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Abstract. We present BVR (Base Variability Resolution models), a language 

developed to fulfill the industrial needs in the safety domain for variability 

modeling. We show how the industrial needs are in fact quite general and that 
general mechanisms can be used to satisfy them. BVR is built on the OMG 

Revised Submission of CVL (Common Variability Language), but is simplified 

and enhanced relative to that language. 
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1 Introduction 

BVR (Base Variability Resolution models) is a language built on the Common 

Variability Language (CVL) [1-3] technology, but enhanced due to needs of the 

industrial partners of the VARIES project1, in particular Autronica. BVR is built on 

CVL, but CVL is not a subset of BVR. In BVR, we have removed some of the 

mechanisms of CVL that we are not using in our industrial demo cases that apply 

BVR. We have also made improvements to what CVL had originally. 

Our motivation has mainly been the Fire Detection demo case at Autronica, but we 

have also been inspired by the needs of the other industrial partners of VARIES 

through their expressed requirements to a variability language. 

This paper contains a quick presentation of the Common Variability Language in 

Chapter 2. In Chapter 3, we relate our work to its motivation in the Autronica fire 

alarm systems, but argue that we need a more compact and pedagogical example and 

our car case is presented in Chapter 4. Then we walk through our new BVR concepts 

in Chapter 5, discuss the suggested improvements in Chapter 6, and conclude in 

Chapter 7. 

2 CVL – the Common Variability Language 

The Common Variability Language is the language that is now a Revised Submission 

in the Object Management Group (OMG) [3] defining variability modeling and the 
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means to generate product models. CVL is in the tradition of modeling variability as 

an orthogonal, separate model such as Orthogonal Variability Model (OVM) [4] and 

the MoSiS CVL [1], which formed one of the starting points of the OMG CVL. The 

principles of separate variability model and how to generate product models are 

depicted in Fig. 1 

 

Fig. 1. CVL principles 

The CVL architecture is described in Fig. 2. It consists of different inter-related 

models. The variability abstraction consists of a VSpec model supplemented with 

constraints, and a corresponding resolution model defining the product selections. 

The variability realization contains the variation points representing the mapping 

between the variability abstraction and the base model such that the selected products 

can be automatically generated. The configurable units define a layer intended for 

module structuring and exchange. In this paper we have not gone into that layer. 

The VSpec model is an evolution of the Feature-Oriented Domain Analysis 

(FODA) [5] feature models, but the main purpose of CVL has been to provide a 

complete definition such that product models can be generated automatically from the 

VSpec model, the resolution model and the realization model. 
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Fig. 2. CVL architecture 

BVR (named from Base, Variability, Resolution models) is an evolution from CVL 

where some constructs have been removed for improved simplicity and some new 

constructs have been added for better and more suited expressiveness. The new 

constructs are those presented in this paper. 

3 The Autronica Fire Detection Case 

The main motivator has been the Autronica Fire Detection Case. Autronica Fire & 

Security2 is a company based in Trondheim that delivers fire security systems to a 

wide range of high-end locations such as oil rigs and cruise ships. Their turnover is 

around 100 MEUR a year. 

The Autronica demo case is described schematically in Fig. 3.  

 

Fig. 3. The Autronica demo case 

The purpose of the demo case was to explore the ways in which the Autronica 

specific model "AutroSafe" could be applied for two different purposes. Firstly, after 
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transforming the MOF metamodel into CVL the CVL tools could be used to define 

AutroSafe configurations. Secondly, and possibly more interestingly, from the CVL 

description it would be possible to apply analysis tools to AutroSafe which were made 

generally for CVL. In particular the ICPL tool [6-8] could be used to find an optimal 

set of configurations to test AutroSafe. 

