
Onboarding Software Developers and Teams in Three Globally
Distributed Legacy Projects: A Multi-Case Study

Ricardo Britto1*, Daniela S. Cruzes2, Darja Smite1,2 and Aivars Sablis1

1Department of Software Engineering, Blekinge Institute of Technology, SE-371 79, Karlskrona, Sweden
2SINTEF Digital, NO-7465, Trondheim, Norway

SUMMARY

Onboarding is the process of supporting new employees regarding their social and performance
adjustment to their new job. Software companies have faced challenges with recruitment and
onboarding of new team members and there is no study that investigates it in a holistic way. In this
paper, we conducted a multi-case study to investigate the onboarding of software developers/teams,
associated challenges, and areas for further improvement in three globally distributed legacy projects.
We employed Bauer's model for onboarding to identify the current state of the onboarding strategies
employed in each case. We learned that the employed strategies are semi-formalized. Besides, in
projects with multiple sites, some functions are executed locally and the onboarding outcomes may be
hard to control. We also learned that onboarding in legacy projects is especially challenging and that
decisions to distribute such projects across multiple locations shall be approached carefully. In our
cases, the challenges to learn legacy code were further amplified by the project scale and the distance to
the original sources of knowledge. Finally, we identified practices that can be used by companies to
increase the chances of being successful when onboarding software developers and teams in globally
distributed legacy projects.

KEYWORDS: Onboarding; global software engineering; global software development; legacy.

1. INTRODUCTION

Day after day, companies must deal with different challenges to survive in an increasingly competitive
market. For software companies, the source of competitive advantage has always been associated with
the competent resources due to the knowledge-intensive nature of the work. Therefore, recruiting and
onboarding new employees is one of the key areas of success. Onboarding (also known as
organizational socialization) is the process of supporting new employees regarding their social and
performance adjustment to their new job [1]. In the context of software development, many reasons may
lead to onboarding of new developers such as: i) to replace retired developers; ii) to replace developers
that left or will leave the company; iii) to scale up the number of developers in response to the growth
of the number of customers; iv) to incorporate new people that may bring new ideas and thus help a
company to innovate; or v) to take over the work from original developers (also a type of replacement)
in order to free up the experienced developers for starting something new. In response, companies must
recruit new people, or, in other words, start the “onboarding” process, by which newcomers make the
transition from being organizational outsiders to being insiders [13]. Effective onboarding helps new
employees learn attitudes, knowledge, skills, and behaviors required to work effectively [1–4].

* Correspondence to: Ricardo Britto, Department of Software Engineering, Blekinge Institute of Technology, SE-371 79,
Karlskrona, Sweden. Email: rbr@bth.se

This is the peer reviewed version of the following article: Britto R, Cruzes DS, Smite D, Sablis A. Onboarding software developers and teams in three
globally distributed legacy projects: A multi-case study. J Softw Evol Proc. 2017;e1921. which has been published in final form at https://
doi.org/10.1002/smr.1921This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

The onboarding process can be either formal or informal [5–7]. In an informal onboarding, new
employees learn about their new job without an explicit organizational plan, while in a formal
onboarding, they are assisted in their new organizations by means of a written set of coordinated
policies, procedures, and actions. The levels of formality and comprehension of an onboarding program
vary among companies. However, existing literature suggests that successful companies regard
onboarding of new employees formally rather than ad-hoc [1].

While there is a vast literature about onboarding in a diverse type of professions [4,8–11], there are
only a few dedicated studies in software engineering research and, to the best of our knowledge, there is
no holistic study that investigates how the onboarding of software developers is strategized.

To fill the existing gap, we carried out an empirical investigation on how the onboarding of software
developers is strategized in three different companies. Our case companies are globally distributed and
onboard developers to work in ongoing software product development efforts. We argue that such
environments introduce additional challenges for both newcomers and software companies, since
onboarding in globally distributed environments may happen both locally and remotely. Furthermore,
newcomers may have to deal with large amounts of accumulated legacy code, which was written by the
original developers who may not be working in the company any longer. To understand the peculiarities
and challenges of onboarding processes in the mentioned environment, we share our findings from an
exploratory multi-case study that is driven by the following research question:

 What are the functions (practices, tools, techniques, methods, and technologies) employed by
companies to onboard software developers in globally distributed legacy projects?

We analyzed the onboarding strategy employed by each company using a holistic model for
successful onboarding proposed by Bauer [1]. The proposed model has been empirically tested and
widely adopted and allows evaluating the range of onboarding activities employed by a company.

The main contributions of this paper are:
 A holistic analysis of the onboarding strategy employed to onboard software developers by

three software companies (holistic, related to software engineering field, empirical).
 The use of an onboarding model to assist in the process of identifying areas of improvement in

the onboarding process of software developers and software development teams (model
applicability testing, theory-driven research).

 Recommendations that can be used by companies to improve their onboarding strategies with
respect to local and remote developers.

The remainder of this paper is organized as follows: Section 2 describes the background and related

work. Section 3 presents the research design, followed by the results in Sections 4. Section 5 presents a
discussion of the results and implications for practice. Validity threats and limitations are discussed in
Section 6. Finally, Section 7 contains the conclusions and our view on future work.

2. BACKGROUND AND RELATED WORK

In this section, we describe the concept of onboarding (organizational socialization), the model for
successful onboarding by Bauer [1], and summarize related work that focuses on onboarding of software
developers.

2.1 Onboarding

To improve the effectiveness of the talent management systems beyond effective recruitment and new
employee selection, companies shall consider the strategic use of onboarding. Onboarding, also known
as organizational socialization, refers to the mechanism through which new employees acquire the
necessary knowledge, skills, and behaviors to become effective organizational members and insiders
[12,13]. Research and conventional wisdom both suggest that employees get about 90 days to prove
themselves in a new job [1].

Klein et al. [4] affirm that the research on onboarding can be divided into four distinct perspectives:
 Stages through which newcomers progress [14,15].
 Actors involved with the onboarding of newcomers [16,17].
 Tactics and practices employed by organizations for onboarding newcomers [1,13,18].

 Content to be learned by newcomers during the onboarding [15,19].

Considering that the main focus of this paper is on onboarding tactics and practices, we elaborate

further on this perspective, describing the main models of onboarding: Van Maanen and Shein’s model
[13], Jones’ model [20] and Bauer’s model [1].

2.2. Van Maanen and Shein’s Model

Van Maanen and Shein [13] proposed a theoretical explanation regarding role orientation in the
context of onboarding. The model categorizes onboarding tactics in six dimensions:

 Collective vs. individual – Collective onboarding occurs when a group of newcomers go
through onboarding activities and acquire experiences together (e.g., boot camps). Individual
onboarding occurs when newcomers go through separate from other newcomers (e.g.,
apprenticeship).

