
The single-cell transport problem for two-phase flow with
polymer

Xavier Raynaud · Knut-Andreas Lie ·
Halvor Møll Nilsen · Atgeirr Rasmussen

Abstract Polymer injection is a widespread strategy in enhanced oil recovery.
Polymer increases the water viscosity and creates a more favorable mobility ratio
between the water and the oil phase. Pressure-transport splitting of the equations
combined with reordering strategies can be used to significantly increase the com-
putational speed of two-phase flow simulations with polymer ([10]). Such scheme
relies on a robust single-cell solver, which computes the saturation and polymer
concentration of a cell, given the total flux and the saturation and polymer con-
centration of the neighboring cells. In this paper, we consider a standard but
relatively comprehensive polymer model and show that, in the case of a two-point
flux approximation, the single-cell problem always admits a solution and that the
solution is unique. The uniqueness part of the proof is essentially based on mono-
tonicity arguments while the existence part is based on bracketing. In particular,
it shows that also the pressure equation must be chosen with care. For the seg-
regation part, we observe that, even if the polymer belongs to the water phase,
water-phase upwinding of the polymer concentration leads to ill-posedness and we
present an alternative which guarantees well-posedness.

1 Introduction

In reservoir with highly viscous oil, fingering effects lead to water penetrating easily
the most permeable parts of the oil region. In this case, early water breakthrough
letting a large fraction of the reservoir unswept implies a considerable loss in
oil recovery. To avoid this situation, enhanced oil recovery strategies have been
developed and polymer injection is one of the most important. The polymer is used
to increase the water viscosity ratio and establish a more favorable mobility ratio
between the two phases. Polymer are miscible in water but, in realistic reservoir
models, the coarseness of the grid does not allow for a correct computation of the
mixing zone. Instead, we have to resort to averaging models (see [1,6]) and the
most popular is the Todd-Longstaff mixing model [12], which is used in several
commercial simulator, as Eclipse and CMG. In this paper, we consider a two
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phase flow problem with polymer injection. In addition to the Todd-Longstaff
mixing model, we also include permeability reduction effects, polymer adsorption
and dead pore space.

Fully implicit solvers are usually prefered for their robustness but may, in some
context, be computationally too expensive. An alternative is to use splitting tech-
niques (see e.g. [5]). Here, we split the governing equations consisting of the mass
conservation equations for water, oil and polymer into a pressure equation and two
transport equations for water saturation and polymer concentration. The pressure
and transport equations are then solved sequentially. In [10], the authors study
an iterative implicit transport solver, where the nonlinear transport equations for
saturation and concentration are solved cell by cell. The optimal configuration for
such solver is when all the cells can be reordered following the direction of the
flow, as the computations are done only once for each cell [11]. When using a
two point flux approximation and in the absence of gravity, the pressure values
in each cell directly provides us directly with an ordering of the cells so that, in
this case, total reordering is always guaranteed. This aspect makes attractive a
further splitting of the transport equation into a Darcy component and a gravity
component. Moreover, from the physical point of view, polymer is used in heavy
oil reservoir so that the effect of gravity segregation are not so strong. When the
cells cannot be reordered, one can use a nonlinear Gauss-Seidel algorithm which
iterates until convergence over each block of cells that are made inter-dependent
by the orientation of the flux. When the cells can be reordered, the algorithm we
use is still a nonlinear Gauss-Seidel algorithm, which converges in one iteration.
In the case of a two phase flow problem (without polymer), it is shown in [7] that
a non-linear Gauss-Seidel algorithm for the transport equation is globally conver-
gent, that is, converges from any given starting point. In [10], we show the good
scalability properties of this scheme and its computational efficiency.

The nonlinear Gauss-Seidel algorithm relies heavily on a robust solver for the
single-cell problem. The single-cell problem consists of computing the saturation
and concentration in a given cell, knowing the saturation and concentration in the
neighboring cell and the total flux. The total flux is obtained in the pressure step
where the pressure equation is solved. Mathematically, the single-cell equations
is a set of two non-linear equations whose particular form depends on the time
step, the geometry, the fluid and rock properties, the saturation and concentration
values of the neighboring cells and the total flux. The main achievement in this
paper is to show that the single cell problem is always well-posed and, in par-
ticular, for any time step length. By well-posedness, we mean that there exists a
solution and that the solution is unique. In the case of the Darcy component, we
extend the results obtained in [10] for the case with equal fluid compressibilities
to the case with different compressibilities, assuming that one of the two phases
is always more compressible than the other. This assumption is not too restrictive
as oil is typically always more compressible than water. The well-posedness result
relies on some properties of the pressure equation, which has to be chosen with
care. For the gravity component, we use a standard phase upstreaming for satu-
ration but for the polymer concentration, the problem is more delicate. At first,
we consider the water upstream direction to evaluate the polymer concentration
on the faces but this choice does not lead to the well-posedness of the solution.
We present an alternative choice, mixing both upstream and downstream values,
which guarantees well-posedness.
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2 Polymer Model

Our starting point is the mass conservation equations for oil, water, and polymer

∂

∂t
(ραφSα) +∇ · (ραvα) = 0, α ∈ {w, o}, (1)

∂

∂t
(ρwφSwc) +∇ · (cρwvwp) = 0. (2)

Here, ρα, vα, and Sα denote density, velocity, and saturation of the phase α. The
porosity is denoted by φ and is assumed to be a function φ(p) of pressure only,
c is the polymer concentration, and vwp the velocity of water containing diluted
polymer. Sources and sinks may be included in a manner equivalent to boundary
conditions, and are left out of the above equations.