For our purpose in this paper, the Autronica use-case provided the real background 

for understanding what kinds of product line they have to manage. In performing our 

use case at Autronica, we explored the transition from the AutroSafe model to a CVL 

model. The AutroSafe model was a UML model that can be understood as a reference 

model or a conceptual model of how the fire detection system concepts are 

associated [9]. We realized that this conceptual model could be considered a 

metamodel, which could be used to generate language specific editors that would be 

limited to describing correct fire detection systems. Furthermore, we realized that the 

conceptual model could be used as base for a transformation leading to a variability 

model. We explored this route by manually transforming the AutroSafe metamodel 

through transformation patterns that we invented through the work. At the same time 

Autronica explored defining variability models for parts of the domain directly, also 

for the purpose of using the variability model to generate useful test configurations. 

4 The Example Case – The Car Configurator 

Since the Autronica case is rather large and requires special domain knowledge we 

will illustrate our points with an example case in a domain that most people can relate 

to, namely to configure the features of a car. 

Our example case is that of configuring a car. In fact our starting point for making 

the variability model was the online configurator for Skoda Yeti in Norway3, but we 

have made some adaptations to suit our purpose as example. 

Our car product line consists of diesel cars that can have either manual or 

automatic shift. The cars with automatic shift would only be with all wheel drive 

(AWD) and they would need the 140 hp engine. On the other hand the cars with 

manual shift had a choice between all wheel drive and front drive. The front wheel 

drive cars were only delivered with the weaker 110 hp engine, while the all wheel 

drive cars had a choice between the weak (110 hp) or the strong (140 hp) engine. 

Following closely the natural language description given above, we reach the CVL 

model shown in Fig. 4. 
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Fig. 4. The example diesel car in CVL 

Readers unfamiliar with CVL should appreciate that solid lines indicate that the child 

feature (or VSpecs as we call them in BVR/CVL) is mandatory when the parent is 

present in a resolution. Dashed lines on the other hand indicate optionality. A small 

triangle with associated numbers depicts group multiplicity giving the range of how 

many child VSpecs must and can be chosen. Thus when AWD has children hp140 and 

hp110 associated with a group multiplicity of 1..1, this means that if AWD is chosen, 

at least 1 and at most 1 out of hp140 and hp110 must be selected. 

5 The BVR Enhancements 

In this chapter, we will walk through the enhancements that we have made to 

accommodate for general needs inspired by and motivated by industrial cases. 

5.1 Targets – the Power of the Variability Model Tree Structure 

Our CVL diagram in Fig. 4 is not difficult to understand even without the natural 

language explanation preceding it given some very rudimentary introduction to CVL 

diagrams (or feature models for that matter). We see that the restrictions are 

transparently described through the tree structure and our decisions are most easily 

done by traversing the tree from the top. 

It is also very obvious that the diesel car has only one engine, and that it has only 

one gear shift and one kind of transmission. Therefore everybody understands that 

even though there are two elements named "hp140" they refer to the same target, 



namely the (potential) strong engine. In the same way "AWD" appears twice in the 

diagram, but again they both refer to the same target. It turns out that CVL and other 

similar notations do not clearly define this. In fact CVL defines that the two choices 

named "hp140" are two distinct choices with no obvious relationship at all. 

When does this become significant? Does it matter whether the two choices refer 

to the same target? It turns out that it does both for conceptual reasons and technical 

ones. 

 

Fig. 5. Adding a Parking assistant 

In Fig. 5, we have added an optional parking assistant to the car. However, to be 

allowed a parking assistant, you need to buy the strong engine. This is intuitive and 

easily understood, but formally this means that any of the occurrences of "hp140" 

should satisfy the constraint. Thus, constraints talk about the targets and not the 

choices. 

5.2 Beyond One Tree 

We see that the tree structure of variability models convey in a very transparent way 

the restrictions of the decisions to be made. However, trees are sometimes not 

enough. In our Autronica experiment, we wanted to reflect in the CVL model the 

structure of variability in a way that would abstract the actual configurations of fire 

detection systems in airports and cruise ships. In this way our variability model 



became close to the structures of the base model. Our car example model has the 

opposite focus as it highlights the restrictions of interrelated decisions. 