 Formal vs. informal – Formal onboarding relates to tactics in which newcomers are segregated
from other employees (e.g., policy academies). Informal onboarding relates to tactics that have
no or little separation between newcomers and other employees (e.g., on-the-job training).

 Sequential vs. random – Sequential onboarding refers to the extent to which discrete steps
regarding the onboarding phases are specified for the newcomers, while random onboarding
tactics do not specify any sequence of steps.

 Fixed vs. variable – Fixed onboarding occurs when there is a timetable associated with each
step of the onboarding process, so that a newcomer knows the exact time required to complete
each step. Variable onboarding does not associate any time with the onboarding steps. Rather,
newcomers receive some clues regarding when they should consider an onboarding step as
concluded.

 Serial vs. disjunctive – Serial onboarding takes place when experienced employees serve as
models for newcomers (e.g. a new police officer works for an extended period with some veteran
police officer). Disjunctive onboarding refers to the tactics wherein no guidelines or models are
provided to newcomers.

 Investiture vs. divestiture – Investiture onboarding occurs when an organization prefers that
newcomers keep their personal characteristics and make use of their own skills, values, and
attitudes. Divestiture takes place when an organization rejects and removes the personal
characteristics of newcomers.

According to this model, the way newcomers respond to their roles differs due to the onboarding

tactics used by organizations. This means that organizations can support newcomers by giving relevant
information in different ways.

2.3. Jones’ Model

Jones' model [20] was built upon Van Maanen and Shein’s Model [13] and reduces the original six
dimensions to two:

 Institutionalized onboarding occurs when tactics are implemented in structured programs and
newcomers receive formal group orientation and mentoring. This dimension is composed by the
following dimension categories of Van Maanen and Shein’s Model: collective, formal,
sequential, fixed, and serial investiture.

 Individualized onboarding takes place when newcomers start working from the beginning and
must learn the norms, values, and expectations on-the-fly. This dimension is composed of the
following dimension categories of Van Maanen and Shein’s Model: individual, informal,
random, variable, disjunctive, and divestiture.

Institutionalized onboarding is related to formal tactics, while individualized onboarding is related to
informal tactics. Companies considered as successful regarding the onboarding of newcomers have more
formal onboarding programs (institutionalized onboarding) [18,21,22].

2.4. Bauer’s Model

Bauer et al. conducted a series of studies that resulted in an empirically based onboarding model
[1,3,10,12,21]. The model was conceptualized to support the design of onboarding programs, capitalizing
on the fact that institutionalized onboarding is more successful than individualized onboarding [18,21,22].
While related to Van Maanen and Shein’s model and Jones’ model, Bauer’s model has a finer grain level
than the previous models; it aggregates practices, techniques, methods and technologies (functions) that
are related to successful onboarding (Figure 1).

The benefits of this model are two-fold: i) it facilitates the evaluation of current state of onboarding
programs in real projects, supporting the identification of areas to improve; ii) it provides a set of good
practices that can be used by organizations to improve their onboarding programs. Considering the main
goal of this paper, Bauer’s model was considered the most adequate model and, thus, used in our
investigation.

According to Bauer, onboarding has four distinct levels, known as the Four Cs, which are the building
blocks of successful onboarding [1]:
 Compliance is related to teaching employees basic legal and policy-related rules and regulations.
 Clarification is related to ensuring that newcomers understand their new jobs and the related

expectations.
 Culture is related to providing newcomers with a sense of organizational norms, including both

formal and informal.
 Connection is related to the interpersonal relationships and information networks that newcomers

must establish.
The extent to which an organization focuses on each C determines its onboarding strategy. The

combination of tools, practices, recommendations, performance goals and measurement milestones
constitutes an onboarding strategy, which is often formalized in an onboarding plan [1]. The success of an
onboarding strategy is related to short-term and long-term outcomes. Short-term outcomes are associated
with the adjustment of new employees to their new jobs [1]. They go through a series of four adjustments:
 Self-efficacy is the first level of adjustment and represents the degree that new employees feel

confident when carrying out the work related to their new jobs. The more self-efficacy, the more
motivated and successful an employee has the potential to be [23]. Furthermore, self-efficacy is
associated with high job satisfaction and low turnover [21].

 Role clarity is the second level of adjustment and represents how well new employees understand
their role and expectations. Measures of role clarity are seemed as effective predictors of job
satisfaction and organizational commitment and performance [24].

 Social integration is the third level of adjustment and represents the extent to which new
employees feel socially comfortable and accepted by their colleagues and superiors [25].
Effective social integration is related to committed employees and low turnover rates [1].

 Knowledge of culture is the fourth level of adjustment and represents the possession of
knowledge about the prevalent organizational culture (politics, goals, values and a company’s
unique language) and the extent to which the new employees fit to it [1].

Long-term outcomes of onboarding are related to attitudes and behaviors. In the long-term, effective

onboarding leads to: higher job satisfaction, organizational commitment, lower turnover, higher
performance levels, career effectiveness and lowered stress [1,26,27]. Although very important, long-term
outcomes are not covered in this paper; our investigation encompasses the short-term outcomes of
onboarding.

The functions of Bauer’s model are grouped into six categories:
 Recruiting - In many organizations, recruiting is not integrated with the onboarding plans and is

treated as a separate function. However, existing literature shows that this integration (e.g.
through realistic job previews or early involvement of stakeholders) gives to people being
recruited a larger and more accurate amount of information about the company and job. As a
result, this facilitates the adjustment of new employees, specially self-efficacy, role clarity and
knowledge of culture [28].

 Orientation – Formal orientation programs help newcomers to understand important aspects of
their jobs and organizations, as the company’s culture and values [29]. Moreover, they also help

newcomers feel welcome by presenting them to other individuals within the organization.
Computer-based orientation programs can help to keep consistency to the program in different
locations. This function facilitates all four types of adjustment [1].

 Training – They are mandatory to give to the new employees the confidence, clarity and skills
required by their job. New employees can receive training about hard skills and soft skills. The
type of training depends on the self-efficacy of new employees in relation to what is demanded
by the job. As a result, training facilitates the adjustment of new employees, specially self-
efficacy, role clarity and knowledge of culture [1].

 Coaching and support – Mentors can teach newcomers about the company, provide advice and
help with job instruction. Existing research shows that new employees with mentors acquire
more knowledge about their new company than the ones without mentors [30]. Furthermore,
mentoring programs and opportunities for informal interaction with colleagues certainly help the
new employees to adapt more easily to the new work environment. This function facilitates all
four types of adjustment factors [1].