To model the viscosity change of the mixture, we use the Todd–Longstaff model
[12]. This model introduces a mixing parameter ω ∈ [0, 1] that takes into account
the degree of mixing of polymer into water. Assuming that the viscosity µm of
a fully mixed polymer solution is a function of the concentration, the effective
polymer viscosity is defined as

µp,eff = µm(c)ωµ1−ω
p with µp = µm(cmax). (3)

The viscosity of the partially mixed water is given in a similar way by

µw,e = µm(c)ωµ1−ω
w . (4)

The effective water viscosity µw,eff is defined by interpolating linearly between the
inverse of the effective polymer viscosity and the partially mixed water viscosity

1

µw,eff
=

1− c/cmax

µw,e
+
c/cmax

µp,eff
. (5)

To take the incomplete mixing into account, we introduce the velocity of water
that contains polymer, which we denote vwp. For this part of the water phase, the
relative permeability is assumed to be equal to krw and the viscosity is equal to
µp,eff . We also consider the total water velocity, which we still denote vw and for
which the viscosity is given by µw,eff . Darcy’s law then gives us

vw = − krw
µw,effRk(ca)

K(∇p− ρwg∇z), (6)

vwp = − krw
µp,effRk(ca)

K(∇p− ρwg∇z) = m(c)vw, (7)

as we assume that the presence of polymer does not affect the pressure and the
density. The polymer mobility factor m(c) is defined as

m(c) =
µw,eff

µp,eff

and, after some simplifications, we get

m(c) =
[(

1− c

cmax

)( µp
µw

)1−ω
+

c

cmax

]−1

. (8)
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The function Rk(ca) denotes the actual resistance factor and is a non-decreasing
function which models the reduction of the permeability of the rock to the water
phase due to the presence of absorbed polymer. The concentration of absorbed
polymer is denoted by ca. We introduce the total flux as v = vw + vo. We have

v = −(λw + λo)K∇p+ g(λwρw + λoρo)K∇z

and, after some computation, we obtain the following expression of vα as a function
of v

vw = fwv + vg and vo = fov − vg (9)

with

vg =
λwλo
λw + λo

(ρw − ρo)gK∇z. (10)

Here, λα denotes the mobility of phase α, i.e.,

λw =
krw

µw,effRk(ca)
and λw =

kro
µo

,

and fα corresponds to the fractional flow, fα = λα/(λw + λo). The time scale of
adsorption is much larger than that of mass transport and we will assume that
adsorption takes place instantaneously so that ca is a function of c only. The
reference rock density is ρr,ref and the reference porosity φref. The adsorption of
polymer is then taken into account by replacing (2) by

∂

∂t
(ρwφSwc) +

∂

∂t
(ρr,ref(1− φref)c

a) +∇ · (cρwvwp) = 0. (11)

It is natural to assume that ca is an increasing function of c. Polymer cannot
reach the smallest pores and, as a result, the effective pore volume for the polymer
solution is smaller than the pore volume of the rock. This effect can be modeled
by replacing (11) with

∂

∂t
(ρwφ(1− Sdpv)Swc) +

∂

∂t
(ρr,ref(1− φref)c

a) +∇ · (cρwvwp) = 0. (12)

where Sdpv denotes the fraction of the pore volume which is not accessible to poly-
mer. The introduction of dead pore volume has the effect to increase the mobility
of the polymer solution. However, the model equation (12) yields to instabilities
because it allows polymer to go faster than its solvent (water). In a forthcoming
article, we show that a consistent way to introduce dead pore volume is to replace
the definition of the effective water viscosity given by (5) by

1

µw,eff
=

1− c/cmax

µw,e
+

c/cmax

(1− Sdpv)µp,eff
. (13)

In this case, the polymer mobility factor becomes

m(c) =
µw,eff

µp,eff
=
[(

1− c

cmax

)( µp
µw

)1−ω
(1− Sdpv) +

c

cmax

]−1

. (14)

Finally the modeling equations are

∂

∂t
(ραφSα) +∇ · (ραvα) = 0, (15a)

for α ∈ {w, o},
∂

∂t
(ρwφSwc) +

∂

∂t
(ρr,ref(1− φref)c

a) +∇ · (cρwvwp) = 0. (15b)

where vα and vwp are defined in (6) and (7) using (3), (4) and (13).
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3 Discretization and Splitting of the equations

Simple PVT behaviour is modeled through the formation-volume factors bα =
bα(p), defined by ρα = bαρ

S
α, where ρSα is the surface density of the phase α ∈ {w, o}.

Inserting this into (15), the system can be simplified by dividing each equation
with the appropriate surface density ρSα,

∂

∂t
(bαφSα) +∇ · (bαvα) = 0, (16a)

∂

∂t
(bwφSwc) +

∂

∂t
((1− φref)ĉ

a) +∇ · (bwcvwp) = 0, (16b)

where, for convenience, we have introduced the short-hand ĉa = caρr,ref/ρ
S
w. To

discretize (16), we introduce a grid consisting of cells {Ci} with a bulk volume Vi,
integrate over each cell in space, and apply a standard implicit method for the
temporal derivative. This gives the discrete transport equations

Rα,i =
(
bα,iφiSα,i

)n+1 −
(
bα,iφiSα,i

)n
+
∆t

Vi

∑
j

(
bα,ijvα,ij

)n+1
= 0, (17a)

for α ∈ {w, o} and

Rc,i =
(
bw,iφiSw,ici + (1− φref,i)ĉ

a
i

)n+1

−
(
bw,iφiSw,ici + (1− φref,i)ĉ

a
i

)n
+
∆t

Vi

∑
j

(
bw,ijcijvwp,ij

)n+1
= 0. (17b)

