University of Science

and Technology.
ndres, A., Rombach, H.D., 2003. A Handbook of Software and Systems Engineering—

Empirical Observations, Laws and Theories. Pearson Addison-Wesley, England.

http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0009


242 C. Wohlin et al. / The Journal of Systems and Software 109 (2015) 229–242

S

T

W

W

W

Y

Y

C
s

o
f

e
q

s

S
l

D

o
I

e

p
n

N

m
a

s

l
h

p
C

t

Faraj, S., Sproull, L., 2000. Coordination expertise in software development teams. Man-
age. Sci. 46 (12), 1554–1568.

Feldmann, R.L., Althoff, K.-D., 2001. On the status of learning software organisa-
tions in the year. In: Learning Software Organizations Workshop. Springer Verlag,

Kaiserslautern, Germany, pp. 2–6.
Freeman, P., Wasserman, A.I., Fairley, R.E., 1976. Essential elements of software en-

gineering education. In: Proceedings 2nd International Conference on Software
Engineering. San Francisco, USA, pp. 116–122.

Gongla, P., Rizzuto, C.R., 2001. Evolving communities of practice: IBM global services

experience. IBM Syst. J. 40 (4), 842–862.
Johnson, P., Ekstedt, M., Jacobson, I., 2012. Where’s the theory for software engineer-

ing? IEEE Softw. 29 (5), 94–96.
Lehman, M., 1979. On understanding laws, evolution, and conservation in the large-

program life cycle. J. Syst. Softw. 1 (1), 213–221.
Moe, N.B., Šmite, D., Hanssen, G.K., Barney, H., 2014. From offshore outsourcing to in-

sourcing and partnerships: Four failed outsourcing attempts. J. Empir. Softw. Eng.

19 (5), 1225–1258.
Mouritsen, J., Johansen, M.R., Larsen, H.T., Bukh, P.N., 2001. Reading an intellectual

capital statement: Describing and prescribing knowledge management strategies.
J. Intellect. Capital 2 (4), 359–383.

Musa, J., 1975. A theory of software reliability and its application. IEEE Trans. Softw.
Eng. 1 (3), 312–327.

Nahapiet, J., Ghoshal, S., 1998. Social capital, intellectual capital, and the organizational

advantage. Acad. Manage. Rev. 23 (2), 242–266.
Nonaka, I., Takeuchi, H., 1995. The Knowledge-creating Company: How Japanese Com-

panies Create the Dynamics of Innovation. Oxford University Press, New York, USA.
Ralph, P., Johnson, P., Jordan, H., 2013. Report on the first SEMAT workshop on general

theory of software engineering (GTSE 2012). ACM SIGSOFT Softw. Eng. Notes 38
(2), 26–28.

Rajlich, V.T., Bennett, K.H., 2000. A staged model for the software life cycle. IEEE Com-

put. 33 (7), 66–71.
Rus, I., Lindvall, M., 2002. Knowledge management in software engineering. IEEE Softw.

19 (3), 26–38.
Schön, D.A., 1983. The Reflective Practitioner: How Professionals Think in Action. Basic

Books, New York, USA.
Schultz, T., 1961. Investment in human capital. Am. Econ. Rev. 51 (1), 1–17.

Sjøberg, D.I.K., Dybå, T., Anda, B.C.D., Hannay, J.E., 2008. Building theories in software

engineering. In: Shull, F., Singer, J., Sjøberg, D.I.K. (Eds.), Guide to Advanced Empir-
ical Software Engineering. Springer Verlag, Heidelberg, Germany, pp. 312–336.

Šmite, D., Wohlin, C., 2010. Software product transfers: Lessons learned from a case
study. In: Proceedings of the International Conference on Global Software Engi-

neering. IEEE Computer Society, Princeton, USA, pp. 97–105.
Šmite, D., Wohlin, C., 2011. Strategies facilitating software product transfers. IEEE Softw.