 Support tools and processes – Tools and formal processes are of great value for onboarding
success. According to Bauer [1], there are three tools/processes that are related to successful
onboarding: a written onboarding plan, which is a formal document that contains the timeline,
goals, responsibilities and support available to each newcomer; stakeholder meetings, which
occur in specific intervals, involve all the onboarding stakeholders, and allow newcomers to get
the information they need; onboarding online, which can help to track the onboarding progress
against development and career plans, and also help stakeholders to identify any additional help
that new employees may need. This function facilitates all four types of adjustment factors [1].

 Feedback – Newcomers need constant feedback and guidance to understand and interpret the
reactions of their co-workers. Feedback can be mainly provided in two different ways [1]:
performance appraisals and 360-degree feedback, wherein the new employees are evaluated and
receive developmental feedback and are also able to know how others view them; employee-
initiated information and feedback seeking, wherein the new employees proactively seek
feedback. This function facilitates the adjustment of new employees, specially self-efficacy, role
clarity and knowledge of culture [1].

Figure 1 – Bauer’s model (adapted from Bauer [1]).

2.5. Onboarding in the software development context

Some studies approach the onboarding topic in the context of software development (See Table 1),
commonly addressing the functions of Bauer’s model in isolation.

In relation to recruiting, Tockey [31] has investigated the recruitment of software developers and has
identified a misalignment between what hiring managers ask for and what they really need. By mapping
postings for software developer jobs and issues related to software projects, they identified that the
postings did not include skills that could be useful to address identified problems (e.g., code review skills
to address software quality problems).
Regarding orientation, the importance of effective socialization (a part of the orientation process in the
Bauer’s model) is emphasized by Casalnuovo et al. [32]. The study focused on the links between social
relationships and onboarding. They explored GitHub to identify how the technical factors of past
experiences and social factors of past connections to team members of a project impact their productivity.
They identified that developers prefer to join projects in GitHub where they have pre-existing
relationships. They also found that stronger social connections are related to lower initial and higher late
productivity.

Table 1 – Relationship between the related work and Bauer’s model.

In relation to training, there is a vast literature that focuses on the training function of onboarding in

the context of software engineering. While it is beyond the scope of this paper to cover comprehensively
the literature related to training, and especially the hard technical skills, we would like to highlight a study
related to soft skill training in the context of software engineering, which is key when onboarding
newcomers according to Bauer [1]. Matturo et al. [33] conducted a field study to identify soft skills that
are most important for product owners and Scrum masters. They identified that communication skills,
customer orientation, and teamwork are the most important soft skills for product owners, while
commitment, communication skills, interpersonal skills, planning skills, and teamwork are the most
important soft skills for Scrum masters.

Regarding coaching and support, many studies focus on the role of mentoring for more effective
onboarding. Falgerholm et al. [34] investigated the impact of mentoring on the onboarding of new
developers in open source projects. They investigated that involved the onboarding of students from
different universities in an open source project. Experienced developers mentored the students for three
days. The activity of the mentored developers (students) was compared to the activity of non-mentored
developers. They identified that the mentored developers were more active in the first 16 weeks of
engagement than the non-mentored developers. In another study, Falgerholm et al. [35] investigated the
influence of mentoring and project characteristics on the effectiveness and efficiency of the onboarding
process of software developers in open source projects. They used quantitative measurements of source
code repositories, issue tracking systems, and developer’s discussions to identify how newcomers become
contributing members of open source projects. They found that developers that receive deliberate

Study ID Main focus of the study Strategy function category
covered

Context

Tockey [31] S1 Recruiting Recruiting Unclear
Casalnuovo et al. [32] S2 Onboarding social factors Orientation Open source
Matturo et al. [33] S3 Soft skill training Training Open source
Falgerholm et al. [34] S4 Mentoring Coaching and support Open source
Falgerholm et al. [35] S5 Mentoring Coaching and support Open source
Britto et al. [36] S6 Mentoring Coaching and support Closed source
Labuschagne and
Holmes [37]

S7 Mentoring Coaching and support Open source

Monasor et al. [38] S8 Soft skill training tool Support tools and processes Academia
Steinmacher at al.
[39,40]

S9 Portal to support orientation
and first contribution

Support tools and processes;
Orientation

Open source

Cubranic at al. [41] S10 Propose a system to support
mentoring

Support tools and processes;
Coaching and support

Open source

Malheiros et al. [42] S11 Propose a system to support
mentoring

Support tools and processes;
Coaching and support

Open source

Canfora at al. [43] S12 Propose a system to select
mentors

Support tools and processes;
Coaching and support

Open source

onboarding support through mentoring were more active in the beginning. Britto et al. [36] investigated
how software architects mentor new software developers and teams in a large-scale globally distributed
legacy project. They identified that it is especially challenging to provide mentoring for teams located
offshore, due to geographical and temporal distances. Furthermore, the existence of large amounts of
complex legacy code amplifies the difficulty to mentor new remote development teams. Labuschagne and
Holmes [37] investigated the effectiveness of mentored onboarding in open source projects supported by
Mozilla Foundation. They compared two different onboarding approaches: one with the focus on easy bug
fixing without mentoring, and the other focused on mentored bug fixing (more complex bugs). It was
found that the programs that implemented the onboarding strategies were not enough to automatically
improve the chances that a developer becomes a long-term contributor.

Finally, some support tools and processes have been proposed to support the onboarding of
developers. Monasor et al. [38] developed a virtual environment to allow students to support soft skill
training, which focuses on acquiring software communication skills in a more practical way. The virtual
environment allows for the customization of different training scenarios, enabling instructors to adapt
them according to different needs. Steinmacher at al. [39] created and evaluated a portal to support the
onboarding of new developers in open source projects. The portal is based on a conceptual model of
barriers [40] and the evaluation results suggest that it helped to alleviate barriers related to orientation and
contribution process. Researchers have tried to facilitate mentoring through recommender systems.
Cubranic at al. [41] and Malheiros et al. [42] developed tools that create a project memory automatically.
The project memory can answer some questions made by newcomers, decreasing the need for human-
based mentoring. In both cases, the tools were evaluated in the context of open source projects and were
only successful to help newcomers to solve easy tasks. Canfora at al. [43] also developed a recommender
system, but their focus was to allocate appropriate mentors for new developers in open source projects.
They identified that the top committers are not necessarily the most appropriate mentors.

