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Abstract

Identification of mechanical properties of cells has previously been shown to have a great potential and effectiveness on
medical diagnosis. As a result, it has gathered increasing interest of researchers over the recent years. Atomic force
microscopy has become one of the prime technologies for obtaining such properties. Traditionally, local variations in
elasticity has been obtained by mapping contact force during sample indentation to static Hertzian contact models.
More recently, multiharmonic methods have allowed for both viscous and elastic measurements of soft samples. In
this article, a new technique is presented based on dynamic modeling and identification of the sample. Essentially, the
measured signals are mapped to the sample properties of the model in a least-square sense. This approach allows for
easy extensibility beyond pure viscoelastic measurements. Furthermore, an iterative modeling approach can be used
to best describe the measured data. The technique can be operated in either dynamic indentation viscoelastic mode,
or scanning viscoelastic mode. First, a dynamic, viscoelastic model of the sample is presented. Then, the parameter
identification method is described, showing exponential convergence of the parameters. A simulation study demonstrates
the effectiveness of the approach in both modes of operation.

Keywords: mechanical properties, biomedical systems, parameter identification, dynamic models, atomic force
microscopy

1. Introduction

Since its invention in 1986, atomic force microscopy
(AFM) has become one of the leading technologies for
imaging sample surfaces at nanometer scale resolutions [1].
In the beginning, AFM was applied almost exclusively to
characterize the surfaces of nonbiological materials [2], and
even today, its major applications are still in the visual-
ization of microcircuits, material sciences and nanotech-
nology [3]. However, application of AFM to biological and
biomedical research has increased exponentially during the
recent years [4], since the AFM enjoys several advantages
over conventional optical microscopes and electron micro-
scopes, especially concerning studies of biological samples
[1].

The main beneficial feature of AFM in the study of bi-
ological samples is its ability to study the objects directly
in their natural conditions. Other advantages include: [5]
1) AFM can get information about surfaces in situ and
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in vitro, if not in vivo, in air, in water, buffers and other
ambient media, 2) it has an extremely high scanning reso-
lution, up to nanometer (molecular) resolution, and up to
0.01 nm vertical resolution, 3) it provides true 3D surface
topographical information, 4) it can scan with a wide range
of forces, starting from virtually zero to large destructive
forces, 5) it allows measuring various biophysical proper-
ties of materials including elasticity, adhesion, hardness,
and friction.

In order to improve early diagnosis of cancer there is an
urgent need to increase understanding of cancer biology on
a cellular level. Single cell deformability has been studied
for a long time using various techniques. The driving force
for such studies is the assumption that, depending on dis-
ease type, the altered cellular deformability should play a
critical role in the development and progression of various
diseases [6]. So far, several approaches have been investi-
gated, including methods such as micro-pipette manipu-
lation [7], magnetic bead twisting [8], and optical tweez-
ers [9]. With these techniques, local variations in the vis-
coelastic power law parameters have been observed [10].

AFM has enjoyed many improvements to its main capa-
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bilities from a control engineering point of view [11, 12, 13,
14, 15, 16, 17, 18]. Additionally, effort has been put into
trying to discover the potential of AFM in cancer detection
[1, 19, 6, 20, 5, 21, 22, 10, 23]. Any research result that
would provide the possibility of an early and easy diagno-
sis of carcinoid cells with accuracy is of extreme interest
to specialists that deal with the diagnosis and cure of the
disease. In [24] AFM measurements of the human breast
biopsies reveal unique mechanical fingerprints that help
define the stages of cancer progression. High-resolution
stiffness mapping shows that in addition to matrix stiff-
ening, tumor progression is due to softening of the tumor
cells.

Clearly, mechanical properties of cells are of high in-
terest to the research community. The elastic modulus
of biological samples are typically found through force-
indentation procedures [25, 26], performed statically. That
is, by indenting the sample and measuring the deflection
against the commanded cantilever position. By fitting
the resulting curve to the Hertz contact model, the elas-
tic modulus of the sample can be determined. Further-
more, extensions to the Hertz model allow for determining
the adhesion between the tip and sample from the force-
distance curve [27, 28, 29].

Several variations to the force-indentation approach ex-
ist [29, 30]. In force-volume imaging, force-indentation
curves are gathered at multiple points across the sam-
ple, each point allowing for determining elasticity and
adhesion. In the PeakForce quantitative nanomechani-
cal method, the cantilever is oscillated below resonance
(typically 1 kHz) with each oscillation resulting in a force-
indentation curve, allowing for improved imaging speeds.
Related developments perform frequency-dependent map-
ping of the nanomechanical properties [31]. Furthermore,
some techniques have been proposed for additionally de-
termining viscous properties from force-indentation curves
by exploiting the time-history of the data [32, 33].