Here, subscripts i denote quantities associated with cell Ci and subscripts ij de-
note quantities associated with the interface between cells Ci and Cj . Superscripts
denote time steps. To derive a discrete pressure equation, we sum the two phase
equations, (17), using (9) and the condition Sw + So = 1 to obtain the pressure
residual equation

Rp,i = φn+1
i −φni

∑
α∈{w,o}

( bnα,i
bn+1
α,i

Snα,i
)
+
∆t

Vi

∑
j

∑
α∈{w,o}

bn+1
α,ij

bn+1
α,i

(fα,ijvij+gα,ij)
n+1 = 0.

(18)
Here, vij is a discretisation of the total flux. We use a two point flux approximation
and we obtain a relation of the form

vij = −Tij(pj − pi) + gij . (19)

The transmissibility Tij depends on saturation and concentration and gij is a
discretization of the gravity term

∫
Ci∩Cj g(λwρw + λoρo)K∇z · ndA. The exact

form of gij does not matter on the results which are presented here. The terms
gw,ij and go,ij correspond to discretizations of

∫
Ci∩Cj vg · n dA. Again, the exact

form of gα,ij does not matter here for the pressure equation (for the transport
equation, we will handle this term with care, see Section 5) but we require that
gw,ij = −go,ij . Our overall system will consist of a pressure equation, (18), and two
transport equations, (17a) with α = w for the water saturation and (17b) for the
polymer concentration. To solve this coupled system, we use a standard sequential
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solution procedure that separates and solves the pressure and transport equations
in consecutive steps. We also split the transport equations (18) into a Darcy and
gravitation component. The Darcy step consists of solving(

bw,iφiS
∗
w,i

)n+1 −
(
bw,iφiSw,i

)n
+
∆t

Vi

∑
j

(
bw,ijfwvij

)n+1
= 0, (20)

and the corresponding residual equation for polymer (see (24)) to obtain the in-
termediate saturation and concentration values S∗,n+1

i and c∗,n+1
i which are used

in the segregation step given by(
bw,iφi(Si − S∗i )

)n+1
+
∆t

Vi

∑
j

(
bw,ij gw,ij

)n+1

ij
= 0, (21)

and the corresponding residual equation for polymer (see (40b)) to update Sn+1

and cn+1. In the two following sections, we show that under certain conditions this
sequential splitting is unconditionally stable in the sense that solutions to (20) and
(21) exist and are unique without any restriction on the time step ∆t.

4 Unconditional Stability: Darcy component.

We use an upstream evaluation of the fractional flow fα and the pressure equation
rewrites

Rp,i =φn+1
i − φni

∑
α∈{w,o}

( bnα,i
bn+1
α,i

Snα,i
)

+
∆t

Vi

∑
{j|vn+1

i,j <0}

∑
α∈{w,o}

(
fα(Snj , c

n
j )
bn+1
α,ij

bn+1
α,i

vn+1
ij

)
+
∆t

Vi

∑
α∈{w,o}

(
fα(Sn+1

i , cn+1
i )

∑
{j|vn+1

i,j >0}

(
bijvij

)n+1
)

+
∆t

Vi

∑
j

go,ij

( bn+1
o,ij

bn+1
o,i

−
bn+1
w,ij

bn+1
w,i

)
= 0, (22)

where vij is given by (19) for values of saturation and concentration taken a the
step n. The value of the surface volume factors have to be evaluated at the interface.
To do so, we consider an approximation of the interface pressure, pij , for example
given by the average pij = 1

2 (pi+pj), then it is natural to set bn+1
α,ij = bα(pn+1

ij ) but,
in order to obtain uniform stability of the Darcy component, we will see we need a
different approximation, as detailed below. Once the coefficient bij are defined, we
can compute the solution pn+1 and vn+1

ij of the pressure equation (22) and proceed
with the transport step. The Darcy component for the water residual equation is

Rw,i(S
n+1, cn+1) =

(
biφiSi

)n+1−
(
biφiSi

)n
+
∆t

Vi

∑
{j|vn+1

i,j <0}

(
fw(Sj , cj)bijvij

)n+1

+
∆t

Vi
fw(Si, ci)

n+1
∑

{j|vn+1
i,j >0}

(
bijvij

)n+1
= 0, (23)
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while, for the polymer residual equation, it is given by

Rc,i(S
n+1, cn+1) =

[
biφiSici+ĉ

a(ci)(1−φref,i)
]n+1−

[
biφiSici+ĉ

a(ci)(1−φref,i)
]n

+
∆t

Vi

∑
{j|vn+1

i,j <0}

(
m(cj)cjfw(Sj , cj)bijvij

)n+1

+
(
m(ci)cifw(Si, ci)

)n+1∆t

Vi

∑
{j|vn+1

i,j >0}

(
bijvij

)n+1
= 0. (24)

Note that the polymer concentrations are also evaluated upstream. The single-cell
problem for cell Ci consists of solving

Rw,i(S, c) = 0 and Rc,i(S, c) = 0 (25)

where, slightly abusing notation, we denote by (S, c) the unknown (Si, ci). The
other values Sj , for j 6= i are assumed to be known. The pressure pn+1 is the
solution of (22). In the following, we will show that the solution to (25) exists and
is unique for all time steps ∆t. First, we start by proving that, for any c ∈ [0, cmax],
there exists a unique S, which we will denote S(c), such that Rw,i(S(c), c) = 0.
Given c, let us compute the values of the water residual at the endpoints, that is,
for S = 0 and S = 1. For S = 0, we have