Three other studies worth mentioning in relation to our research question do not address any of the
function categories directly but focus on barriers faced by new developers during the onboarding process.
Steinmacher et al. [40] conducted a systematic literature review on the barriers faced by newcomers to
contribute to open source projects. They identified 15 barriers that hinder the onboarding process of new
developers in open source projects, five categories of barriers (social interaction, newcomers’ previous
knowledge, finding a way to start, documentation, and technical hurdle) and three origins (newcomers,
community, or product). Steinmacher and Gerosa [44] conducted a survey to investigate in more detail the
challenges that new developers face selecting the first task to start contributing in open source projects.
They found that new developers do not have enough confidence to choose their initial task and, thus, need
support from the open source community to select an appropriate task. In both studies, none of the
functions of Bauer’s model are addressed directly, but they indicate the importance of implementing them
to address the identified barriers/challenges. And finally, Smite and van Solingen [45] studied an
outsourcing relationship between a Dutch customer and an Indian vendor and found that it took longer for
remote developers in India to climb up the learning curve in comparison with the developers onboarded
onsite in the Netherlands. This was primarily due to the distance to the sources of requirements and
development knowledge, and the lack of local developers with experience. They also found that onsite
developers received more attention and training, while offshore developers were expected to be mentored
and trained by the outsourcing vendor company.

As shown in Table 1, feedback is the only function category not covered by the related work, while
coaching and support tools and processes are the most covered function categories. Furthermore, the
coverage of onboarding function categories in the existing literature dedicated to software developers is
fragmented (function categories are investigated in isolation). Finally, most of the studies we highlighted
in this section focus only on open source projects. Therefore, to the best of our knowledge, no study
reports a holistic investigation of software developer onboarding, accounting for all the function
categories together in closed source globally distributed projects.

3. RESEARCH DESIGN

To address the research question formulated in this paper, we conducted an exploratory holistic multi-case
study [46]. We investigated three different cases, which were selected through convenience sampling as
adequate cases to investigate strategies to onboard software developers/teams. All cases involve globally
distributed legacy projects. In this section, we describe each case, unit of analysis, and the data collection,
preparation, and analysis processes.

3.1. Case Description

Case 1 is a Polish company that provides services in dedicated IT solutions and applications, IT
outsourcing, IT consulting, customizations and training. The main market segments of this company are
telecommunications M2M (Machine to Machine), healthcare ERP (Enterprise Resource Planning),
business intelligence applications, and finances and banking solutions. The company has subsidiaries in
Sweden, Ukraine, and Belarus. The investigation focused on people involved in the development of
telecommunication solutions. The people we interviewed work in a project in which the company
provides software development services to another company with strong presence in the
telecommunication market segment.

Case 2 is a leading supplier of intelligent transportation systems to the public transport sector,
including fare collection, travel information, infotainment, fleet management and traffic management. The
investigated two teams consisting of nine members each including one tester in each team (in Poland),
product owners are in Norway and customers mostly in Scandinavia. Software development teams follow
a Scrum-based process, where a release is about 6 months long. The two teams have a complex
environment of products and the domain knowledge is not easy to acquire. A large part of the systems
consists of legacy code, which was produced by developers that are not anymore available. Some people
are recruited to work on the new part of the system and some to work on the legacy part of the system
only.

Case 3 is a large-scale distributed project associated with the development and evolution of a large
software product in Ericsson, a large Swedish company that commercializes telecommunications-related
products. The product originated in Sweden and has evolved for almost 20 years, and, by the time of this
investigation, involved 188 employees (15 software architects, 134 developers working in 19 formal
teams) distributed across Sweden (five software development teams), India (10 software development
teams), Italy (one software development team), USA (one software development team) and Poland (two
software development teams).

3.2. Data Collection

In all three cases, we collected data through semi-structured individual and group interviews, and a
workshop. Most of the interviews were conducted face-to-face. We recorded the audio and made notes
during the conduction of the interviews/workshop. More details about the interviews are presented in
Table 2.

To collect the data in Case 1, we conducted six individual interviews and two group interviews (90
min long). We interviewed the three product managers who are highly involved in the onboarding of new
developers. We also interviewed the manager of the technical training center, two developers and two
teams of developers to have different views on the onboarding process of Case 1 (60 min long). All the
interviewees are from one of the sites located in Poland. The interviews were conducted face-to-face in
Poland in May 2016.

To collect the data in Case 2, we conducted four group interviews, in which we interviewed two teams
(45 min long), and four senior developers highly involved with the onboarding of developers (two group
interviews, each 40 min long). All the interviews were conducted face-to-face in Poland in November
2016.

Finally, to collect the data regarding Case 3, we conducted three individual interviews and one group
interview. We interviewed the product manager, who is highly involved in the onboarding of new
developers. We also interviewed a software architect (located in Sweden), a senior developer (located in
the USA) and conducted a workshop with a team of developers (located in India) to have different views
on the onboarding process of Case 3. The data was collected from October 2016 to January 2017. All the
interviews (60 min long) and the workshop (80 min long) were conducted in Sweden face-to-face, except
for one that involved a developer located in the USA, which was carried out via Skype.

Through the interviews, we could identify how the onboarding functions are implemented in each
case’s strategy (if so). Furthermore, we could identify aspects that can be improved in each respective
onboarding strategy.

Table 2 – Details about the interviews.

To conduct the interviews, we developed two semi-structured interview guides, one to interview managers
(interview guide 1 in Appendix 1) and the other to interview developers (interview guide 2 in Appendix
2). The interview guide 2 was also used to conduct the workshop in Case 1.

3.3. Data Preparation and Analysis

Before analyzing the collected data, we transcribed all interviews related to Case 1 and Case 2. Then, we
asked the interviewees to check the transcriptions. Two interviewees from Case 1 identified issues in their
respective transcriptions, which were fixed. Regarding Case 3, we did not record the audio of the
interviews and the workshop to make the participants more comfortable and prone to speak out. In all
interviews, we took notes to facilitate posterior analysis. The notes included key points related to the
questions that were posed during the interviews. The notes were discussed with the respective
interviewees, to ensure that they reflected what was discussed during the interviews. In the workshop, we
asked the participants to provide information about the challenges they faced during their onboarding,
with a special focus on their learning process. The developers were asked to write down, independently of
each other, the challenges that, in their opinion, impacted their learning processes. After 10 minutes,
individual opinions were discussed within the group. The results were aggregated in a report that was
verified by the participants.

To analyze the collected data, we followed the coding process described by Robison and McCartan
(open coding) [47]. We used the function categories described in Bauer’s model as primary codes. We
coded the interview transcriptions, notes and workshop report using the defined codes, aiming at
identifying how onboarding was strategized (implemented functions) in each case. Then, we determined
the order and duration of the implemented functions in each case. We designed diagrams to visualize the
functions (see Figures 2-5), emphasizing the functions dedicated to the legacy (functions in gray color)
and distinguishing between the functions planned and implemented by offshore sites locally and functions
planned and implemented centrally by the main sites. The coverage of the onboarding functions, as well
as similarities and differences between the cases, were then summarized (see Table 3) and discussed.

Finally, we derived recommendations for software companies onboarding developers and teams in
globally distributed legacy projects (see Section 5). To do so, we paid special attention to functions that
were implemented in the investigated cases to address the challenges of onboarding on a distance, or
dealing with legacy code. Some of the practices drive the readers’ attention to the challenging areas and
warn about the necessity to have a proactive action plan, while others propose concrete action. The
recommendations resulted from the combination of practices well-evaluated by the interviewees and our
observations from the three cases.

