
Data preparation as a service based on Apache Spark

Nivethika Mahasivam, Nikolay Nikolov, Dina Sukhobok and
Dumitru Roman

SINTEF, Pb. 124 Blindern, 0314 Oslo, Norway
nivemaham@gmail.com,

{nikolay.nikolov,dina.sukhobok,dumitru.roman}@sintef.no

Abstract. Data preparation is the process of collecting, cleaning and consolidat-
ing raw datasets into cleaned data of certain quality. It is an important aspect in
almost every data analysis process, and yet it remains tedious and time-consum-
ing. The complexity of the process is further increased by the recent tendency to
derive knowledge from very large datasets. Existing data preparation tools pro-
vide limited capabilities to effectively process such large volumes of data. On the
other hand, frameworks and software libraries that do address the requirements
of big data, require expert knowledge in various technical areas. In this paper, we
propose a dynamic, service-based, scalable data preparation approach that aims
to solve the challenges in data preparation on a large scale, while retaining the
accessibility and flexibility provided by data preparation tools. Furthermore, we
describe its implementation and integration with an existing framework for data
preparation – Grafterizer. Our solution is based on Apache Spark, and exposes
application programming interfaces (APIs) to integrate with external tools. Fi-
nally, we present experimental results that demonstrate the improvements to the
scalability of Grafterizer.

Keywords: Distributed Data Parallel Processing, Apache Spark, Big data prepa-
ration, Interactive data preparation

1 Introduction

The movement towards digitalization has spread in prominent domains such as health,
industrial production, defense, and banking, to improve operations using data-driven
decisions. Such domains deploy various tools including sensors, applications, logging
and production databases to collect data in high velocity and large volumes, and extract
relevant information in tabular or text formats [1]. This process produces raw data, of-
ten semi-structured or unstructured, that could contain missing, erroneous, incomplete,
and duplicate values. The raw data needs to be cleaned and transformed into structured
data to meet the expected quality for further usage. Data preparation is an important
step to treat “dirty” datasets by collecting, combining and consolidating datasets that
are suitable for further data analysis. Despite of the importance of data preparation, it
remains a tedious and time-consuming process that requires significant effort [2, 3].

Final version available at Springer : http://dx.doi.org/10.1007/978-3-319-67262-5_10

2

Furthermore, data preparation in the context of big data introduces even more chal-
lenges, both functional and nonfunctional.

One of the main challenges related to large volume data preparation is that existing
frameworks and tools require expert knowledge of specific programming languages,
data models, and computational models. Examples include native language libraries
such as Pandas in Python [4] or Data Frame in the R language1, which are widely used
for data wrangling and preparation. Further, distributed data parallelization (DDP) is
the most widely realized computational model in big data processing [5]. The basic
computational abstraction of DDP performs a computation in parallel, by distributing
smaller data partitions among a set of machines or processes. It provides scalability,
load balancing and fault tolerance. Frameworks that realise DDP, such as Apache Ha-
doop and Apache Spark, are used to implement scalable solutions in the big data do-
main, and significantly increase technical complexity of data workers' data preparation
routines. Implementation of a solution based on the DDP model should consume a large
dataset, split it into partitions, and process and accumulate the results without losing
the semantics of the expected outcome.

A scalable data preparation tool or framework is essential to process large volumes
of data, but existing solutions lack capabilities to effectively perform such operations.
Due to their architecture, it is difficult to realize large-scale data processing techniques
including distributed and concurrent processing. Such solutions include spreadsheet
tools (e.g. Excel and Open Office) that are often used to prepare datasets, especially in
companies that lack the expertise to make use of the frameworks and tools for big data
preparation and processing [6]. Data preparation is often implemented as an iterative
process where new data quality issues can appear while existing ones are being ad-
dressed. Consequent iterations are performed by reviewing the intermediate results pro-
duced from previous iterations. Existing data preparation tools support interactive prep-
aration by providing immediate rendering of intermediate results and suggestions for
improvements. OpenRefine2, Pentaho Data Integration (Kettle)3, and Trifacta Wran-
gler4 are examples of interactive solutions that are used in industries to accelerate the
data preparation process. Such solutions are primarily desktop-oriented applications
that are not dedicated to handling large amounts of data.