Rw,i(0, c) = −(bw,iφiSi)
n +

∆t

Vi

∑
{j|vn+1

i,j <0}

(fw(Sj , cj)bw,ijvi,j)
n+1 ≤ 0. (26)

For S = 1, after using (22), we have

1

bw,i
Rw,i(1, c) =

1

bw,i
Rw,i(1, c)−Rp,i = A+B + C +D,

where

A = (φi −
bnw,i
bw,i

φni S
n
w,i)− (φiSw,i −

bnw,i
bw,i

φni S
n
w,i)− (φiSo,i −

bno,i
bo,i

φni S
n
o,i),

B =
∆t

Vi

∑
{vi,j<0}

vi,j

(
fw(Sj , cj)

bw,ij
bw,i

− fw(Snj , c
n
j )
bw,ij
bw,i

− fo(Snj , c
n
j )
bo,ij
bo,i

)
,

C =
∆t

Vi

∑
{vi,j>0}

vi,j

(
fw(1, c)

bw,ij
bw,i

− fw(Sni , c
n
i )
bw,ij
bw,i

− fo(Sni , c
n
i )
bo,ij
bo,i

)
.

and

D =
∆t

Vi

∑
j

go,ij

( bw,ij
bw,i

−
bo,ij
bo,i

)
.

In the expressions above, the superscript is omitted when it corresponds to n+ 1.
We will follow this convention in the rest of the article. These expressions simplify
as follows. We have

A =
bno,i
bo,i

φni S
n
o,i,
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so that A ≥ 0 and

B =
∆t

Vi

∑
{vi,j<0}

vi,j

(
fo(S

n
j , c

n
j )

(
bw,ij
bw,i

−
bo,ij
bo,i

)
−
bw,ij
bw,i

(1− fw(Sj , cj))

)
,

C =
∆t

Vi

∑
{vi,j>0}

vi,jfo(S
n
i , c

n
i )

(
bw,ij
bw,i

−
bo,ij
bo,i

)
In the case where oil and water compressibilities are equal, that is, bo = bw, we
have C = D = 0 and B ≥ 0. In the general case, a sufficient condition to obtain
that R(1, c) ≥ 0 is that the quantity E, defined as

E =
∑

{vi,j>0}

(fo(S
n
i , c

n
i )vi,j + go,ij)

(
bw,ij
bw,i

−
bo,ij
bo,i

)

+
∑

{vi,j<0}

(fo(S
n
j , c

n
j )vi,j + go,ij)

(
bw,ij
bw,i

−
bo,ij
bo,i

)

is positive. We assume that the water compressibility is smaller than the oil com-
pressibility in the pressure range we are interested in, that is,

cw(p) ≤ co(p) for all p ∈ [pmin, pmax], (27)

then we can show that, for any p1, p2 ∈ [pmin, pmax], if p1 ≤ p2, then

bo,ij
bo,i

−
bw,ij
bw,i

=
bo(p2)

bo(p1)
− bw(p2)

bw(p1)
≥ 0. (28)

By definition, we have 1
bα

dbα
dp = cα(p). Hence, d(ln(bo)) = co(p) dp. After integrating

and using that pi < pj , we obtain

ln

(
bw(p2)

bw(p1)

)
=

∫ p2

p1

cw(p) dp ≤
∫ p2

p1

co(p) dp = ln

(
bo(p2)

bo(p1)

)
so that (28) holds. Now, we define the surface volume factor bij at the interface
in a way which guarantees that E remains positive in all cases. As mentionned
earlier, an optimal choice in term of accuracy would be to take bα,ij = bα(pn+1

ij ),

where pn+1
ij is an approximation of the pressure at the interface. But this choice

does not guarantee negative values for E. By defining bα,ij as

bα,ij =

{
bα(pi) if (fo(S

n
i , c

n
i )vi,j + go,ij)(pi − pj) ≤ 0,

bα(pj) if (fo(S
n
i , c

n
i )vi,j + go,ij)(pi − pj) ≥ 0,

(29)

when vi,j ≥ 0, the identity (28) implies that the coefficient E always remains
positive. Note that fovi,j + go,ij is an approximation of the oil flux v · n so that
the condition (29) can be rephrased as follows: If the flux of the most compressible
phase is in the same direction as the inverse pressure gradient, then we evaluate
the densities by taking the pressure value downwind; otherwise, we use the upwind
value . To prove that Rw(S, c) admits a unique solution in S for a given c, it
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remains to prove that the function S 7→ Rw(S, c) is strictly increasing. We simplify
the notations and rewrite the residuals in the cell Ci as

Rw(S, c) = σ1S + σ2fw(S, c) + σ3 (30a)

Rc(S, c) = σ1Sc+ σ4ĉ
a(c) + σ2m(c)cfw(S, c) (30b)

where {σi}4i=1 are constants whose definition can be inferred from the definition of
the residuals. These constants depend only on the values of Sj and cj of previous
time steps or other cells than Ci, they are positive and σ1 > 0. We have

∂Rw
∂S

= σ1 + σ2
∂fw
∂S

As expected, the fractional flow is an increasing function of saturation. Indeed, we
have