Case Type of
interview

Length Date Role of interviewees Experience

1 Individual 60 minutes 11/05/2016 Software developer 2 years
1 Individual 60 minutes 11/05/2016 Technical training

center manager
5 years

1 Individual 60 minutes 11/05/2016 Product manager 12 years
1 Individual 60 minutes 11/05/2016 Product manager 10 years
1 Individual 60 minutes 11/05/2016 Software developer 8 years
1 Group 90 minutes 12/05/2016 6 Software developers 2: < 6 months

4: >3 years
1 Group 90 minutes 12/05/2016 6 Software developers 4: with < 1.5 year

2: > 2 years
2 Group 45 minutes 20/11/2016 2 Software developers <3 years
2 Group 45 minutes 20/11/2016 2 Software developers < 3 years
2 Group 40 minutes 20/11/2016 2 Software developers > 5 years
2 Group 40 minutes 20/11/2016 2 Software developers > 5 years
3 Individual 60 minutes 17/01/2017 Product manager 16 years
3 Individual 60 minutes 03/10/2016 Software architect 10 years
3 Individual 60 minutes 10/10/2016 Design lead 15 years
3 Workshop 80 minutes 21/12/2016 5 Software developers > 2 years

Table 3 – Summary of the onboarding tools.

Category Function Case 1 Case 2 Case 3
Recruitment Recruitment integrated with

onboarding
 Fully integrated Partially integrated Partially integrated

Realistic job previews for
newcomers

 Summer schools Not implemented Not implemented

Stakeholder involvement in
recruitment

 Senior developers participate in technical
interviews

 Senior developers in already
established sites participate in
technical interviews and CV
screening

 Senior developers in already
established sites participate in
technical interviews and CV
screening

Orientation Formal orientation course or
material for the newcomers

 Not implemented Not implemented Not implemented

First day at the job is special

 The whole first week at the new job is
dedicated to familiarization with the
environment

 The first month is dedicated to
learning on the job.

 The whole first week at the new job
is dedicated to familiarization with
the environment

Coaching and
support

Mentoring programs A mentor assigned to new developers
inside a boot camp. Afterwards, a mentor
assigned to a new developer or a mentor
team assigned to a team of new
developers

 One or several mentors assigned to
new developers in a team.

 A mentor assigned to a new
developer or a group of new
developers

Training Formal training on hard skills
and/or soft skills

 3 months long training focusing on
technical and methodological
knowledge, provided in boot camps

 Not implemented If many new comers, 3 months long
training focusing on technical,
methodological, and product
knowledge

Support tools
and processes

Onboarding plans Partially supported
An intranet with useful company
material

 Partially supported
An intranet with useful company
material and an instruction page

 Established
Onboarding plans, an intranet with
company material

Regular stakeholder meetings Face-to-face meetings Face-to-face meetings Face-to-face and videoconferencing

Own progress monitoring Not implemented Not implemented Progression spreadsheets
Feedback Performance appraisals Face-to-face during meetings with

mentors and immediate managers
 Face-to-face during appraisal

meetings with immediate managers
 Face-to-face during meetings with

mentors and immediate managers

360-degree feedback Feedback from mentors via code reviews
and face-to-face

 Feedback from mentors via code
reviews

 Feedback from mentors via code
reviews

4. RESULTS

In this section, we present the results associated with each case. In all cases, the companies employed semi-
formalized onboarding strategies. Table 3 summarizes the results, wherein green color represents fully
implemented functions, yellow represents partially implemented onboarding functions, and red represents not
implemented functions (see Section 3 for more details about the onboarding functions and categories). The
results are further elaborated in the remainder of the section.

4.1 Case 1

The summary of the onboarding functions implemented in Case 1 is given in Figure 2.

Figure 2 – Summary of the onboarding functions in Case 1

In Case 1, recruitment is integrated with the existing onboarding strategy. The company organizes summer

schools for newly graduated bachelors from the local universities, during which the young professionals
receive technical training within the actual software teams. This provides the candidates with realistic job
previews. Successful attendees of the summer school receive a job offer. In this case, a series of job interviews
may be carried out. Senior developers participate in the evaluation of candidate developers during the
technical interviews. Selected candidates proceed to a special onboarding program called “boot camp” and
receive an initial 3-month contract, which can be extended if the new developer performs well and shows good
potential. Other members of the team, where a new developer is allocated, conduct the evaluation of
performance and potential.

A boot camp is a 3-month long program in which small groups of newcomers must carry out a small
project, usually involving a toy task for learning purposes and to be able to evaluate the potential of the
candidate. Boot camp aims at learning the intended programming languages, tools, environments, and ways of
working, and facilitates socialization and team building. During a boot camp, a senior developer is assigned to
support a group of developers and is responsible for facilitating the required training and provide knowledge
of corporate behavior. Therefore, it is fair to say that boot camps serve as a premise for orientation, training,
and coaching.

There is no formal orientation of the new developers. The welcoming of the newcomers in a boot camp is
done in an informal way is conditional in its nature, since the more permanent recruitment of developers
happens upon the successful completion of the boot camp, three months later.

Coaching and support, as noted earlier, is a central part of a boot camp program. The mentors assigned to
the developers are used as the first-hand contacts for any help needed. After a boot camp, the new developers
receive additional support, but the way it is provided by the company differs depending on the current
circumstances. If few developers are onboarded, each one of them will be assigned to a mentor (senior
developer) within the team. If many developers are onboarded together, often a new team is created with the
new developers. The new team is assigned to a mentor team, which is a mature software development team. In
general, the new team works on the backlog of the mentor team, “shadowing” the work of the mentor team in
the beginning and doing small tasks more independently afterward. This allows an experienced team to take
off some workload while helping the new team, without losing overall productivity. Further support is
provided through communities of practice, wherein new developers can interact with senior developers to
acquire technical and methodological guidance. It is important to note that socialization and seek help from
others is emphasized in the company and noted by the new recruits.

Although the company employs a learning-by-doing approach, i.e. there is no big emphasis on traditional
classroom training, the company facilitates this through formal training programs provided during the summer
schools and the boot camps. There are two types of training: external training, which are focused on technical
(e.g. domain, programming languages) and methodological (e.g. agile practices) training, and are provided to

all units by the corporate training center; and internal training, which are focused on product knowledge and
are provided by a unit for its developers/teams. After receiving the formal training, the new hires are further
incorporated in the teams to “shadow” the more experienced developers in their daily tasks. This is an
important and relatively secure way of acquiring the product knowledge and the knowledge of the legacy code.
The company also provides soft skill training (e.g. multi-cultural training), but they are only offered at the later
stages of the developers’ careers.