In this paper, we propose a solution that addresses the scalability, usability and ac-
cessibility issues in data preparation through a mixed approach that combines interac-
tivity of data preparation tools with the powerful features of frameworks that support
data preparation for big data. Our solution is based on extensions to the web-based
Grafterizer transformation framework [7] that is part of the DataGraft platform [8, 9,
10]5. We propose improvements to Graftwerk – the existing data transformation back-
end of Grafterizer, with the aim to augment its capability to effectively process larger

1 http://www.r-tutor.com/r-introduction/data-frame
2 http://openrefine.org/
3 http://community.pentaho.com/projects/data-integration/
4 https://www.trifacta.com/products/wrangler/
5 https://datagraft.io/

3

datasets. Our solution is a scalable data preparation as a service back-end that can dy-
namically build data preparation pipelines, and effectively support interactive cleaning
and transformation of large volumes of data using DDP techniques.

The contributions of this paper are thereby two-fold:
1. First, we describe an approach for using DDP for scalable data preparation,

based on the use of Apache Spark, which has been identified as a suitable
framework that facilitates scalable data preparation.

2. Second, we propose a proof-of-concept realization of the approach for data
preparation as a service in Grafterizer, along with validation and evaluation
results that demonstrate the difference in performance between our pro-
posed approach and the existing back-end.

The remainder of this paper is organized as follows. In Section 2, we provide a de-
tailed description of our approach for DDP-based data preparation. In Section 3, we
describe a proof-of-concept data preparation as a service back-end that realizes our pro-
posed approach. Section 4 shows the performance of the implemented solution in ex-
periments with large volumes of data. Section 5 discusses related works. Finally, Sec-
tion 6 summarizes this paper, and outlines further development directions of the ap-
proach and implementation.

2 A proposed approach for DDP-based data preparation

2.1 DDP for data preparation

Distributed Data Parallelization is a computational model, proven to effectively per-
form large scale data processing [5]. MapReduce is a popular implementation of the
DDP model that has been adapted in many big data analytic tools [11]. Following the
spike of MapReduce, other programming models were introduced, including in-
memory computing [5] and iterative map-reduce [12]. In-memory computing is a gen-
eral-purpose solution for large-scale computing problems. It is a special form of DDP,
where a computation is performed on a read-only representation of data in memory.
The memory representation is held on a distributed-shared-memory (DSM) that is com-
posed of memory distributed across several machines. Since data preparation processes
are iterative, an in-memory computing model is suitable for the implementation of such
processes. This approach keeps intermediate results in-memory and avoids high disk
input/output latency, unlike MapReduce frameworks. In the following paragraphs, we
discuss some of the most important characteristics of designing a data preparation ap-
proach using DDP.

Handling data parallelism
Parallelism is an important aspect of DDP. We aim to achieve parallelism in two ways:

 Data-flow parallelism: In data-flow parallelism, data is chunked into several parti-
tions and distributed to facilitate ingestion of multiple processors in parallel. This

4

enables processing large datasets that cannot be processed using traditional compu-
tational models. To achieve data parallelism, a computational operation should be
adapted to be executed in parallel and to use partitioned data. Subsequently, the out-
put data from each partition needs to be aggregated according to the semantics of the
operation to produce the final result. DDP operations such as map, reduce, group,
match are all examples of existing DDP patterns [11].

 Control-flow parallelism: Control-flow parallelism is achieved by parallel execution
of multiple operations that do not depend on other operations' results [13]. As men-
tioned earlier, data preparation is an iterative process where the data preparation op-
erations are performed in a pipeline. Fig. 1 exemplifies control-flow parallelism op-
timization on such a pipeline. Suppose that operations p1 and p2 in Fig. 1.a operate
independently on two parts of a dataset (i.e. they do not rely on their respective re-
sults). With control-flow parallelism, the total execution time of the control sequence
t1 of the given operation flow can be shortened to t2 by executing them in parallel,
as shown in Fig. 1.b. Control-flow parallelism provides high throughput of execution
time and optimises resource allocation.