Early results in AFM have shown that the amplitude
and phase of a dynamically excited cantilever can be
mapped to both elastic and viscous properties of the sam-
ple [34]. More recently, multiharmonic approaches have
been developed for mapping mechanical properties of cells
[35, 36]. Here, the cantilever is typically excited at reso-
nance frequency. As the cantilever is scanned across the
sample, the measurable signals are mapped to local me-
chanical properties such as elasticity and viscosity. This
approach allows for a considerable increase in acquisition
speed.

In this article a new technique for the identification of
viscoelastic properties of soft samples in AFM is presented,
first developed in [37, 38]. Here, the sample is modeled
as a dynamic model with unknown parameters, in terms
of a laterally spaced grid of spring constants and damp-
ing coefficients. The parameters are identified from the
measurable signals, using tools from the control literature.
Essentially, the measurable signals are mapped to the pa-
rameters of the sample model recursively in a least squares

sense, making it possible to observe changes over time.
The estimated parameters are guaranteed to converge to
the real values exponentially fast provided a suitable con-
trol input is chosen.

This technique can be operated in two distinct modes.
In dynamic indentation viscoelastic (DIVE) mode [37], me-
chanical properties of the sample are identified at a discrete
number of points by indenting in and out of the sample.
In the scanning viscoelastic (SVE) mode [38], viscoelastic
properties are gathered in a continuous fashion as the sam-
ple is scanned along the lateral axes at constant depth. In
this article the two modes are expanded upon and com-
pared.

In Section 2 a system model description of the viscoelas-
tic sample is designed, suitable for parameter identifica-
tion. The two modes of operation, DIVE and SVE, are
presented in Section 3. Next, Section 4 presents the iden-
tification techniques for the unknown parameters of the
system. Results are given in Section 5. In Section 6
the technique is discussed in the context of previous ap-
proaches and future considerations, and in Section 7 final
conclusions are reached.

2. System Modeling

In this section, the system modeling is presented. This
includes the dynamics of the sample, the cantilever dy-
namics, the geometry of the tip and their combinations,
in order to acquire a full system description. The purpose
of the modeling is to provide a description of the inter-
action between the cantilever and a general viscoelastic
sample material, while allowing for simple identification
of the model parameters by the usage of the atomic force
microscope.

2.1. Sample Dynamics

The modeled sample is considered as a system of discrete
spring-damper elements, as illustration in Fig. 1. The el-
ements are evenly distributed in the lateral xy-axes, and
can be compressed in the vertical z-direction [37], [38].

The interaction between the AFM cantilever and the
sample is analytically presented, and illustrated in Fig. 2.
The position of the tip along the xyz-axes is denoted by
(X,Y, Z). The vertical tip position Z, the cantilever de-
flection D, and the controllable cantilever base position U
are related by

Z = U −D. (1)

Since the deflection D is measurable and U is controllable,
all three signals are assumed to be available.

The dynamics between the cantilever and the sample
can be described by three main components as seen in
Fig. 3. The cantilever dynamics is subject to an external
sample force which generates a deflection along the vertical
axis. The tip geometry and position is then used to deter-
mine the (possibly compressed) positions of each sample
spring-damper element. The compressed elements in turn
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creates a restoration force acting on the cantilever tip. The
details of each of these components will be described in the
following.

2.2. Cantilever Dynamics

The cantilever dynamics can be approximated by its first
resonance mode [39], resulting in the spring-damper sys-
tem

MZ̈ = KD + CḊ + Fts (2)

where M is the effective mass of the cantilever [40], K,C
are the cantilever spring and damping constants respec-
tively, and Fts is the force from the sample acting on the
cantilever tip.

2.3. Tip Geometry

The cantilever tip is modeled as a sphere with tip radius
R. The vertical position zi of the spring-damper element
i in contact with the tip is then given by

zi = Z −
√
R2 − (X − xi)2 − (Y − yi)2 (3)

żi = Ż (4)

where xi, yi are the position of the element along the lat-
eral axes, and żi is the element velocity. It has been as-
sumed that Ẋ and Ẏ are much smaller than Ż. This is jus-
tified by the fact that the cantilever is oscillated at a high
frequency near resonance resulting in a significant rate of
change in Z, while the sample is scanned comparatively
slow in the lateral directions.

A spherical tip can be advantageous in use with soft,
fragile samples [41], although if desired the equations (3)-
(4) can be modified to handle different tip geometries. The
tip geometry is only necessary for simulation purposes, as
the parameter identification scheme does not require a tip
model. However, the scaling of the identified parameters
are dependent on the tip. Thus, if the radius or geometry
is not known, the identified values will be scaled inaccu-
rately. However, this inaccuracy will be consistent across
the sample.