In variability models that are close to the base model, one can expect that tree 

structures are insufficient to describe the necessary relationships and in the Autronica 

case the physical layout of detectors and alarms was overlaid by an equally important 

structure of logical relationships and groups. To represent the alternative, overlaid 

structures, we need ways to refer between variability elements and our obvious 

suggestion is to introduce references (or pointers as they are also called). 

References can also serve as traces and indicate significant places in other parts of 

the model. 

In our Autronica experiment we had to encode references since references were not 

available as a concept in CVL. To encode references, we used integers to indicate 

identifiers and corresponding pointers. This required a lot of manual bookkeeping that 

turned out to be virtually impossible to perform and even more impossible to read. 

In BVR, we want to reflect the physical structure that is represented in the 

conceptual model as composition through the main hierarchical VSpec tree. The 

logical structure that is modeled by associations in the conceptual UML model would 

be represented by variability references in BVR. 

5.3 From Proper Trees to Properties 

Judging from the tool requirements elicited from the VARIES partners, they wanted a 

lot of different information stored in the variability (and resolution) models. Some of 

the information would be intended for their own proprietary analysis tools, and 

sometimes they wanted to associate temporary data in the model.  

When working with the Autronica case and experiencing the difficulties with 

encoding the needed references we ourselves found that we wished that we had a way 

to explain the coding in a natural language sentence. Thus we felt the very common 

need for having comments. 

5.4 Reuse and Type – the First Needs for Abstraction 

Fire alarming is not trivial. Autronica delivers systems with thousands of detectors 

and multiple zones with or without redundancy to cruise ships and oil rigs where 

running away from the fire location altogether is not the obvious best option since the 

fire location is not easily vacated. In such complicated systems it was not a big 

surprise that recurring patterns would be found. 

Without going into domain-specific details, an AutroSafe system will contain IO 

modules. Such IO modules come in many different forms and they represent a whole 

product line in its own right; this actually applies for most of the parts a fire alarm 

system is composed of, e.g., smoke detectors, gas detectors, panels, etc. Some IO 

modules may be external units and such external units may appear in several different 

contexts. As can be guessed, external units have a very substantial variability model 

and it grows as new detectors come on the market. 



In our experiment, we encoded these recurring patterns also by integers as we did 

with references with the same plethora of integers and need for bookkeeping as a 

result. It was clear that concepts for recurring patterns would be useful in the 

language. We investigate introducing a type concept combined with occurrences 

referring the types. 

Our example car product line has no complicated subproduct line, but we have 

already pointed out that AWD recurs twice in the original model. We express AWD as 

a type and apply two occurrences of it. 

 

Fig. 6. The AWD variability type 

The observant reader will have seen that replacing the two occurrences of AWD in 

Fig. 6 with replications of the type will not yield exactly the tree shown in Fig. 5 since 

for Automatic shift only the strong engine can be chosen. Such specialization should 

be expressed by a constraint associated with the occurrence. 

We note that the type itself is defined on a level in the tree which encloses all of 

the occurrences. It is indeed not obvious where and how the type should be defined 

and we have shown here what was sufficient to cover the Autronica case.  

In Fig. 6 awdautomatic:AWD is a ChoiceOccurrence, which represents an 

occurrence or instantiation of the AWD VType. A question is whether a 

ChoiceOccurrence can itself contain a tree structure below it since it is indeed a 

VNode? If there was a subtree with a ChoiceOccurrence as root, what would be the 

semantics of that tree acknowledging that the referred VType defines a tree, too? It is 

quite obvious that there must be some consistency between the occurrence tree and 

the corresponding VType tree. Intuitively, the occurrence tree should define a 



narrowing of the VType tree. There are, however, some serious challenges with this. 

Firstly, to specify the narrowing rules syntactically is not trivial. Secondly, to assert 

that the narrowing rules are satisfied may not be tractable by the language tool. 