Fig. 1. Control-flow parallelization of a pipeline

Our proposed approach for DDP in data preparation is to use a combination of data-
flow and control-flow parallelism using DDP. Data-flow parallelism is essential to en-
able large-scale data preparation that can scale horizontally. Control-flow parallelism
can be used to improve the throughput by executing dynamically adapted pipelines that
utilize optimal resources on data partitions.

Handling data ingestion
We want to allow cleaning and transformation of collected raw data that are available
in various volumes and formats. A position article [14] shows that 80% of the published
datasets are in tabular format. Hence, in our solution we aim to process datasets that are
already collected and made available in common tabular formats such as CSV, TSV,
Excel and other spreadsheet formats.

5

Data ingestion is a routine for receiving input data for data preparation processes.
The most frequently used data ingestion techniques in big data context are stream pro-
cessing, micro-batch processing and batch processing [15]. Batch processing tech-
niques treat input data as a complete collection that needs to be considered for analysis
[16]. Batch processing is generally used as "store-first, process second" model, where
data is collected in advance and made available to be processed. In stream processing,
the data is ingested as continuous, long running streams [17]. Data streams are produced
based on event-by-event or the complex-event-model. Data streams are used for real-
time analysis but are less appropriate when it comes to processing tabular formats of
data. Micro-batch processing combines aspects of both batch processing and stream
processing by treating data as a sequence of small batches. Streaming or micro-batching
data can be a solution to overcome the problem of processing large data. However,
since we aim to perform ETL operations on tabular data, these approaches assume data
to be homogenous, and will not always result in the expected output, especially when
performing collective operations or row-dependent operations. Hence, we focus on sup-
port for batch processing of input data since the approach is more suitable for pro-
cessing the targeted input datasets.

2.2 Apache Spark as a framework for DDP-based data preparation

According to [18], the biggest challenge faced in data preparation solutions for big data
is providing a processing model that can do complex reasoning of small volumes of
data, simple processing of large volumes of data, and parallel processing of very large
volumes of data. In [18], the authors argue that a feasible big data preparation tool
should provide both expressiveness and scalability of functionalities. Thereby, we com-
pared available highly expressive and scalable solutions. Native libraries such as Pan-
das in Python or Data Frame in the R language are widely used in data preparation
implementations. However, deploying these frameworks as a scalable solution in a dis-
tributed environment is challenging since no native support for this type of deployment
currently exists. On the other hand, big data frameworks provide native tools to deploy
an application in a distributed environment out of the box. Among big data frameworks
Apache Hadoop and Apache Spark are used to implement scalable, batch-processing
solutions. Apache Spark has been selected for the implementation of our solution since
experiments show that Spark has better performance than Hadoop for big data analytics
[19].

Apache Spark is a general-purpose, in-memory data processing framework that re-
alizes DDP. It runs on master-slave architecture, which can scale out with additional
master and/or slave nodes. One of the advantages of Spark is its computational abstrac-
tion called resilient distributed datasets (RDDs) [20]. RDDs are immutable collections
of objects that are partitioned across different Spark nodes in the network. It represents
the data in-memory on a DSM to enable data flow parallelism and support batch-pro-
cessing of large volumes of data.

Transformations in Spark are operations that do not depend on inputs from other
partitions such as map, filter, rename. An RDD is transformed into another RDD when
a transformation is executed. Spark implements the notion of lineage for RDDs to keep

6

the information of how a newer RDD is derived from parent RDD. When a partition is
lost, Spark rebuilds the partition from stored data to facilitate e�cient fault-tolerance
to the system and implement data-flow parallelism.

Furthermore, Spark benefits from lazy execution of transformations to create a di-
rected acyclic-graph (DAG) of data and transformations instead of applying transfor-
mations immediately. Once the graph is followed by an action, Spark executes the
formed DAG by distributing it as several tasks among nodes. An action in Spark is an
operation that reduces the output from all partitions into a final value such as reduce.
Lazy execution of transformations is used to further optimize the operations in accord-
ance with the control-flow. As an example, if a user wants to apply two independent
filters on two different parts of a dataset, and a global operation on the entire data, Spark
would optimize by jointly (as opposed to sequentially) applying the independent filters
without constructing the intermediate dataset after each filter. This optimization
benefits the evaluation of several consecutive RDDs, and provides efficient implemen-
tation of iterative execution of the pipeline.