2.4. Sample Force

The sample is modeled by viscoelastic elements. Thus,
each element in contact with the tip provides spring and
damping forces. The force from element i can be described
by

Fi = kiδi + ciδ̇i (5)

where ki is the spring constant of element i, ci is the damp-
ing coefficient, and δi is the indentation of the tip into the
element,

δi = hi − zi (6)

where hi is the rest-position of the element, or equivalently
the sample height (topography) at the position of the el-
ement. The sample is assumed not to display permanent
deformations. Thus, δ̇i = −żi since the sample height is
constant.

y
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z

Figure 1: The sample is modeled as spring-damper elements evenly
spaced along the lateral axes.
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The sample elements in contact with the tip is denoted
by the active setW(X,Y, Z) which changes as the tip scans
over the sample,

W =
{
i : δi > 0 ∧ (X − xi)2 + (Y − yi)2 < R2

}
. (7)

The element i is thus only added to the active set if the tip
is indenting it. This method could be extended to model
the attractive forces near the surface by including elements
with a small negative value of δi.

The sum of the forces acting on the cantilever tip from
the sample is then given by

Fts =
∑
i∈W

Fi. (8)

In the following, the vectors k, c,h are used to refer to
the family of elements, e.g. k = {k1, ..., km} where m is
the number of spring-damper elements in the sample.

3. Modes of Operation

The modeling and identification approach described in
this article can be operated in two distinct modes, both
of which identify the unknown sample parameters of the
dynamic sample model.

3.1. Dynamic indentation viscoelastic mode

In DIVE mode the cantilever moves across the sample
surface without contact. At discrete points in space, the
lateral movement is paused and the tip is lowered into the
sample and identifies the sample properties at this single
point. The cantilever is then raised and the procedure
is repeated across the sample to form an N × N grid of
identified parameters. The name should not be confused
with the traditional dynamic imaging mode in AFM.

In this mode, the tip is lowered sufficiently such that
the entire tip is submerged into the sample. This is not
strictly necessary, although for consistent measurements
the scaling of the parameters, as discussed later, would
need to be revised to account for this case.

3.2. Scanning viscoelastic mode

In SVE mode the cantilever is always in contact with the
sample, scanning continuously at constant depth across
the surface of the sample in a raster pattern. The sample
parameters are identified continuously resulting in an N ×
M grid of resolved parameters, where N is the number
of discrete lines and M is the number of samples of the
continuous signal at each line.

4. Parameter Identification

In this section it is shown how the unknown parameters
of the system, k, c,h, can be estimated. As seen in Fig. 3
the parameter estimator is separated from the system and
only the cantilever deflection D and vertical control input
signal U is assumed available for measurement.

4.1. Parametric system model

The system equations needs to be on a form suitable for
parameter identification. Rewriting (2) and inserting for
(5),(8) gives

MZ̈ −KD − CḊ =
∑
i∈W

kiδi + ciδ̇i (9)

where the signals on the left hand side are known, and the
right hand side contains the parameters to be estimated.
It would be very challenging to determine all the sample
parameters of each element individually. The problem is
therefore simplified by rather trying to estimate the ag-
gregated spring constant k and damping constant c at the
current tip position. The system can thus be approximated
by

MZ̈ −KD − CḊ = kδ + cδ̇ (10)

where c, k are now slowly-varying parameters as a function
of the current lateral tip position (X,Y ). By continuously
estimating and logging c, k as the tip is scanned or tapped
across the sample, the local viscoelastic properties of the
sample are determined.

The indentation depth of the tip into the sample is given
by

δ = h− Z (11)

where h is the unknown sample topography at the current
tip position.

In DIVE mode, the topography h can be found from a
simplified approach by recording the first point of contact
during a tap, thus δ is assumed known in this mode. How-
ever, in SVE mode this approach does not work because
the cantilever moves in the lateral directions while being
indented. Thus, the topography parameter h will change
after first point of contact.

Due to the difference in assumption of known δ, the
parametric system model will have to differ between the
two modes.

4.1.1. DIVE mode system

The system equations (10) can be rearranged and rewrit-
ten in the complex s-domain as

Ms2Z − CsD −KD = (cs+ k) δ (12)

which can be formulated as

w′D =

[
c
k

]T [
sδ
δ

]
(13)

= θTDφ
′
D (14)

where the known w′D is the left hand side of (12), θD is
the unknown parameter vector to be estimated, and φD is
the known signal vector.
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4.1.2. SVE mode system

Using (10), and inserting for (1) and (11), the system
equations can be rewritten as

Z(Ms2 + Cs+K)− U(Cs+K) = k(h− Z)− csZ (15)

where it has been used that h is a slowly-varying parame-
ter, thus ḣ can be approximated by zero. The parametric
system equations can now be represented by

w′S =

 c
k
kh

T  −sZ−Z
1

 (16)

= θTS φ
′
S (17)

where w′S is the left hand side of (15), and θS,φS are the
parameter and signal vector respectively.