∂fw
∂S

= (
∂λw
∂S

λo − λw
∂λo
∂S

)(λw + λo)
−2 ≥ 0,

because ∂λw
∂S ≥ 0, ∂λo∂S ≤ 0. Since

Rw(0, c) ≤ 0, Rw(1, c) ≥ 0 and
∂Rw
∂S

> 0,

there exists a unique solution S(c) to Rw(S(c), c) = 0 for any given c ∈ [0, cmax].
Let us now prove that Rc(S(c), c) admits a unique solution in c ∈ [0, cmax]. As
earlier, we start by checking the endpoints c = 0 and c = cmax. We have

Rc(S(0), 0) = −
(
biφiSici + ĉa(ci)(1− φref,i)

)n
+
∆t

Vi

∑
{j|vn+1

i,j <0}

(
m(cj)cjf(Sj , cj)bijvij

)n+1

so that Rc(S(0), 0) ≤ 0. For c = cmax, we have

Rc(S(cmax), cmax) = Rc(S(cmax), cmax)− cmaxRw(S(cmax), cmax) = A+B + C,

where
A = (ĉa(cmax)− ĉa(ci))(1− φref,i) + (cmax − ci)bnw,iφ

n
i S

n
i ,

B =
∆t

Vi

∑
{j|vn+1

i,j <0}

(m(cn+1
j )cn+1

j − cmax)fw(Sn+1
j , cn+1

j )bn+1
ij vn+1

ij

and

C =
∆t

Vi
(m(cmax)cmax − cmax)fw(S(cmax), cmax)

∑
{j|vn+1

i,j >0}

bn+1
ij vn+1

ij .

Since m(cmax) = 1, we have C = 0. To prove that B ≥ 0, we are going to establish
that m(c)c is non-decreasing so that

sup
c∈[0,cmax]

m(c)c = m(cmax)cmax = cmax. (31)

Let us denote

κ =
( µp
µw

)1−ω
(1− Sdpv) > 0,
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and we rewrite (14) as
1

m(c)
= κ+ (1− κ)

c

cmax
. (32)

After some computation, we get that

d

dc

(
m(c)c

)
= m(c)[1− m(c)c

cmax
(1− κ)],

which can be rewritten, using (32), as

d

dc

(
m(c)c

)
= κm2. (33)

Hence, m(c)c is non-decreasing. It follows that B ≥ 0 and Rw(S(cmax), cmax) ≥ 0
from (31). Let us now prove that the function c 7→ Rc(S(c), c) is a non-decreasing
function. We have

dRc = σ1(c dS + S dc) + σ4 dĉ
a + σ2f d(m(c)c) + σ2m(c)c df (34)

Since S(c) is solution of Rw(S(c), c) = 0, we have

σ1dS + σ2df = 0, (35)

from (30a). Plugging this result into (34), we get

dRc = σ1c(1−m(c)) dS + σ1S dc+ σ4 dĉ
a + σ2f d(m(c)c). (36)

From (35), we obtain that

(σ1 + σ2
∂f

∂S
) dS = −σ2

∂f

∂c
dc,

which yields, by (36),

(σ1 + σ2
∂f

∂S
)
dRc
dc

= σ2
1S + σ2

2
∂f

∂S
κfm2 + σ4(σ1 + σ2

∂f

∂S
)
dĉa

dc

+ σ1σ2

(
S
∂f

∂S
+ κfm2 − c(1−m)

∂f

∂c

)
. (37)

Since ∂f
∂S ≥ 0 and, as we will show, ∂f

∂c ≤ 0, we can conclude that dRc
dc ≥ 0 if the

condition that

S
∂f

∂S
+ κfm2 − c(1−m)

∂f

∂c
≥ 0 (38)

is fulfilled. In the appendix we explain why condition (38) is necessary if we want
the system of equations given by (16a) (for α = w) and (16b) to produce waves
which both travel in the same direction of the total flux. Otherwise, we can still
assume that κ > 1, which directly implies that the polymer mobility factor m(c)
is a non-decreasing function of the concentration c. This assumption is physically
reasonable and easy to check. In this case, m(c) ≤ m(cmax) = 1. Let us compute
∂f
∂c . Since, λw = krw/µw,effRk, we have

∂f

∂c
=
∂λw
∂c

λo
(λw + λo)2

= − ∂

∂c
(µw,effRk)

krw

µ2
w,effR

2
k

λo
(λw + λo)2

≤ 0. (39)
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Indeed, by assumption, ∂Rk∂c ≥ 0 and we expect that
∂µw,eff
∂c ≥ 0 because the effect

of polymer is to increase the effective viscosity of water. Let us check that directly.
As µw,eff = m(c)µp,eff and µp,eff = µm(c)ωµ1−ω

p , we have

d

dc
ln(µw,eff) =

d

dc
ln(m) + ω

d

dc
ln(µm).

Since m and, by assumption, µm are non-decreasing functions, we can conclude
that µw,eff is non-decreasing. Since

Rc(S(0), 0) ≤ 0 and Rc(S(cmax), cmax) ≥ 0,

there exists at least one solution c to Rc(S(c), c) = 0 in [0, cmax]. If, for this solution,
S(c) > 0, then dRc

dc > 0 because σ1 > 0 and the solution is unique. Otherwise, if
there exists c0 such that S(c0) = 0 and Rc(S(c0), c0) = 0, then we have, by (26),
that Sni = 0 and fw(Sj , cj) = 0 for all j such that vi,j < 0. The polymer residual
becomes

Rc(S, c) = ĉa(c)− ĉa(cni ).