In addition, DataFrame is an extended model of RDD in the SparkSQL package,
which organizes data into named columns, conceptually equivalent to a relational data-
base structure [19]. It provides a domain-specific language for relational operations,
including select, filter, join, groupBy, and enables users to perform SQL-like queries
on DataFrames. By extending these APIs, we provide an expressive data preparation
framework that accommodates most of the data cleaning operations in relatively less
complex APIs. Finally, SparkSQL extends a novel optimizer called Catalyst [19], that
implements query analysis, logical optimization and physical planning. Catalyst sup-
ports both rule-based and cost-based optimization of relational operations. Generating
optimized queries based on the features in Catalyst allows us to indirectly realize rela-
tional query optimization and control-flow parallelization. Therefore, in our solution, a
pipeline created using DataFrame in Spark will be optimized before it is executed using
Catalyst.

3 Realization of DDP-based data preparation approach in
Grafterizer

In this section, we introduce a proof-of-concept implementation of the approach to pro-
vide a scalable, dynamic data preparation service using Spark. The service is deployed
as a data preparation back-end for Grafterizer that processes, cleans and transforms
large volumes of tabular data. Currently, the implementation supports CSV, TSV, and
flat-JSON files, and provides rich, procedural APIs for data preparation operations that
can be easily used to build pipelines on Spark. Our solution allows for dynamic creation
of pipelines, which is the ability to create and/or modify a data preparation pipeline
during run-time. This enables the execution of the data preparation process interac-
tively, so that users can perform incremental modifications of the data cleaning pipeline
and observe the results.

7

3.1 Architecture

The high-level architecture of the service is illustrated in Fig. 2. Below, we describe
each component and its functional and technical contributions in more detail.

Fig. 2. High-level architecture of the service

Sparker
Sparker is a component that provides APIs to enable data preparation pipelines as Spark
jobs. It implements data preparation operations [21] using DataFrame and RDD APIs,
and provides pattern-oriented procedural APIs that can be used to build a pipeline.
Sparker encapsulates the implementation complexity of data cleaning operations in
Spark. It provides commonly used APIs in data preparation operations that are not al-
ready available in DataFrame. Especially reshape functions merging grouped data, con-
catenating multiple columns, splitting of a given column using a separator into multiple
columns, custom group functions, filling missing values, custom query functions with
simple filters, pagination of queried data and adding additional rows of values to a da-
taset are notable features. To adapt a pipeline to perform data preparation, we designed
every API to receive DataFrame objects with additional parameters depending on the
operation’s semantics, and return the result as an altered DataFrame object according
to the pipeline pattern. This allows us to create a chain of operations by using the output
of any operation as an input to another operation. The main categories of Sparker’s
APIs are: 1) converting input files to DataFrame; 2) data cleaning/preparation opera-
tions; 3) converting DataFrame into suitable output format as shown in Fig. 3. A stand-
ard pipeline would start with the conversion of an input file, one or more data clean-
ing/preparation operations, and finally the generation of the final result as output.

Pipeline Service
The Pipeline Service provides dynamic creation of pipelines using Sparker APIs, and
submits the current version of the pipeline to the Spark cluster. The Pipeline Service
has two main components: The Pipeline Generator and the Pipeline Submitter. The

8

Pipeline Generator initially receives requests with input data and corresponding pipe-
line instructions, and dynamically generates pipelines using the requested information.
The pipeline is implemented in Clojure – a dynamic programming language that allows
the creation, modification and execution of programming instructions during runtime.

Fig. 3. Pipeline pattern implementation using DataFrames

Furthermore, pure functions in Clojure transform immutable data structures into some
output format. We use the thread-first macro, which is denoted by "->" in a pipeline.
Taking an initial value as its first argument, the macro threads it through one or more
expressions, thus constituting a pipeline. A sample pipeline using Pipeline Service’s
APIs is depicted in Fig. 4.