4.1.3. Filtered system equations

In order to avoid pure differentiation of the signals in
(13),(16), both sides of each equation is filtered by a
second-order low-pass filter such as 1/Λ(s) = 1/(λs+ 1)2,

w′
Λ

= θT
φ′
Λ

(18)

w = θT φ. (19)

for  ∈ {D,S}.
This linear-in-the-parameters form is suitable for imple-

mentation of various parameter estimation methods such
as given in [42]. The objective of the estimator is thus to
find the unknown θ given the signals w and φ.

4.2. Parameter Estimator

Several estimation methods for the system (19) can be
employed with similar stability and convergence proper-
ties. We have chosen the least squares method with forget-
ting factor from [42]. Due to the slowly varying nature of
the parameters, a forgetting factor is useful. The method
is restated here for completeness,

ŵ = θ̂T φ (20)

ε = (w − ŵ)/m2
 (21)

m2
 = 1 + αφT φ (22)

˙̂
θ = Pεφ (23)

Ṗ =

βP −P
φφ

T


m2


P, if ‖P‖ ≤ R0

0, otherwise
(24)

P(0) = P,0 (25)

for  ∈ {D,S}, where α, β,R0 are positive constants, and
PD ∈ R2×2,PS ∈ R3×3 are the covariance matrices.

This method guarantees convergence of the error ε to
zero given constant parameters θ as in DIVE mode. The
parameters in SVE mode are slowly-varying, but the error

can be made arbitrarily small by reducing the scanning
speed.

For the parameter vector θ̂ to converge to θ, the signal
vector φ needs to be persistently exciting (PE). Indeed,
this is a sufficient condition for exponential convergence
of θ̂ → θ [42]. The following theorem provides condi-
tions for PE and exponential convergence in DIVE mode.
Equivalent conditions can be shown in the case of SVE
mode.

Theorem 1 (Persistency of excitation). Apply the
cantilever input signal

U = u0 + a sin (ω0t) (26)

for any positive constants a, ω0, and let the constant u0 be
small enough for the cantilever tip to be in contact with the
surface, i.e. δ > 0, ∀ t. Then φD is persistently exciting
(PE) and θ̂D → θD exponentially fast.

Proof. Expand the signal vector φD such that

φD = H(s)δ, H(s) =

[
s

(1+λs)2
1

(1+λs)2

]
.

Define the matrix A such that

A(jω1, jω2) ,
[
H(jω1) H(jω2)

]
=

[
jω1

(1+λjω1)2
jω2

(1+λjω2)2
1

(1+λjω1)2
1

(1+λjω2)2

]
.

Taking the determinant of A gives

|A(jω1, jω2)| = 1

(1 + λjω1)2(1 + λjω2)2
(jω1 − jω2)

6= 0 ∀ {ω1, ω2 ∈ R : ω1 6= ω2} .

Thus H(jω1),H(jω2) are linearly independent on C2

∀ {ω1, ω2 ∈ R : ω1 6= ω2}. By Theorem 5.2.1 in [42] φD is
then PE if and only if δ is sufficiently rich of order 2.

By Definition 5.2.1 in [42] the signal U = u0 +a sin(ω0t)
is sufficiently rich of order 2. The transformation from
U to δ is seen to be linear and stable by considering
(1),(11),(12), which means that a sinusoidal input on U re-
sults in a sinusoidal output on δ with amplitude

∣∣ δ
U (jω0)

∣∣,
phase ∠ δ

U (jω0) and frequency ω0. The signal δ is thus
sufficiently rich of order 2. Thus, φD is PE. Additionally,
φD is bounded since U̇ is bounded and H(s), δU (s) are sta-
ble. Then, by Corollary 4.3.1 in [42] the parameter vector

θ̂D → θD exponentially fast. �

Although exponential convergence of θ̂D → θD is guar-
anteed, some error is expected in the identified parameters
at a given point because of the model approximation from
(9) to (10).
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4.3. Indentation Depth and Topography

As discussed earlier in this section, the two modes differ
in how the identified topography ĥ is found. However, for
each mode, when ĥ is found, the depth is given by

δ̂ = ĥ− Z. (27)

In the following, identification of the topography is de-
scribed for each mode.