28 (5), 60–66.

Šmite, D., Wohlin, C., 2012. Lessons learned from transferring software products to
India. J. Softw.: Evol. Process 24 (6), 605–623.
tewart, T., 2001. The Wealth of Knowledge: Intellectual Capital and the Twenty-First
Century Organization. Nicholas Brealey, London.

obin, J., 1969. A general equilibrium approach to monetary theory. J. Money Credit
Bank. 1 (1), 15–29.

illcocks, L., Hindle, J., Feeny, D., Lacity, M., 2004. IT and business process outsourcing:
The knowledge potential. Inform. Syst. Manage. 21 (3), 7–15.

ohlin, C., Aurum, A., Angelis, L., Phillips, L., Dittrich, Y., Gorschek, T., et al., 2012. Suc-
cess factors powering industry-academia collaboration in software research. IEEE

Softw. 29 (2), 67–73.

ohlin, C., Šmite, D., 2012. Classification of software transfers. In: Proceedings 19th
Asia-Pacific Conference on Software Engineering (APSEC). Hong Kong, pp. 828–

837.
in, R.K., 2009. Case Study Research: Design and Methods, fourth ed. Sage, Thousand

Oaks, CA.
oundt, M., Subramaniam, M., Snell, S., 2004. Intellectual capital profiles: An examina-

tion of investments and returns. J. Manage. Stud. 41 (2), 335–361.

laes Wohlin received the Ph.D. degree in communication systems from Lund Univer-
ity in 1991. Currently, he is a professor of software engineering and dean of the Faculty

f Computing at Blekinge Institute of Technology, Sweden. He has previously held pro-
essor chairs at the universities in Lund and Linköping. His research interests include

mpirical methods in software engineering, software process improvement, software
uality, and global software engineering. He was the recipient of Telenor’s Nordic Re-

earch Prize in 2004, and a member of the Royal Swedish Academy of Engineering

ciences since 2011. He is editor-in-chief of Information and Software Technology pub-
ished by Elsevier.

arja Šmite received her Ph.D. degree in computer science in 2007 from the University

f Latvia. Currently, she is an associate professor of software engineering at Blekinge
nstitute of Technology in Sweden, where she leads the research efforts related to the

ffects of offshoring for Swedish software-intensive companies. She is also a visiting

rofessor at University of Latvia. Her research interests include global software engi-
eering, large-scale agile software development, and software process improvement.

ils Brede Moe works with software process improvement, agile software develop-

ent and global software development as a senior scientist at SINTEF Information
nd Communication Technology. His research interests are related to organizational,

ocio-technical, and global/distributed aspects. His main publications include several

ongitudinal studies on self-management, decision-making and teamwork. He wrote
is thesis for the degree of Doctor Philosophiae on “From Improving Processes to Im-

roving Practice —Software Process Improvement in Transition from Plan-driven to
hange-driven Development”. He is also holding an adjunct position at Blekinge Insti-

ute of Technology.

http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0035
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0035
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0035
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0037
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0037
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0037
http://refhub.elsevier.com/S0164-1212(15)00174-0/sbref0037

	A general theory of software engineering: Balancing human, social and organizational capitals
	1 Introduction
	2 Related work
	2.1 Intellectual capital and software engineering
	2.2 Theories in software engineering

	3 Theory formulation
	3.1 Background
	3.2 General theory formulation
	3.3 Constructs
	3.3.1 Performance levels
	3.3.2 Intellectual capital

	3.4 Proposition
	3.5 Theory justifications
	3.6 Scope of theory
	3.7 Usage of theory

	4 Empirical case
	4.1 Research design
	4.2 Context, data collection and analysis
	4.3 Balancing intellectual capital components in practice
	4.4 Discussion of the illustrative case study

	5 Discussion
	5.1 Human capital
	5.2 Social capital
	5.3 Organizational capital

	6 Conclusions
	 Acknowledgments
	 References