Fig. 4. A sample pipeline using Pipeline Service APIs realizes pipeline pattern

The Clojure function names are used as APIs in the Pipeline Service to enable creation
and execution of Sparker pipeline instructions during run-time. Once a pipeline is cre-
ated, the Pipeline Generator forwards the created pipeline to the Pipeline Submitter.
The Pipeline Submitter submits given pipeline instructions as a Spark job using spark-

9

submit. spark-submit is a script provided by Apache Spark that submits any given pro-
gramming instruction created using Spark as a Spark job, which can then be executed
on a Spark cluster. Once the job is executed Pipeline Service sends a response with the
processed data.

These APIs are used to create a pipeline of data preparation operations in client ap-
plications. Fig. 4 shows a sample pipeline that uses the Pipeline Service APIs and
demonstrates how the pipeline pattern was implemented. Rows 1 and 2 define the pipe-
line function and the data input parameter to the pipeline through which we pass the
dataset as argument. This is followed by the thread-first operator in line 4. Lines 5
through 8 are calls to the APIs exposed through the Pipeline Service. They consecu-
tively create the data structure (DataFrame) out of the input data, take the first row as
table headers, take the first 16 columns of data (discarding the rest), and, finally, filter
out duplicate rows based on a vector of unique values of the cells in each row that
correspond to the columns "Year", "Month", "DayofMonth" and "DayofWeek".

Grafterizer
Grafterizer has been integrated to generate pipelines using calls based on the DSL/APIs
provided by the Pipeline Service during user interaction. Once a pipeline is created/al-
tered an HTTP request is sent to the pipeline service with the metadata of input and the
generated pipeline using the DSL/APIs. The pipeline is then executed by the Spark-
based back-end and the resulting data/output is sent back as an HTTP response to Graft-
erizer and immediately previewed. The back-end service proposed in this paper has
been integrated with the currently available user interface of Grafterizer, which is
shown in Fig. 5 (the left part representing an example of data transformation pipeline
and the table depicting the data on which the pipeline executes).

Fig. 5. Grafterizer’s preview of cleaned data using current pipeline

4 Evaluation

We conducted a set of experiments to evaluate the performance of the proposed service.
The experiments were conducted on a cluster consisting of a master node with Intel

10

Core i7 3.3GHz, 4 CPU Cores, 15 GB of RAM, 512GB of SSD, running on Ubuntu
14.04 LTS and 4 worker nodes each having Intel Core i7 3.3GHz, 12 CPU Cores, 64
GB of RAM, 480GB SSD and running on CentOS 7. A Spark executor is a process that
serves a Spark application, and typically runs on a worker node. A Spark driver is a
process that coordinates the execution of a Spark job on worker nodes. A Spark appli-
cation can scale-out with more executors and scale-up with more concurrent tasks as-
signed to a process.

To analyze the scalability of the proposed solution, we tuned the Spark cluster with
different numbers of executors to study its ability to scale out. By increasing the number
of executors, we multiplied the memory allocated to process input, CPUs and concur-
rent tasks per executor. In this experiment, we used the Price Paid Data (PPD)6 dataset
which is approximately 3.5 GB. We created a sample data pipeline to load the input
data, use the first-row as a header row for the schema and then use filters on selected
columns followed by grouping of data. We executed the same pipeline on the given
input dataset multiple times with varying number of executors, and recorded the exe-
cution times of the first request sent to the cluster once a cluster setup was initialized.
In addition, we recorded the average of the three following requests sent to that cluster
setup, because of the significant difference between the execution time of the first and
any following requests. The difference is due to overhead of distributing dependent
source files to worker nodes from drivers, which is done only when the first request is
executed. The result of the experiment is illustrated in Fig. 6.

Fig. 6. Execution time of Pipeline Service with increasing number of executors

The experiment clearly shows that the execution time is gradually decreasing. This val-
idates that the performance of the service increases for a given input when the cluster
scales-out with more executors. Further, this proves that the proposed service can pro-
cess large volumes of data and scale out with more executors. The service can scale out

6 https://www.gov.uk/government/statistical-data-sets/price-paid-data-downloads

11

with the size of input data, since it is based on in-memory computation, and adding
more computing resources increases the capability of processing larger volumes of data.