4.3.1. DIVE mode

In the identification scheme for DIVE mode, the depth
was assumed known in (12). This signal can be generated

by identifying ĥ at each tap and using (27) during the tap.
The procedure is described in the following.

As the tip enters the sample the cantilever will start to
deflect. This point is recorded and used as the topography
estimate ĥ at the current tip position. The topography es-
timate is stored after each tap `, generating the estimate
of the complete sample topography ĥ` ∀ `. Additionally, a
low-pass filter Glp for attenuation of measurement noise
and a hysteresis loop for avoiding retriggering during sam-
ple penetration is used in the implementation. The proce-
dure is summarized as follows:

• Record the time t1 = t at rising edge of the boolean
signal GlpD < −γ, for some positive constant γ.

• Create a hysteresis loop for t1 by disabling retrigger-
ing until GlpD < −γ+ where γ+ > γ.

• Then ĥ = Z(t1) and δ̂(t) = ĥ− Z(t), where as previ-
ously Z(t) = U(t)−D(t).

• Store ĥ` = ĥ for the current tap `.

4.3.2. SVE mode

In SVE mode, the topography is estimated as part of the
identification scheme as seen in (16). The topography ĥ is

found after division by k̂ in θ̂S,3. As such, the estimator

should make sure k̂ does not become zero. Since k is known
to be strictly positive, a projection function such as from
[43] can be used in the update law (23) to ensure k̂ stays
within provided limits.

4.4. Depth controller

In SVE mode, an additional depth controller is required.
Due to the spherical nature of the tip geometry, the sub-
merged parts of the tip into the sample will vary based on
the depth of the tip. The spring and damping forces are
effectively nonlinear functions of depth. Thus, constant
depth is necessary in order to enforce consistent measure-
ments across the sample. For this reason a depth controller
has been designed.

A simple I-controller is used to maintain desired depth
δref, given by

Uδ = ki

∫ t

0

(
δref − δ̂(τ)

)
dτ. (28)

This signal is applied to the system according to Fig. 3.
Note that due to the soft, heterogeneous sample mate-

rial, traditional scanning approaches such as AM-mode is
not sufficient for constant depth. This is because the vary-
ing spring and damping parameters will ultimately affect
the amplitude response of the cantilever. Thus, by con-
trolling for constant amplitude, changes in the material
properties is indistinguishable from changes in depth. This
would ultimately lead to errors in the identified parame-
ters.

5. Simulation Results

5.1. Setup

Simulations have been setup according to Fig. 3 for the
DIVE and SVE modes respectively. The cantilever dy-
namics and sample properties are identical in both modes
for the purpose of comparing the results.

The sample properties have been defined over a grid of
5 µm × 5 µm with 50 × 50 evenly spaced elements. The
number of grid elements determines the smoothness of the
force versus depth-response of the cantilever as it indents
the sample. A high number gives a smooth curve, while a
low number gives a piecewise linear approximation to the
curve. On the other hand, a high number of elements is
more computationally demanding. The 50×50 grid results
in a fairly smooth curve as seen in Fig. 9 at reasonable
computation times. The number of elements should be
scaled by the area the cantilever tip covers for consistent
results.

Each grid element i is represented by its topography hi,
damping coefficient ci, and spring constant ki. The given
sample properties plotted over the spatial domain can be
seen in Figs. 4a, 5a and 6a respectively. The properties
have been designed to resemble a cell, but could represent
any soft sample material.

A cantilever with a resonance frequency of 20 kHz was
chosen with a spring constant 0.18 N/m, a damping coeffi-
cient 1.48× 10−8 Ns/m, an effective mass 1.18× 10−11 kg,
and tip a radius 300 nm. This equates to a quality (Q)
factor of 100.

DIVE mode was setup to perform a total of 20 × 20
indentations evenly spaced across the grid, with 0.2 s spent
during each indentation for a total imaging time of 80 s.
The sample parameters were recorded once towards the
end of each tap.

In SVE mode, a total of 20 scanlines were performed
across the sample, with a periodicity of 2 s for a total imag-
ing time of 40 s. The sample properties were continuously
sampled across the fast scanning direction, and resampled
in post-processing to generate a 50× 20 resolution image.
A horizontal resolution of 50 was chosen to correspond to
the number of defined elements. Due to phase-lag of the
parameter identification scheme, the values across a back-
ward and forward scan were averaged. Otherwise each
consecutive line would appear slightly offset from the pre-
vious line.

6



Although the input signal from (26) is sufficient for
PE conditions, the following excitation signal was imple-
mented for both modes,

Uexc = u0 + a1 sin(f12πt) + a2 sin(f22πt) (29)

where u0, a1, a2 are suitably chosen constants, f1 is near
resonance frequency of the cantilever, and f2 is below res-
onance frequency. The last term is used to provide addi-
tional excitation of the signal vector for faster parameter
convergence.