The company provides some support tools and processes, including an intranet and wiki pages, wherein
documents about the ways of working and the product are available.

When it comes to feedback, the company facilitates two types of feedback. The candidates have a
possibility to provide feedback on the onboarding process by requiring additional training within a boot camp
or after being incorporated into a team. The candidates also receive feedback from the mentors face-to-face or
via code reviews. Mentors and immediate managers also evaluate and provide feedback about the performance
of newcomers during performance appraisal meetings.

4.2 Case 2

The summary of the onboarding functions implemented in Case 2 is given in Figure 3.

Figure 3 – Summary of the onboarding functions in Case 2

Recruitment in Case 2 is partly integrated with the onboarding process. Although no formal realistic job

preview is provided, senior developers are included in the process of recruitment, both during the CV
(curriculum vitae) screening and when conducting technical interviews. The two main factors of success
mentioned during the interviews were related to a good technical meeting and knowing whom they will work
with if employed. These factors determined whether the recruitment process was good or not. Also, the
existing developers perceived that it is important to be a part of the recruitment decisions. Recruited
developers commented that the technical interview allowed them to know more about the work in the
company.

The orientation of new developers is done in an informal way, i.e. there is no formal orientation program.
In general, the first week at the new job is dedicated to familiarizing with the new environment and the new
recruits are given one month to learn their way. However, this process is not formalized. One interviewee
commented that he would like to have more information about the company structure, and who is responsible
for each department. Otherwise those new to the company must ask different people about who is responsible
for what, knowing who is who is especially hard in a globally distributed company. Another interviewee also
commented that the goals of the project must be clear since the beginning.

The company provides coaching and support for the new developers, but the way it is done depends on the
number of people being onboarded. In each team, there is someone that does the mentoring for the new
employees, depending on which part of the system the new employee will work on. Some projects are very
complex with respect to domain-specific knowledge, so there is nobody who is knowledgeable in all aspects.
There is one month learning time given by the company to a new employee, but there is no clearly separated
time for the mentors to spend time with the new employees. It is informally known that the mentors’
productivity will slow down, but they do not have any dedicated time for mentoring explicitly. At the same
time, they do activities such as explaining the domain, showing how to setup the environment, doing code
reviews and answering the questions as they arise. Work as a mentor puts additional pressure on the mentors
and other experienced team members because they must keep up with their own productivity and at the same
time take care of the new employees. The best mentoring strategy happens when there is an overlap of the time
when the senior developer is leaving the company and the new one is arriving, so the new developer can
receive the introduction from the person that he/she is replacing. Some new developers thought that one month
was too much time for just learning, and after two weeks they have started to take some simple tasks to solve.
The company does not provide any formal training for the new employees.

Regarding support tools and processes, the company has an intranet wherein documentation is made
available, technical sessions about architecture of the system and documentation (“how to” navigate on the

wiki pages, confluence etc.), and an instruction page (how to set up environments, virtual machines, where to
find information needed, who has specific knowledge and acronyms and glossary of terms). Not all
information is equally structured and it may be hard for new developers to find the information they need.

Feedback is mainly used to identify whether a new developer needs more support or identify whether it is
worthwhile to hire a new developer permanently. Appraisal meeting with all employees are organized every
six months, wherein the employees receive feedback on their performance and have an opportunity to speak
about their own experiences in the company. The team members also use code reviews to support the
onboarding process of new developers.

4.3 Case 3

In Case 3, we explored the challenges associated with remote onboarding, which at the same time was carried
out in the context of a complex legacy product. Given the changing market demands, developers and teams
were frequently onboarded in the project we have studied in Case 3. This happened both locally in Sweden and
remotely in USA, Italy, China, Turkey, Poland, and India. During the 20 years of product existence, over 30
teams were onboarded and more than half removed from the project, not to mention individual onboarding.
Given the distributed nature of the project some onboarding functions were organized by the central project
stakeholders in Sweden, while others occurred remotely and were handled by the local management. The
processes for onboarding differed for sites with considerable experience and already established teams from
those sites, which just started their engagement in the project. The two onboarding strategies employed in Case
3 are presented in Figure 4 and 5 respectively.

Figure 4 – Summary of the onboarding functions for existing sites with local seniors in Case 3.

Figure 5 – Summary of the onboarding functions for newly established remote sites in Case 3.

The recruitment of the new employees is organized by each site individually, while the demanded skill

profiles are formulated by the central location. The company does not provide realistic job previews; however,
senior developers participate in the recruitment process and the evaluation of new candidate developers during
the technical interviews in the already established sites local. In general, inexperienced developers have an
initial 6-months contract and experienced developers have an initial 1-month contract, which can be extended
depending on the performance of the new employees, which is evaluated during the time of the first contract.
Senior developers, commonly those from the central location, evaluate new developers by reviewing their
work outcomes, i.e. the code. Overall, we conclude that the recruitment is partially integrated with the
onboarding process.

The orientation of new developers is carried out in an informal way, i.e. there is no formal orientation
program, and is up to the local stakeholders define how to implement orientation. In general, the new recruits

are given one week at the new job to familiarize with the new environment, get to know the key people and
coworkers (socialization), and acquire the basics about the existing ways of working. The way it is done
depends on the number of people being onboarded; if few people are onboarded, the orientation is carried out
on an individual level; and if many developers are onboarded at the same time, the company provides a group
level orientation. In both cases, a senior local developer or a manager provides an informal walk-around and
discussion-based orientation.

The company provides three months long formal training for the new employees when many developers
are recruited. The training program focused mainly on product knowledge and required technical and
methodological skills. The company also provides training related to soft skills, e.g. a cross-cultural
communication course for those working in a distributed way, but they are not part of the onboarding strategy.
Rather, they are provided in a later stage of an employee’s career. If just one person is to be onboarded, no
formal training is provided.

The company employs a learning-by-doing approach and new developers soon start to work with real tasks
under careful coaching and support. Depending on the number of people being onboarded, the company
assigns mentors on an individual or a group level. The mentors are responsible for ensuring that the new
employee or employees do not cause problems that impact the whole product. Therefore, the new hires often
start by developing test cases for the product regression testing framework under careful supervision and then
move on to more challenging tasks. Notably, the onboarding process differs for the already existing sites and
the newly established sites. When many developers are onboarded in an already established site, the common
practice is to group them and allocate one or two senior developers into the new team. In some cases, these
groups are separated after two months, the new developers are integrated in existing teams, and the senior
developers return to their original teams. The special situation arises when the new developers are onboarded
in remote sites with no senior developers present for local coaching and support. It is often hard to relocate
enough senior developers from one country to another for a long period of time. To address this, the company
first brings the new developers from the remote location to Sweden for both training and the initial period of
supervised work (four to six months in total). Then a senior developer follows the developers to the remote
location to provide on-site mentoring for the next four to six months. Finally, the new developers continue
receiving support on a distance.