Further, we benchmarked the performance of Grafterizer with the proposed service
on a single host compared to original Grafterizer with traditional back-end to measure
the improvement with respect to the current system. Due to the limitations in the ability
to process large volumes of data by existing system, we created input datasets by sam-
pling the UK Road Accidents Safety Data in different sizes. We created inputs that
increase by approximately 10 MB from 10 MB to 100 MB. Experiments were per-
formed on a computer with Intel Core i5 2.5GHz processor with 4 CPU Cores, and 8GB
of RAM. Equivalent pipelines that can be executed by each system were created, and
the execution time for each input of every system were recorded. The results of the
experiment are depicted in Fig. 7.

The graph clearly shows that the proposed service is almost four times faster than
the existing Grafterizer back-end on a single node deployment. Further, the existing
Grafterizer back-end was not able to effectively process data bigger than 75 MB on the
test hardware, whereas the proposed service could easily process larger input in a short
time. This shows that the new service has significantly improved Grafterizer’s perfor-
mance and capacity to process large data even as a single-node deployment.

Fig. 7. Performance evaluation of the service on a single-node

5 Related work

The solution proposed in this paper is an alternative to the existing Grafterizer back-
end: it enables Grafterizer to work with larger volumes of data by integrating a scalable-
backend system that can effectively scale out on a distributed environment with the size
of data, and efficiently execute data preparation pipelines. This solution eliminates the

0

50

100

150

200

250

300

350

400

9.3 18.5 27.8 37.1 46.4 55.6 64.9 74.3 83.6 94.9

E
xe

cu
ti

on
 t

im
e

(S
ec

)

Size of data (MB)

Grafterizer with current back-end Grafterizer with Spark-based back-end

12

dependencies and complexities of implementing and executing a scalable data prepara-
tion pipeline in Grafterizer.

Furthermore, the work presented in this paper is related to scalable data processing
systems, and data cleaning and transformation tools for big data. In the following we
discuss the most relevant recent works in these areas, pointing out the main differences
between existing solutions and our proposed approach.

SparkGalaxy [22] is a big data processing toolkit designed to perform complex ex-
periments using data mining and analysis for large amounts of bio-medical data.
SparkGalaxy uses Apache Spark’s RDD and Graph features to represent data and work-
flows in a distributed fashion. SparkGalaxy follows a similar methodology to our pro-
posed solution to solve scalability problems. SparkGalaxy focuses on enabling large-
scale, workflow-based data mining of biomedical data whereas our solution focuses on
enabling a general purpose scalable data preparation tool. Our solution is provided as a
service and can be used by other client systems than Grafterizer, using HTTP requests.
SparkGalaxy was not designed to be a solution provided as a service. On the other hand,
compared to SparkGalaxy, our solution does not directly support integration of machine
learning algorithms.

Cleanix [23] is a prototype system for cleaning relational big data. It ingests data
from multiple sources and cleans them on a shared-nothing cluster. The backend system
of Cleanix is built on top of an extensible and flexible data-parallel framework called
Hyracks. A key difference is that our solution is based on Apache Spark. Compared to
Spark, Hyracks does not support iterative algorithms and is not an in-memory compu-
ting framework [24], making Apache Spark more attractive for data cleaning. Never-
theless, we are not aware of any studies that directly compares Spark and Hyracks per-
formance. Furthermore, Cleanix provides data cleaning operations mainly in four cate-
gories of operations (value detection, incomplete data filling, data deduplication and
conflict resolution), while our solution supports expressive APIs to perform Cleanix's
four types of operations, as well as other operations such as data reshaping and group-
ing. Furthermore, one could argue that our solution is more user-friendly compared to
Cleanix since the data cleaning workflow is supported by graphical interactive pre-
views, and data upload through an intuitive graphical drag-and-drop component.