In DIVE mode, the excitation amplitudes a1, a2 were set
to oscillate the cantilever tip with amplitudes of 100 nm
and 25 nm respectively. The total vertical positioning sig-
nal is then given by U = Uexc+Uin, where Uin is a repeated
signal actually performing the indentation.

In SVE mode, small oscillation amplitudes are used.
This avoids exciting the nonlinearities of the interaction
force arising due to the spherical tip geometry. Addition-
ally, in the case of lateral friction (not implemented) the
tip would more easily move across the surface. The ampli-
tudes a1, a2 in this case are set to oscillate the cantilever
at 5 nm and 8 nm respectively. The reference depth δref for
the feedback controller is set to 150 nm. The input signal
in this mode is given by U = Uexc + Uδ.

5.2. Scaling the parameters

The identified spring and damping constants are aggre-
gate parameters, that is, they are the sum of the individual
spring-damper elements which the tip is in contact with.
Thus, they need to be scaled by the number of elements
the tip covers. That is, the corrected parameters are given
by

k̂c = k̂/n, (30)

ĉc = ĉ/n. (31)

where n = |W| is the number of elements in the set W, or
equivalently, the number of sample elements the tip is in
contact with.

Additionally, the non-flat tip geometry means that the
indentation of individual elements will vary across the tip,
even in the case of flat topography. Ultimately, this will
affect the measurements of the spring constants.

In SVE mode only a small part of the tip is submerged.
Thus, the error due to the spherical tip geometry is small.
Additionally, due to the constant depth the error is con-
sistent across the sample. For these reasons, the spring
constant has been left uncorrected.

On the other hand, in DIVE mode the tip is completely
submerged and the depth varies between each tap. In this
case, the corrected spring constant is found given a com-
pletely submerged spherical tip,

k̂c,D = k̂c
δ̂

δ̂ − 1
3R

(32)

arrived at in Appendix A.

These corrections as discussed have been applied to the
results. The subscripts of the corrected parameters have
been omitted for the sake of readability.

5.3. Results

Comparison of the identified topography for each mode
to the given topography is seen in Fig. 4. The identified
damping coefficients are seen in Fig. 5, and the identified
spring constants are given in Fig. 6.

The error plots of the identified properties are given in
Fig. 7. The errors are given in percentages of the maximum
value of each property, that is, hmax = 0.3 µm, cmax =
8× 10−7 Ns/m, and kmax = 5× 10−3 N/m respectively.

In general, it is seen that both modes quite accurately
represent the real sample properties. The real properties
have small details that are not captured by any of the
operating modes. This is expected for two reasons:

1. The large tip radius covers several sample elements es-
sentially acting as an averaging filter. Details smaller
than the radius will be less distinguishable.

2. The resolution is essentially limited by the number of
indentations (DIVE mode) or scanlines (SVE mode),
thus obfuscating high-resolution details.

From the error plots it can be seen that in general the
errors are larger in the cases where the topography gradi-
ent is large. This effect and other biases are discussed in
Appendix B.

Fig. 8 demonstrates the differences between the two
modes of operation. For each mode it is seen how the pa-
rameter identification scheme approaches the real values
across a complete cross section of the sample. Addition-
ally, the vertical positioning input U is plotted to further
demonstrate the differences between the modes.

The parameters presented in Fig. 8b experience a high-
frequency oscillation. This is possibly due to the forced
high-frequency oscillation of the cantilever, possibly com-
bined with high gains in the parameter estimator. The
frequencies are higher than the horizontal resolution of the
image and the number of defined elements, thus the oscil-
lations are not visible after resampling and anti-aliasing.

6. Discussion

6.1. Comparison to existing techniques

6.1.1. Sample modeling

The modeling approach presented in this article should
be examined to evaluate how it compares to previous ex-
periments. In traditional Hertzian contact models the in-
dentation depth is correlated to the loading force Fk by
Fk ∝ δ1.5 for a spherical indenter. Experiments have
shown exponents ranging between 1.5 and 2.0 depending
on the bluntness of the tip [44]. In Fig. 9 it is seen that
during an indentation in our model the exponent is 1.72
which fits well within the range of previous experiments.
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Figure 4: Sample topography (a), versus identified topography (b)-(c).
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Figure 5: Sample viscosity (a), versus identified viscosity (b)-(c).
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Figure 6: Sample elasticity (a), versus identified elasticity (b)-(c).
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Figure 7: Error plots of identified parameters.
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Figure 8: Convergence of the identified parameters along the sample cross section at y = 0.158 µm. In DIVE mode (a) lateral positioning of
the tip pauses during each indentation, thus the properties are shown in the time domain. In SVE mode (b) the lateral tip speed is constant,
thus all plots can be mapped to the spatial domain.