In the absence of adsorption, it yields Rc(S, c) = 0 for all c ∈ [0, cmax]. Thus, the
solution is not unique. This property simply reflects the fact that concentration
is not a well defined quantity in the absence of water. Note that adsorption will
have a stabilizing effect. Indeed, assuming that ĉa is a strictly increasing function,
we recover uniqueness.

5 Unconditional Stability: Segregation component.

To take into account the gravity segregation effects, we introduce an additional
operator splitting for the transport equations as described at the end of Section 3.
This operator splitting method was first introduced within streamline simulation
[3,4,2], but can also offer certain benefits for finite-volume methods, e.g., as dis-
cussed in [9]. The segregation residual equations for water and polymer are given
by (

bwφ(S − S∗)
)n+1

i
+
∆t

Vi

∑
j

(
bwλof(S, c)(ρw − ρo)gK∇z

)n+1

ij
= 0, (40a)

and(
bwφc(S − S∗) + (1− φref)(c

a(c)− ca(c∗))
)n+1

i

+
∆t

Vi

∑
j

(
bwm(c)cλof(S, c)(ρw − ρo)gK∇z

)n+1

ij
= 0. (40b)

We use a two point flux approximation to discretize the term
∫
Ci∩Cj bw(ρw −

ρo)gK∇z ·n dA. For a face Ci ∩Cj , the flux of the gradient of a function ψ of the
form ∫

Ci∩Cj
hK∇ψ · ni,j dA,
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for some given function h, is approximated by∫
Ci∩Cj

hK∇ψ · ni,j dA,≈ Ti,j(ψj − ψi)

where

Ti,j =

(
hi
ti,j

+
hj
tj,i

)−1

and ti,j denotes the one sided transmissibility coefficient of the cell Ci with respect
to the face Ci ∩ Cj , defined as

ti,j =
1∣∣ci,j∣∣2nij ·Kci,j ,

where ci,j denotes the vector joining the cell centroid of Ci to the face centroid of
Ci ∩Cj , see [8] for more details. For the gravitation segregation equation, we take

ψ = z and h = bw − bo
ρso
ρSw

.

In the case of a corner-point grid consisting of strictly vertical pillars, the gravi-
tation flux vanishes on all vertical faces of a cell. Let us consider a column which
consists of vertically aligned cells Ci (i = 1, . . . , N) and denote by zi the vertical
coordinate of the centroid of Ci. The discretization of (40) in a column yields,
after denoting u = (S, c), the following residual equations

bw,iφi(Si−S∗i )+
g∆t

Vi

(
F (ui,ui+1)Ti,i+1(zi+1−zi)−F (ui−1,ui)Ti−1,i(zi−zi−1)

)
= 0

and

bw,iφi(Sici−S∗i c
∗
i )+(1−φref)(c

a(ci)−ca(c∗i ))+
g∆t

Vi

(
G(ui,ui+1)Ti,i+1(zi+1−zi)

−G(ui−1,ui)Ti−1,i(zi − zi−1)
)

= 0

where F (uu,ul) and G(uu,ul) denote approximations of the flux (For a given face,
uu and ul are the values u of the cell above and below the face). As earlier, we
drop the superscript n + 1 in the notation. For the numerical flux F , we use a
phase upwind mobility approximation,

F (uu,ul) =
λw(Su, cu)λo(1− Sl)
λw(Su, cu) + λo(1− Sl)

. (41)

Note that the value of the polymer concentration in the mobility term λw is taken
from the cell above, that is, we use upwinding from the water phase. For the
numerical flux G, it seems at first natural to take the value of the polymer concen-
tration from the cell above, because polymer is transported by the water phase to
which it belongs. Then, we obtain the following expression for the numerical flux

G(uu,ul) = m(cu)cu
λw(Su, cu)λo(1− Sl)
λw(Su, cu) + λo(1− Sl)

. (42)
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But this choice does not lead to well-posedness and we have to consider instead

G(uu,ul) = m(cu)cu
λw(Su, cl)λo(1− Sl)
λw(Su, cl) + λo(1− Sl)

. (43)

where the value of the polymer concentration in the mobility term λw is taken from
the cell below, which corresponds to upwinding from the oil phase. In the rest of
this section, we prove that the single cell problem for the segregation problem is
unconditionally stable. In the case of a column, the spatial dimension is reduced
to one and we start this section by introducing the general setting in one dimen-
sion and investigate what are the requirements on the numerical flux function to
obtain an unconditionally stable single cell problem. Let us consider the scalar
conservation law

ut + f(u)z = 0,

which we discretised using an implicit Euler scheme, that is,

un+1
i − uni +

∆t

∆z
(F (un+1

i , un+1
i+1 )− F (un+1

i−1 , u
n+1
i )) = 0,

where the function F (uu, ul) is a discrete approximation of the flux between two
cells. For compatibility reason, we require

F (u, u) = f(u).