Regarding support tools and processes, the company uses many resources to make the onboarding of new
developers successful. All tools and processes are centralized. For the remote teams, there is a formal
onboarding plan, with the goals, milestones, and training associated with the new developers. As for the other
functions, the goals are defined at an individual or group level depending on the number of people being
onboarded at the same time. For each developer, regardless location, there is an Excel spreadsheet used to
track their progression regarding the competence they must acquire. This spreadsheet also contains the main
source of knowledge they can use to acquire the required competence. This file must be updated to a system,
which is used by immediate managers and mentors to also follow the progression of new developers. Another
tool is the corporate intranet, wherein documents about the ways of working and the product are available, and
which is maintained centrally.

The new developers receive continuous feedback on their work outcomes (i.e. code) through code reviews.
Local senior developers (if any) and software architects from the central location evaluate the performance and
transfer product knowledge to support the new developers. Based on the received feedback, new developers
may require more formal training. At the same time, the status of performance is used by the immediate
managers locally to identify whether a new developer needs more support. Such checks are performed together
with the mentors on a weekly basis. Code reviews also serve as a track record used in permanent employment
considerations. Local stakeholders decide whether to hire or not permanently a new developer.

5. DISCUSSION

In this paper, we have used the Bauer’s model for successful onboarding to analyze the onboarding functions
and strategies in three software companies diverse in domains and size. In the following, we first discuss the
degree to which each organization has formalized and structured their onboarding strategies. Then, we discuss
the new challenges for onboarding developers to work with legacy systems and when onboarding remotely.
Based on the results, we bring forward a list of recommendations that can support companies to improve their
onboarding strategies, as well as some implications for future research on this topic.

5.1 Formality Level of Onboarding Strategies

As noted earlier, companies may employ formal (institutionalized) or informal (individualized) onboarding
processes [5–7], which depends on whether new employees learn about their new job on their own or
following coordinated policies, procedures, and actions set by the company. Bauer [1] and other researchers
[18,21,22] suggests that successful companies treat onboarding of new employees more formally, which can
be done by specifically addressing the four essential components of onboarding – Compliance, Clarification,
Culture, and Connection [1]. In other words, to make the onboarding successful, companies are expected to
explicitly support newcomer familiarization with the legal policies and regulations, job-related training,
organizational norms, and networking and building interpersonal connections with other employees important
for completion of the job tasks.

In our investigation, we have specifically focused on the clarification and the connection building blocks in
Bauer’s model. Unfortunately, we did not study the familiarization with the legal policies, regulations, and the
corporate culture because it requires much more observation and an ethnographic approach.

In relation to Connection, the case companies employed a few practices that primarily included daily work
practices for all employees and were not formalized as a part of the onboarding practices. For example, walk-
through-the-office type of introductions of the newcomers, exchange visits, and other contact building
activities are used as a part of the orientation, but are not institutionalized. Participation in communities of
practice, and team events were other sources of new contact acquisition. The more formalized functions based
on the three studied cases were related to the coaching and support. In Case 1, for example, the company
integrated the newcomers in existing teams to foster interpersonal connections. To the best of our knowledge,
related literature in software engineering does not focus on this component.

With respect to clarification, we found that in all three case companies the most formally treated activities
were those related to ensuring that newcomers understand their new job. Related literature [31] suggests that
companies shall also clarify their expectations and provide candidates with detailed information about a
particular job, to enable them to better decide whether the offered position matches their aspirations. However,
we found that among the studied companies only one (Case 1) provided realistic job previews, but in Case 2,
the team members participate in the interviews and can answer the questions of the newcomers and all get to
know who they will be working with. After recruiting the new developers, all three companies put a strong
emphasis on further anchoring the understanding of the job routines through a formally established mentoring
program, as also suggested by related literature [34,35] (S4 and S5). In fact, in two of the cases (Cases 2 and
3), assignment of mentors was the prime onboarding function. The actual job clarification and feedback was
enabled through less formal process employed by the mentors and other employees in general. Finally, the
three companies employed code reviews (over-the-shoulder, email pass-around, pair programming or tool-
assisted code review) to enforce clarification, which is also suggested as a good practice by existing literature
[48].

Interestingly, we found that depending on the number of people being onboarded, companies employed
different levels of formality to onboard software developers, which we have not come across in the related
literature. This impacted the offering of formal training programs, the number of mentors, the allocation of
new developers into existing teams or formation of new teams, as well as the duration of training, coaching,
and support. A valid question for future investigation is whether this means that large groups of new
developers (onboarded in a more formal way) have a better onboarding results, or individual treatment and less
formal strategy result in a better onboarding outcome. Unfortunately, we are not unable to answer this question
in this paper.

5.2 Onboarding Challenges for Globally Distributed Legacy Projects

In all three investigated cases, the onboarding processes were additionally challenged because of the
considerable amount of legacy code that the newly employed developers had to learn. To support the
newcomers, all companies provided formal training about the product knowledge and different ways to coach
and support them on the job. Although we know from existing literature that mentoring is a common practice
for onboarding software developers [34,35], we observed in our case studies that in legacy projects, coaching
and support may be required for a significantly longer period. We also found that this may negatively impact
the mentors, as our interviewees complained about the mentoring role being a heavy slog. It affects the
mentors’ productivity since they must stop their work to respond to the new employees’ requests and spend
time on task switching due to disturbances. In Case 3, besides the main retainers of knowledge being in
another country, much of the legacy code was written by people that no longer worked in the company,
demanding even longer periods of intense mentoring, often provided offsite.

Our findings also suggest that the largest challenge for companies is to onboard remote developers to an
ongoing product development, especially if it follows agile methodologies. Existing literature shows that it
may be hard for developers to start being productive when they are onboarded remotely (S9) [39,40]. In all
three companies, agile ways of working meant that there is generally a higher emphasis on networking with
colleagues rather than documenting the progress, work outcomes and the ways of working. Even though all
three companies have put effort into making the general guidelines and product descriptions available through
the corporate intranet and wiki pages, the maintenance of consistent documentation with high coverage was a
challenge. The interviewees from Cases 2 and 3 reported that parts of the products they worked with were not
up to date or insufficiently detailed. This meant that new developers were required to keep a continuous dialog
with the mentors, which especially in Case 3, was challenged by the temporal and geographic distance.

Networking was also problematic because of the lack of cross-site contacts. Some of the interviewees
stated that they do not know in person some of the developers with whom they need to collaborate. Existing
literature shows that stronger social relationships are related to higher productivity [32] (S2). Thus, to facilitate
more personal contacts, the studied companies have invested into video conferencing facilities, frequent visits
from headquarters to the remote sites, and exchange between developers from different sites.