OpenRefine7 is an open-source tool for data cleaning/transformation and integration,
and provides interactive user-interfaces with spreadsheet style interactions to easily
support data cleaning, and previews similar to Grafterizer. OpenRefine was designed
as a desktop application rather than a service. It is a memory-intensive tool that runs on
a desktop system which limits the size of data that can be processed. There are attempts
to extend OpenRefine to support large data processing, e.g., BatchRefine8 and Open-
Refine-HD9. OpenRefine-HD extends OpenRefine to use Hadoop’s MapReduce jobs
on HDFS clusters. However, Apache Spark is considered faster for iterative data prep-

7 http://openrefine.org/
8 https://github.com/fusepoolP3/p3-batchrefine
9 https://github.com/rmalla1/OpenRefine-HD

13

aration process [23]. Such OpenRefine extensions require manual execution of trans-
formation in a distributed environment whereas our solution eliminates such overhead
by integrating it with Grafterizer in an automated workflow.

6 Summary and outlook

In this paper, we proposed a data preparation as a service solution that addresses the
scalability, usability and accessibility issues in data preparation. We proposed an ap-
proach for using DDP for scalable data preparation, based on the use of Apache Spark,
and presented a proof-of-concept realization of the approach in Grafterizer, along with
validation and evaluation results that demonstrate the difference in performance in data
preparation between our proposed approach and the existing back-end of Grafterizer.
Experiments show that the proposed implementation scales out with more executors,
and performs better than the existing Grafterizer back-end on a single-node deploy-
ment. It is worth mentioning that the functional benefits of the proposed solution in-
clude user-friendliness, flexibility and ease of use for users with moderate technical
skills. Overall, the service is effective and efficient for large-scale data preparation.

As part of future work, we are considering extending the proposed solution to sup-
port various data formats as input for data preparation, and operationalize it for the
production environment of DataGraft.

Acknowledgements. The work in this paper is partly supported by the EC funded pro-
jects proDataMarket (Grant number: 644497), euBusinessGraph (Grant number:
732003), and EW-Shopp (Grant number: 732590). The authors would like to thank
Bjørn Marius von Zernichow for his help in improving the readability of the camera-
ready version of the paper.

References

1. M. Atzmueller, S. Oussena and T. Roth-Berghofe, "Data Preparation for Big Data Analytics:
Methods and Experiences.," in Enterprise Big Data Engineering, Analytics, and
Management, IGI Global, 2016, pp. 157-170.

2. S. Kandel, J. Heer, C. Plaisant, J. Kennedy, F. V. Ham, N. H. Riche and P. Buono, "Research
directions on data wrangling: Visualizations and transformations," Information
Visualization, pp. 271-288, 2011.

3. S. Krishnan, M. J. Franklin, K. Goldberg and E. Wu, "ActiveClean: An Interactive Data
Cleaning Framework For Modern Machine Learning," in International Conference on
Management of Data, San Francisco, California, USA: ACM, 2016.

4. W. McKinney, "pandas: a Foundational Python Library for DataAnalysis and Statistics,"
NEM (Networked & Electronic Media), 2011.

5. C. J. Jackson, V. Vijayakumar, A. M. Quadir and C. Bharathi, "Survey on Programming
Models and Environments for Cluster Cloud, and Grid Computing that defends Big Data,"
Procedia Computer Science (2nd International Symposium on Big Data and Cloud
Computing (ISBCC’15), p. 517–523, 2015.

14

6. S. Kandel, A. Paepcke, J. Hellerstein and J. Heer, "Enterprise data analysis and visualization:
An interview study.," IEEE Trans. Vis. Comput. Graph, pp. 2917-2926, 2012.

7. Sukhobok, D., Nikolov, N., Pultier, A., Ye, X., Berre, A., Moynihan, R., Roberts, B.,
Elvesæter, B., Mahasivam, N. and Roman, D., 2016, May. Tabular data cleaning and linked
data generation with Grafterizer. ESWC (Satellite Events) 2016: 134-139.