The single cell problem consists of finding the solution of R(u) = 0, where

R(u) = u− uni +
∆t

∆z
(F (u, ui+1)− F (ui−1, u))

and uni , ui−1, ui+1 are known. We want to find the conditions for which this scalar
equation admits a unique solution for any given uni , ui−1, ui+1 and ∆t. Since uni is
arbitrary, we must have that R is monotone. By taking ∆t small, we obtain that,
if R is monotone, it can only be increasing. By taking ∆t very large, we see that
we must have d

du (F (u, ui+1) − F (ui−1, u)) positive. Since this must hold for any
ui+1 and ui−1, we end up with the following monotonicity conditions for F ,

∂F

∂uu
≥ 0 and

∂F

∂ul
≤ 0. (44)

The Engquist-Osher flux (add reference)

F (uu, ul) =

∫ uu

0

max(0, f ′(u)) du+

∫ ul

0

min(0, f ′(u)) du+ f(0)

satisfies this condition. In the case of gravity segregation, a phase upwind mobility
numerical flux is commonly used and we are going to check that it also satisfies
the monotonicity condition (44). For the case without polymer, the discretization
of the segregation equation is given by

R(S) = bn+1
i φn+1(Sn+1

i − Sni ) +
∆t

Vi

(
F (Sn+1

i , Sn+1
i+1 )gTi,i+1(zi − zi−1)

− F (Sn+1
i−1 , S

n+1
i )gTi−1,i(zi − zi−1)

)
= 0,
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where F (Su, Sl) is a discrete numerical flux which has to satisfy the compatibility
condition

F (S, S) =
λw(S)λo(1− S)

λw(S) + λo(1− S)
.

In a segregation process where oil is lighter than water, the oil phase travels up-
wards and the water phase downwards. Thus, an upstream mobility weighting for
the flux is given by

F (Su, Sl) =
λw(Su)λo(1− Sl)
λw(Su) + λo(1− Sl)

.

Since λw and λo are non decreasing functions, we can check that this discrete flux
satisfies the condition (44) which is necessary for the solution of R(u) = 0 to exist
for any ∆t.

Let us now turn our attention to the segregation case in the presence of poly-
mer. In this case we have to solve a system of two equations. The water and
polymer gravity residuals, Rgw(u) and Rgc (u) in the cell Ci are given by

Rgw(u) = bw,iφi(S−S∗i )+
g∆t

Vi

(
F (u,ui+1)Ti,i+1(zi+1−zi)−F (ui−1,u)Ti−1,i(zi−zi−1)

)
(45)

and

Rgc (u) = bw,iφi(Sc− S∗i c
∗
i ) + (1− φref)(c

a(c)− ca(c∗i ))

+
g∆t

Vi
(G(u,ui+1)Ti,i+1(zi+1 − zi)−G(ui−1,u)Ti−1,i(zi − zi−1)). (46)

The discrete flux F and G have to satisfy the compability conditions

F (u,u) =
λw(S, c)λo(1− S)

λw(S, c) + λo(1− S)
(47a)

and

G(u,u) = m(c)c
λw(S, c)λo(1− S)

λw(S, c) + λo(1− S)
. (47b)

We choose the numerical fluxes given by

F (uu,ul) =
λw(Su, cu)λo(1− Sl)
λw(Su, cu) + λo(1− Sl)

and

G(uu,ul) = m(cu)cu
λw(Su, cl)λo(1− Sl)
λw(Su, cl) + λo(1− Sl)

,

which satisfy (47) and enjoy the following monotonicity properties

∂F

∂Su
≥ 0,

∂F

∂cu
≤ 0,

∂F

∂Sl
≤ 0,

∂F

∂cl
= 0 ≥ 0 (48a)

and
∂G

∂Su
≥ 0,

∂G

∂cu
≥ 0,

∂G

∂Sl
≤ 0,

∂G

∂cl
≤ 0. (48b)

The proofs of (48) follow from the chain rule and the fact that d(mc)
dc ≥ 0 (see (33)),

∂λw
∂c ≤ 0 (see (39)) and ∂λw

∂Sw
≥ 0, ∂λo

∂So
≥ 0 (by assumption). Let us prove that for
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this choice of numerical flux, there exists a unique solution (S, c) of Rgw(S, c) = 0
and Rgc (S, c) = 0 for any ∆t. To simplify the notation, we rewrite (45) and (46) as

Rgw(u) = α(S − S∗i ) + βF (u,ui+1)− γF (ui−1,u) (49)

and

Rgc (u) = α(Sc− S∗i c
∗
i ) + δ(ca(c)− ca(c∗i )) + βG(u,ui+1)− γG(ui−1,u). (50)

Note that α, β, γ, δ are positive and α > 0. We differentiate these expressions and
obtain

dRgw = (α+ β
∂F

∂Su
− γ ∂F

∂Sl
)dS + (β

∂F

∂cu
− γ ∂F

∂cl
)dc (51a)

and

dRgc = (αc+ β
∂G

∂Su
− γ ∂G

∂Sl
)dS + (αS + δ

ca

dc
+ β

∂G

∂cu
− γ ∂G

∂cl
)dc. (51b)

We proceed as in the previous section. First, we prove that, for any given c ∈
[0, cmax], there exists a unique S ∈ [0, 1], which we denote S(c), such that Rgw(S(c), c) =
0. For u = [0, c], we have F (u,ui+1) = 0 so that Rgw(0, c) = −αS∗i − γF (ui−1,u) ≤
0. For u = [1, c], we have F (ui−1,u) = 0 and Rgw(0, c) = α(1−S∗i )+βF (u,ui+1) ≥
0. Moreover, we have

∂Rgw
∂S

= α+ β
∂F

∂Su
− γ ∂F

∂Sl
> 0

so that the function is S 7→ Rgw(S, c) is strictly increasing for a given c. Therefore
there exists a unique solution S(c) in [0, 1] to Rgw(S, c) = 0. Let us now prove
that the equation Rgc (S(c), c) = 0 admits a unique solution. For c = 0, that is,
u = [S(0), 0], we have G(u,ui+1) = 0 and Rgc (S(0), 0) = −αS∗i c

∗
i + δ(ca(0) −

ca(c∗i ))− γG(ui−1,u) ≤ 0. Since Rgw(u) = 0, for umax = [cmax, S(cmax)], we obtain
from (50) that

Rgc (umax) = Rgc (umax)− cmaxR
g
w(umax)

= αS∗i (cmax − c∗i ) + δ(ca(cmax)− ca(c∗i ))

+ β(G(umax,ui+1)− cF (umax,ui+1))

− γ(G(ui−1,umax)− cF (ui−1,umax)).