Thirdly, the narrowing structures may not be intuitive to the user. Therefore, we have 

decided that only constraints will be allowed to be used to further specify a choice 

occurrence. In our example case, the diagram in Fig. 6 would add a constraint below 

awdautomatic:AWD with exactly one target reference to hp140 and thus the semantics 

would be the same as in Fig. 5. 

Our example model has only Choices as VSpecs, but the Autronica system has 

multiple examples of elements that are sets rather than singular choices. Such decision 

sets that represent repeated decisions on the same position in the VSpec tree are 

described by VClassifiers. Similar to ChoiceOccurrences that are typed Choices, we 

have VClassOccurrences that are typed VClassifiers. We appreciate that VClassifiers 

are not VTypes even though they represent reuse in some sense, but sets are not types. 

A type may have no occurrences or several occurrences in different places in the 

VSpec tree. 

5.5 Resolution Literals – Describing Subproducts 

Once we have the VType with corresponding occurrences in the variability model, we 

may expect that there may be consequences of these changes in the associated 

resolution models and realization models. 

What would be the VType counterpart in the resolution model? 

 

Fig. 7. Resolution literals 

In Fig. 7, we show a resolution model of an imaginary electric car that has one engine 

for each wheel. We have defined two literals of the Engine type, one named Strong 

and one named Weak. The literals represent sub-products that have been fully 

resolved and named. In reality, it is often the case that there are named sub-products 



that already exist and have product names. Thus such literals make the resolution 

models easier to read for the domain experts. 

5.6 Staged Variation Points – Realizing Occurrences 

Having seen that the VType has consequences for the resolution model, the next 

question is what consequences can be found in the realization model that describes the 

mapping between the variability model and the base model? 

We have already reuse related to the realization layer since with fragment 

substitutions we can reuse replacement fragment types. Replacements represent 

general base model fragments that are cloned and inserted other places in the base 

model base. 

Replacement fragment types do not correspond to VType directly and we find that 

with fragment substitutions as our main realization primitive we would need a 

hierarchical structure in the realization model to correspond to the hierarchy implied 

by occurrences of VTypes in the variability model. The "staged variation points" 

correspond closely with subtrees of the resolution model. They are not type symbols, 

but rather correspond to the expansion of occurrences (of VTypes and resolution 

literals). 

In BVR (and CVL) variation points refer to a VSpec each. Materialization of a 

product is driven by the resolutions. They refer to VSpecs and trigger those variation 

points that refer to that same VSpec. A staged variation point refers to an occurrence 

of a VType. 

The semantics of a staged variation point is to limit the universe of variation points 

from which to choose. The VSpec being materialized is an occurrence which refers to 

a VType. That VType has a definition containing a tree of VSpecs. The resolution 

element triggering the staged variation point has a subtree of resolution elements that 

can only trigger variation points contained in the staged variation point. 



 

Fig. 8. Staged Variation Points example 

In Fig. 8, we illustrate how staged variation points work. In the upper right, we have 

the resolution model and we will concentrate on resolutions of w1 and w2. w1 is 

resolved to true and the rightmost staged variation point refers the w1:Engine choice 

on the very left in the VSpec model indicated by the (green) line. Now since the 

w1:Engine has been chosen, we need to look into the Engine VType for what comes 

next, and the choice of the power of the engine comes next. For w1 the resolution 

model indicates that kw500 is chosen and this is also indicated by a (yellow) line from 

the resolution element to that of the VSpec model. The actual transformation of the 

base model is given by the variation points in the realization model, and we are now 

limited to the variation points enclosed by the staged variation point already found 

(the rightmost one). The rightmost fragment substitution of said staged variation point 

refers to the chosen kw500 VSpec inside the Engine VType and thus this is the one 

that will be executed. The figure indicates that what it does is to remove the kw300 

option and leaving only the kw500 engine option on the right wheel of the car. 

In the very same way, we may follow the resolution of w2 and we find that due to 

the staged variation point for w2 is the leftmost one, a different fragment substitution 

referring the kw500 of the Engine VType will be executed for w2, which is exactly 

what we need. 