Although classical Hertzian contact mechanics seems to
correlate well with experimental observations [25], it is
based on some inherently strong assumptions. This in-
cludes small strains (indentations), homogeneous sample
elasticity, and frictionless surfaces [45, 41]. The model
presented in this paper however is not inherently restricted
by these limitations, or is easily extendable to account for
them.

• Longer indentation ranges can be accounted for, e.g.
by introducing nonlinear springs.

• The presented model allows for local variations in the
elasticity at any spatial resolution.

• Friction can easily be added to the model by forces.

In static Hertzian contact mechanics identifying dy-
namic phenomena such as damping is not possible or rel-
evant. Since our presented model is dynamic in nature,
such phenomena appear effortlessly in the model. Other
dynamic phenomena can also be included in the model
such as plasticity and hysteresis [46]. However, this will
require some additional effort for identifying the relevant
parameters.

6.1.2. Identification of mechanical properties

Recently, approaches based on multiharmonic AFM
have become increasingly popular. In these approaches,
the harmonic components of the cantilever’s response to

interaction with the sample surface is mapped to the me-
chanical properties of the sample. Typically, the 0th, 1st,
and 2nd harmonics are used for mapping elasticity and
viscosity. The operation of the SVE mode is related to the
multiharmonic technique. Both approaches scans across
the surface at some indentation level with forced oscilla-
tions. However, the differences are clear when it comes to
mapping the measured signals to mechanical properties.
The multiharmonic approach evaluates several of the first
few Fourier coefficients of the conservative and dissipative
parts of the tip-sample interaction force. Then, these co-
efficients are mapped to local material properties through
a Taylor expansion of the interaction force around the in-
dentation point [35].

Instead, in both modes presented in this article, the
measured signals are mapped to a dynamic model of the
sample in a least square sense, using traditional parame-
ter estimation techniques from the control literature. This
approach has several advantages:

1. The sample model can easily be extended for measure-
ments of additional sample properties. Even certain
nonlinearities can easily be implemented in the sam-
ple model and parameter estimator.

2. Errors in the dynamic model after mapping the pa-
rameters can easily be seen. This allows the user to
see how well the measured properties matches the re-
ality of the physical sample. Furthermore, these er-
rors can be used to improve the model in an iterative
approach, possibly using a data-driven modeling ap-
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Figure 9: Spring force over depth during indentation.

proach.

3. Such a dynamic model allows for predictive behavior
of the material, and, it can be argued, leads to a more
intuitive description of how the sample behaves.

DIVE mode can be considered a hybrid between the
SVE mode and force-volume imaging. It is similar to the
latter in how it indents into the sample at discrete points
along the lateral axes. However, it retains the advantages
of SVE mode as it excites the sample at higher frequencies
and exploits this for measuring dynamic properties of the
sample.

6.2. DIVE mode versus SVE mode

The two modes of operation are both shown to be fea-
sible candidates for identifying mechanical properties of
a soft sample. However, there are certain differences be-
tween the two modes that should be emphasized.

DIVE mode indents deeper into the sample and assumes
a completely submerged tip. However, with revised scaling
of the parameters this mode could also tap at smaller in-
dentation ranges. The pixel throughput of the two modes
favors the SVE method with twice the number of pixels at
half the time.

Earlier studies have demonstrated a difference between
elasticity measurements in traditional F-Z curves and more
recent multiharmonic techniques, by up to an order of
magnitude [35]. Materials such as cells can display vari-
able elasticity and possibly damping as a function of both
depth and frequency. Due to the differences in indenta-
tion depth and operation of the two modes in this article,
they may essentially measure different physical properties
of the sample. As such, the modes supplement each other.

In SVE mode, an additional depth controller was pro-
posed. This controller has a potential of replacing the
traditional amplitude estimation feedback when scanning
soft materials. The viscoelastic measurements are known
to change with depth. By scanning at constant depth,
consistency of the results is maintained.

6.3. Implementability for experiments

For experimental implementation only the parameter es-
timator needs to be considered. The sample modeling part

does not need to be considered, as its primary purpose is
to provide a foundation for design and analysis of the pa-
rameter estimator, as well as simulation implementations.

Some complications may arise during experiments.
DIVE mode registers the height at the first point of con-
tact, but some materials may not have a clearly defined
edge, i.e. h, because of varying and possibly attractive tip-
sample forces near the surface. If such forces are different
between indentation points it may influence the measure-
ments, especially for topography and spring constants.