We have

G(umax,ui+1)− cmaxF (umax,ui+1) = cmax

( λw(S(cmax), ci+1)λo(1− Si+1)

λw(S(cmax), ci+1) + λo(1− Si+1)

− λw(S(cmax), cmax)λo(1− Si+1)

λw(S(cmax), cmax) + λo(1− Si+1)

)
≥ 0

because the function

c 7→ λw(S(cmax), c)λo(1− Si+1)

λw(S(cmax), c) + λo(1− Si+1)
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is non-increasing as ∂λw
∂c ≤ 0. Similarly,

G(ui−1,umax)− cmaxF (ui−1,umax)

= m(ci−1)ci−1
λw(Si−1, cmax)λo(1− S(cmax))

λw(Si−1, cmax) + λo(1− S(cmax))

− cmax
λw(Si−1, ci−1)λo(1− S(cmax))

λw(Si−1, ci−1) + λo(1− S(cmax))

= cmax

( λw(Si−1, cmax)λo(1− S(cmax))

λw(Si−1, cmax) + λo(1− S(cmax))

− λw(Si−1, ci−1)λo(1− S(cmax))

λw(Si−1, ci−1) + λo(1− S(cmax))

)
+ (m(ci−1)ci−1 − cmax)

λw(Si−1, cmax)λo(1− S(cmax))

λw(Si−1, cmax) + λo(1− S(cmax))

≤ 0,

because of (31). Hence, Rc(S(cmax), cmax) ≥ 0. From (51a) and (48), we have that

dS

dc
≥ 0

so that, by (51b) and again (48), we get

d

dc
Rc(S(c), c) =

(
αc+ β

∂G

∂Su
− γ ∂G

∂Sl

)
dS

dc
+

(
αS + δ

dca

dc
+ β

∂G

∂cu
− γ ∂G

∂cl

)
≥ 0.

Therefore the function Rc(S(c), c) is non-decreasing and there exists a solution
c ∈ [0, cmax]. The solution (S, c) is unique if S > 0 because the function Rc(S(c), c)
is then strictly increasing at c. In the case where the equation has a solution of
(S, c) such that S = 0, the conclusion is the same as at the end of the previous
section, that is, the solution is unique only if the adsorption function is strictly
increasing.

6 Appendix

In section 4, we observe that the condition (38) naturally shows up when we
want to show the well-posedness of the single cell problem. Here, we show that
this condition is necessary from a physical perspective. We consider the transport
equations (16a) (for α = w) and (16b) in one space dimension. To simplify the
computation, we assume that b = 1 and the total flux v is constant and equal to
one. The equations can then be rewritten as

∂S

∂t
+

∂

∂x
(f(S, c)) = 0,

∂Sc

∂t
+

∂

∂x
(m(c)cf(S, c)) = 0.

We introduce the variable z = Sc so that the system can be rewritten as a system
of conservation laws, namely,

∂S

∂t
+

∂

∂x
(f̄(S, z)) = 0,

∂z

∂t
+

∂

∂x
(m̄(S, z)c̄(S, z)f̄(S, z)) = 0,
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where

m̄(S, z) = m(S, c), c̄(S, z) = c and f̄(S, z) = f(S, c).

The properties of the system are related to the eigenvalues of the linearized flux
given by

F =

(
∂f̄
∂S

∂f̄
∂z

m̄c̄ ∂f̄∂S
∂
∂z (m̄c̄f̄)

)
(52)

We have an hyperbolic system if the eigenvalues of F are real. We do not investigate
this condition here and assume it is fulfilled. Instead we consider the sign of the
eigenvalues. Each eigenvalue λi, i = {1, 2}, corresponds to the speed of the wave of
the corresponding Riemann problem. It is natural to require that the wave travels
in the same direction as the flux, from left to right, and thus we want to impose
λ1 ≥ 0 and λ2 ≥ 0. These sign conditions are equivalent to

det(F ) ≥ 0 and tr(F ) ≥ 0.

For a generic function ḡ(S, z) = g(S, c), the change of variables formulas are

∂ḡ

∂S
=

∂g

∂S
− c

S

∂g

∂c
and

∂ḡ

∂z
=

1

S

∂g

∂c
.

Thus, we can compute det(F ) and we get

det(F ) = f̄
∂f̄

∂S

∂(m̄c̄)

∂z

=

(
S
∂f

∂S
− c∂f

∂c

)
f

S

∂(mc)

∂c

≥ 0

because, as shown in Section 4, ∂f
∂S ≥ 0 and ∂f

∂c ≤ 0. For the trace of F , we have

tr(F ) =
∂f̄

∂S
+
∂(m̄cf̄)

∂z

=
∂f

∂S
− c

s

∂f

∂c
+

1

s

∂(mcf)

∂c

=
1

S

(
S
∂f

∂S
+ κm2f + c(m− 1)

∂f

∂c

)
.

Hence, the condition (38) is fulfilled if and only if tr(F ) ≥ 0, that is, if and only if
the speeds of both waves are positive.
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