6 Discussion and Relations to Existing Work 

Here we discuss the new mechanisms and why they have not appeared just like this 

before. 



6.1 The Target 

Introducing targets was motivated by how the VSpec tree structure can be used to 

visualize and define restrictions to decisions. The more the tree structure is used to 

define the restrictions, the more likely it is that there is a need to refer to the same 

target from different places in the tree. 

Our example car in Fig. 4 can be described in another style as shown in Fig. 9 

where the restrictions are given explicitly in constraints and the tree is very shallow. 

The two different styles, tree-oriented and constraint-oriented, can be used 

interchangeably and it may be personal preference as well as the actual variability that 

affects what style to choose. It is not in general the case that one style is easier or 

more comprehensible but constraints seem to need more familiarity with feature 

modeling [10]. 

 

Fig. 9. The example car with explicit constraints 

Given that a tree-oriented style is applied and there are duplications of target, why is 

this a novelty? It is a novelty because CVL does not have this concept and it is 

unclear whether other similar feature modeling notations support the distinction that 

we have named targets as distinguished from VSpecs (or features). Batory [11] and 

Czarnecki [12, 13] seem to solve duplication by renaming to uniqueness. The Atego 

OVM tool4 implicitly forces the user into the style of using explicit constraints and 

thus circumvents the problem. OVM [4] does not contain the general feature models 

of FODA [5]. 

VSpecs are distinct decision points and every VSpec is in fact unique due to the 

tree path to the root. Targets are also unique, but for a different reason. Targets are 

unique since they represent some substance that is singular. This substance needs not 

be base-model specific, but it is often closely related to the base model. What makes 

this distinction essential is that explicit constraints talk about targets and not VSpecs. 
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In Fig. 5 we have a variability model which is properly satisfied by (Parkassist, 

Manual, AWD, hp140) and by (Parkassist, Automatic, AWD, hp140) showing that 

hp140 may refer to any of two distinct VSpecs. 

6.2 The Type and Its Consequences 

Introducing a type concept to BVR should come as no surprise. As pointed out in [14] 

concepts for reuse and structuring normally come very early in the evolution of a 

language. Since the feature models have a fairly long history [5], it may be somewhat 

surprising that type concepts for subtrees have not been introduced before. A type 

concept was introduced in the MoSiS CVL [1], and this was fairly similar to the one 

we introduce to BVR. The CVL Revised Submission [3] has a set of concepts related 

to "configurable units" that are related to our suggested VType concept, but those 

concepts were intended mainly for sub-product lines of larger size. The concept was 

also much related to how variabilities are visible from the outside and the inside of a 

product line definition. 

Other notations have not introduced type concepts and this may indicate that the 

suggested notations were not really seen as modeling languages, but more as 

illustrations. Another explanation may be that type concepts do introduce some 

complexity that imply having to deal with some challenges. 

One challenge is related to notation. The type must be defined and then used in a 

different place. In the singular world definition and usage were the same. VTypes 

must appear somewhere. We have chosen to place them within the VSpec tree, but it 

would also be attractive to be able to define VTypes in separate diagrams. A VType 

in fact defines a product line in its own right. Our Engine VType implied in Fig. 7 

could contain much more than only horse power choice. 

In the modeling language Clafer, which has served as one of the inspiration sources 

of BVR, the type declarations must be on the topmost level [15], which in our 

example would have made no difference. Locally owned types, however, have been 

common in languages in the Simula/Algol tradition [16] for many years. The local 

ownership gives tighter encapsulation while the top ownership is semantically easier. 

The usage occurrences refer to the type. How should this be depicted? We have 

chosen to use textual notation for this indicating the type following a colon. The colon 

is significant for showing that the element is indeed an occurrence of a VType. 

Another challenge is related to how the VType and its occurrences are placed in 

the model at large. This has to do with what is often called scope or name space. We 

have defined that VTypes or VPackages (collections of VTypes) can be name spaces 

and thus occurrences of a VType X can only appear within the VType enclosing the 

definition of X, but VTypes may be nested. Similar to the discussion on targets, again 

names are significant because they designate something unique within a well-defined 

context. 