The DIVE mode assumes a completely submerged tip.
Depending on the softness and properties of the material
being investigated, this may induce large stresses and pos-
sibly permanently deform the sample. A possible solution
is to reduce the indentation depth and scale the measured
parameters accordingly.

DIVE mode should be simple to implement because only
a feedforward signal needs to be implemented online. The
parameter estimator can be run offline as a post-processing
technique of the measured signals. However, in SVE mode,
the parameter estimator is used for depth estimation and
feedback control. Thus, at least parts of the parameter
estimator needs to run online. If issues arise due to on-
line implementability, the complexity of the solution could
be reduced by implementing the pre-filters for φ̂ and ŵ
in analog circuitry and use the gradient method [42] for
the parameter estimation. This would reduce the digital
implementation to a few arithmetic operations plus an in-
tegrator, in addition to the I-controller.

7. Conclusion

A new technique based on modeling and parameter es-
timation for simultaneously identifying the topography,
damping coefficients, and spring constants of soft samples
has been presented. The technique can be operated in two
distinct modes, both of which share advantages over exist-
ing approaches. The advantages of such a modeling and
identification approach include: (1) easily allowing exten-
sions to account for additional physical phenomena such
as nonlinear springs, (2) iterability of the sample model to
correct for modeling errors visible in measured data, and
(3) allowing the behavior of the material to be predicted
through simulations of the obtained dynamic model, such
as after experiments.

The two modes of operation, DIVE- and SVE mode,
are compared and evaluated. Both modes are shown to be
feasible in simulation studies, and they could supplement
each other in experiments. DIVE mode may be easier to
implement due to its lack of feedback signal. However,
SVE mode displays a faster pixel throughput.

Appendix A. Corrected Spring Constant

The indentation of the tip into the sample, δ, is de-
fined as the distance from the edge of the tip to the sur-
face. However, the indentation of each sample element δi
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is smaller or equal to δ as seen in Fig. A.1. This creates a
discrepancy between the sum of the spring force of each el-
ement, and the spring force identified in the approximated
model for parameter identification. In the following, it is
shown how to correct for this discrepancy.

Assuming homogeneous spring constants, ki ≡ k0, and
completely submerged tip as in DIVE mode, δ ≥ R. From
(5),(8) the total spring force acting on the tip is then given
by

Fk =
∑
i

k0δi = kδ (A.1)

where k is the aggregate spring constant from the approx-
imated model (10), and δ from (11) is the depth into the
sample measured at the end of the tip. The scaling be-
tween k0 and k can then be found as

k0 =
δ∑
i δi

k

=
δ

nδ − (
∑
i δ − δi)

k (A.2)

where n = |W| is the number of elements under the tip.
An expression for the summation term can be found by
considering the spherical tip geometry:

1

n

∑
i

δ − δi = R− 1

n

∑
i

√
R2 − (X − xi)2 − (Y − yi)2

≈ R− 1

πR2

∫ 2π

0

∫ R

0

ρ
√
R2 − ρ2dρdθ

= R− 2

3
R

=
1

3
R. (A.3)

The only approximation is due to moving from the discrete
case to the continuous case. Inserting the last line into
(A.2) gives

k0 ≈
1

n

δ

δ − 1
3R

k

Since k and δ are not available, they can be replaced by
their identified versions. In summary, the corrected spring
constant for a completely submerged tip is given by

k̂c =
1

n

δ̂

δ̂ − 1
3R

k̂ (A.4)

Appendix B. Sources of Error

Some errors in the measured topography, viscosity, and
elasticity can be explained by considering how the tip in-
tersects with a sample of varying topography, see Fig. B.2.
A flat topography is the ideal case, in which the measured
and actual height is equivalent.

When the tip is placed over the highest point of a
concave topography, the measured height will be correct.

δ

δ1 δ2 δ3 δ4

Sample surface

Tip

Figure A.1: The indentation depth δ is larger than the average of the
element depths, δi. This introduces a bias in the identified spring
constant, which can be corrected for in post-processing.

However, since the submerged volume of the tip is smaller
than in the ideal case, an error will be introduced in the
measured viscosity and elasticity.

Lastly, in the case of steep topography, the side of the tip
will touch the sample first. Additionally, only small parts
of the tip will be submerged as the tip descends. This
introduces errors in measured topography (εh), elasticity,
and viscosity.

These errors can be mitigated by using a tip with a
smaller radius. Additionally, the errors will be reduced
when the gradient of the sample topography is smaller.

Steep topography

Point of first contact ⇒ measured height

Submerged part of tip

Concave topography

Real height

εh

Flat topography
(ideal case)

Tip

Sample

Figure B.2: Errors due to varying topography.
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