8. Roman, D., Nikolov, N., Putlier, A., Sukhobok, D., Elvesæter, B., Berre, A. J., Ye, X., Di-
mitrov, M., Simov, A., Zarev, M., Moynihan, R., Roberts, B., Berlocher, I., Kim, S., Lee,
T., Smith, A., & Heath, T. DataGraft: One-Stop-Shop for Open Data Management. To ap-
pear in the Semantic Web Journal (SWJ) – Interoperability, Usability, Applicability (pub-
lished and printed by IOS Press, ISSN: 1570-0844), 2017, DOI: 10.3233/SW-170263.

9. Roman, D., Dimitrov, M., Nikolov, N., Putlier, A., Sukhobok, D., Elvesæter, B., Berre, A.
J., Ye, X., Simov, A. & Petkov, Y. DataGraft: Simplifying Open Data Publishing. ESWC
(Satellite Events) 2016: 101-106.

10. Roman, D., Dimitrov, M., Nikolov, N., Putlier, A., Elvesæter, B., Simov, A., Petkov, Y.
DataGraft: A Platform for Open Data Publishing. In the Joint Proceedings of the 4th Inter-
national Workshop on Linked Media and the 3rd Developers Hackshop.
(LIME/SemDev@ESWC 2016).

11. J. Wang, D. Crawl, I. Altintas, K. Tzoumas and V. Markl, "Comparison of Distributed Data-
Parallelization Patterns for Big Data Analysis: A Bioinformatics Case Study," in
Proceedings of the Fourth International Workshop on Data Intensive Computing in the
Clouds (DataCloud), 2013.

12. J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu and G. Fox, "Twister: A
Runtime for Iterative MapReduce.," in Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing, 2010.

13. M. Bala, O. Boussaid and Z. Alimazighi, "Big-ETL: Extracting-Transforming-Loading
Approach for Big Data.," in Proceedings of International Conference on Parallel and
Distributed Processing Techniques and Applications, Las Vegas, Neveda, USA., 2015.

14. A. Krukowski, Y. Kompatsiaris,, S. Papadopoulos and et al., "Big and Open Data Position
Paper," 2013.

15. T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. Lax and S. Whittle, "The Dataflow
Model: A practical approach to balancing correctness, latency, and cost in massive-scale,
unbounded, out-of-order data processing.," in Proceedings of the 41st International
Conference on Very Large Data Bases (pp. 1792-1803), Kohala Coast, Hawaii: VLDB
Endowment., 2015.

16. M. Sims, J. F. Kurose and V. R. Lesser, "Streaming versus Batch Processing of Sensor Data
in a Hazardous Weather Detection System.," in Proceedings of Second Annual IEEE
Communications Society Conference on Sensor and Ad Hoc Communications and Networks
(SECON 2005), 2005.

17. S. Shahrivari, "Beyond batch processing: towards real-time and streaming big data.,"
Computers, vol. 3, no. 4, pp. 117-129, 2014.

18. T. Furche, G. Gottlob, B. Neumayr and E. Sallinger, "Data wrangling for big data: Towards
a lingua franca for data wrangling.," 2016.

19. M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan, M. J.
Franklin, A. Ghodsi and M. Zaharia, "Spark sql: Relational data processing in spark," in
Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data
(pp. 1383-1394). ACM., 2015.

20. M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S.
Shenker and I. Stoica, "Resilient distributed datasets: A fault-tolerant abstraction for in-

15

memory cluster computing," in Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation (pp. 2-2). USENIX Association., 2012.

21. D. Sukhobok, N. Nikolov and D. Roman, "Tabular Data Anomaly Patterns," in 3rd
International Conference on Big Data Innovations and Applications. Innovate-Data 2017,
2017 accepted. In press.

22. S. Riazi, "SparkGalaxy: Workflow-based Big Data Processing.," 2016.
23. H. Wang, M. Li, Y. Bu, J. Li, H. Gao and J. Zhang, "Cleanix: A parallel big data cleaning

system," ACM SIGMOD Record, vol. 44, no. 4, pp. 35-40, 2016.
24. M. Kaur and G. Dhaliwal, "Performance Comparison of Map Reduce and Apache Spark

on," International Journal of Computer Sciences and Engineering, vol. 3, no. 11, 2015.