Are targets and types related? Could we say that targets appearing in multiple 

VSpecs are in fact occurrences of a VType (named by the target name)? At first 

glance this may look promising, but they are conceptually different. The target is 

something invariant that the decisions mentioning it are talking about. A VType is a 



pattern for reuse, a tree structure of decisions representing a subproduct line. There 

are cases where the two concepts will coincide, but they should be kept distinct. 

While VTypes are defined explicitly and separately, we have chosen to let targets be 

defined implicitly through the names of VSpecs. 

CVL already recognized types as it had VariableType, which was quite elaborate 

and which also covered ReplacementFragmentType and ObjectType. Could VType 

be a specialized VariableType and the occurrences specialized variables? This may 

also be tempting, but variables are given values from the base model by the 

resolutions, while occurrences refer to patterns (VTypes) of the variability model. 

6.3 The Note 

The Note is about a significant element that has no direct significance in the language. 

Adding a note concept is an acknowledgement of the fact that there may very well be 

information that the user wants to associate closely with elements of the BVR model, 

but which is of no consequence to the BVR language or general BVR tooling. 

Such additional information may be used for tracing, for expressing extra-

functional properties or it may be pure comments. The text may be processed by 

proprietary tooling or by humans. Having no such mechanism made it necessary to 

accompany a CVL diagram with a textual description if it should be used by more 

than one person or more than one community. 

Since variability modeling is oblivious to what varies, the Note can be more 

important than it might seem. The Note is where you can associate safety critical 

information with the variants and the possibilities. The Note is where you can contain 

traces to other models. The Note is where you can put requirements that are not 

connected to the variability model itself. 

The Note will be significant for the tools doing analysis. 

We foresee that once we have experimented with using notes in BVR, there will be 

recurring patterns of usage which may deserve special BVR constructs in the future, 

but at this point in time we find such constructs speculative. 

6.4 The Reference 

References in the BVR model are similar to what can be found in commercial tools 

like pure::variants5. A reference in the variability model is defined as a variable and as 

such it enhances the notion that variables hold base model values only. A Vref 

variable is resolved by a VRefValueSpecification where the pointers of the resolution 

model and the pointers of the variability model correspond in a commutative pattern. 

Why are references necessary? They represent structure beyond the tree and this 

can represent dependencies that are hard to express transparently in explicit 

constraints.  

In our motivation from the Autronica case our need for references came from 

describing an alternative product structure that overlaid the hierarchical physical 
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structure of the configured system. We may say that our Autronica variability model 

is a very product-oriented (or base-oriented) variability model meaning that structures 

of the product was on purpose reflected in the variability model. The opposite would 

have been a property-oriented variability model where VSpecs would have 

represented more abstract choices such as "Focus on cost" vs. "Focus on response 

time". 

7 Conclusions and Further Development 

We have been motivated by needs of the use cases and found that the needs could be 

satisfied by introducing some fairly general new mechanisms. At the same time we 

have made the BVR language more compact than the original CVL language such 

that it serves a more focused purpose. 

Our next step is to modify our CVL Tool Bundle to become a true BVR Tool 

Bundle to verify that the demo cases can more easily be expressed and maintained 

through the new language. 

The future will probably see improvements along two development paths. One line 

of improvements will be related closely with needs arising from variability analysis 

techniques for safety critical systems. We suspect that the generic Note construct 

could be diversified into several specific language mechanisms associated with 

analysis techniques. This would migrate the insight from the analysis tools to the 

BVR language. 

The second line of improvements will follow from general language needs. The 

VType concept should potentially form the basis for compact concepts of interface 

and derived decisions serving some of the same goals as the elaborated mechanisms 

around "configurable units" in CVL. We think this line of development will also 

include partial binding and default resolutions without introducing additional 

conceptual complexity. 
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