Another issue we identified is related to onboarding strategy fragmentation (related literature does not
focus on such an aspect). In projects with multiple sites, it may be impossible to implement all onboarding
functions in all sites in the same way. For example, in Case 3 the recruiting function was planned and
performed locally, which meant that different processes and criteria were employed to hire developers in each
site. It is fair to assume that different ways of planning and implementing the onboarding functions may lead
to uneven onboarding results and that a company can be successful in one site but fail in another due to the
local differences. Although we have not investigated the onboarding success or the process differences in
detail, the very fact that companies do not always have control over parts of the onboarding processes is an
interesting finding.

5.3 Recommendations and Implications for Practice

In this section, we outline the recommendations based on the cross-company analysis of the onboarding
functions and the lessons learned by each of the studied companies, followed by a few general implications
that we derive from the execution of our investigation.

For the companies that onboard developers in distributed legacy projects we advise:

 During recruitment explain the expectations for the new hires. As one of the interviewees from

Case 2 stressed: “The technical interview made a difference on choosing to work here because I got to

know what potentially I would do, what technologies I would be exposed, and how do they work here,

and some of technologies and the way they work, like that they follow Scrum.” Among our cases this

was the only company providing realistic job previews.

 As a part of orientation in distributed projects, acknowledge the importance of formalizing and

mirroring the onboarding program across sites. Make the objectives, timelines, roles and

responsibilities clear. Revise what a new employee needs to learn and summarize it in a written

onboarding plan. Write up a list of orientation activities in a guide for the mentors that perform the

orientation and/or the hand-out material for the newcomers.

 Provide transparency into the project organization and key roles across sites. As one of the

offshore interviewees from Case 1 revealed: “One thing that comes to my mind is that our project is

managed basically not here. It is managed abroad. Especially at the beginning, it was very difficult to

get to understand, how exactly is it managed and what is required. What aside from basic things that we

must develop code and deliver somehow, what else is required of us in terms of process and testing, and

filling forms and documents. And some meetings that take place in the other site, for instance, perhaps

contained some important information that we missed, because we didn’t know that some meetings did

take place and some information is just passed through unofficial channels and we miss out on that.”

 Invest in traveling. While walk-through-the-office is a common onboarding practice when performing

orientation of the newcomers on site, developers onboarded in distributed projects shall receive a

special kind of orientation to support the establishment of ties with the remote colleagues. One of the

interviewees from Case 1 said: “It is very important to travel to other sites to meet face-to-face people I

work. It helps to make you more aware of what is happening, where to pay attention, and who to ask if

something is unclear. Before, I was aware of people who can help me and had knowledge I need, but it

was hard to ask someone, who I didn’t really know. After I visited the other site, it became much easier,

it’s almost like going to other room in your workplace. It is a lot easier to ask and it is also easier for

the person who you ask help from.”

 Provide extensive coaching and support in legacy projects. Remember that familiarization with

legacy code requires hands-on training, as an interviewee from Case 1 revealed: “Bootcamp is a good

thing […], but there is a huge amount of knowledge to gain [...]. When you start using the things you

are learning, working for a while, you remember what you have learned and then everything becomes

clearer”. Our studies indicate that the more legacy a product contains, the longer the mentoring period.

Therefore, companies shall we prepared to prolong the mentoring, if needed. At the same time, it is

important to include coaching in the individual plans for the mentors to reduce their stress.

 Tailor the training program to suit the developers’ needs. In Case 3, we learned that the provided

onboarding activities can potentially clash with the expectations from the new hires offshore. As an

interviewee from Case 3 explained: “Here we expect our developers to learn by doing. So, as soon as

possible, we involve them in real tasks. However, people are different and some developers ask for more

training than others. In my opinion, this is also related to cultural differences.”

 Use tools to provide feedback. In all three case companies, code reviews were used to provide daily

feedback on the work outcomes of the new hires. This was appreciated by the newcomers, as one of the

recently onboarded developers from Case 2 mentioned: “We have the process of code review, so we

have discussions and comments on our code, and then testing. So, it is a good way to get feedback.” At

the same time, the companies shall also acknowledge the limitations of tool support. The case

companies emphasized the importance of collocated mentoring in distributed projects. As one

interviewee from Case 3 stressed: “We help the developers located in India mainly via code reviews and

Skype. These approaches work, but it is much easier to help them when they are here in Sweden.”

We would like to emphasize the importance of treating the onboarding as a multifunctional process. Our
cross-case analysis indicates that the coverage and sophistication of the onboarding programs may differ based
on the organizational contexts (e.g., the number of newcomers, the amount of legacy code, and the distribution
across multiple locations), It seems difficult to come up with one general onboarding strategy that would be
useful in all circumstances. For example, a full-fledged onboarding program, as proposed by Bauer, might be
economically unfeasible for onboarding a single developer. Rather, the incorporation of a developer into a
well-functioning team and their mentoring and support could suffice in this scenario. Nevertheless, a similar

lightweight onboarding program may be insufficient for onboarding many new developers in a large legacy
project. Therefore, our recommendation is to tailor onboarding strategies for the onboarding undertaking at
hand.

6. THREATS TO VALIDITY AND LIMITATIONS

In the following, we discuss the validity threats associated with reliability, internal, construct and external
validity described by Runeson and Höst [46].

Reliability is related to the repeatability of a study, i.e. how dependent are the data and analysis on the
involved researchers [46]. To minimize this threat, three researchers were involved in the design and execution
of this multi-case study. Furthermore, we developed an explicit case study protocol to guide the investigation
as suggested by [46]. Finally, the observations and findings were verified with the companies’ representatives
to avoid false interpretations and inconsistencies. Besides, the researchers have a long-term relationship with
the case companies, which means that the researchers know more about the context of the companies, not
basing the findings and interpretations only on the focused interviews. However, the collected data is
qualitative and is highly dependent on the involved interviewees. We mitigated this factor by using a known
theoretical model for onboarding that is used in other areas.

Internal validity is related to factors that researchers are unaware of or cannot control regarding their effect
on the variables under investigation [46]. The main internal validity threats related to this paper are investigator
bias and interviewee bias. Investigator bias was mitigated by involving three researchers during the design of
the interview and workshop guides (investigator triangulation). To mitigate interviewee bias, we interviewed
people with different roles (data triangulation).

Construct validity reflects how well the measures used actually represent the constructs the study intends to
measure [46]. The main threat to construct validity in our investigation is that we used only one method to
measure each construct. Data triangulation (interviewing multiple people) partially addresses this threat and
strengthens the produced evidence. Moreover, we conducted a sanity check together with company
representatives to validate the collected data.

External validity is concerned with the generalization of the findings [46]. Since the main research method
employed in this work is the case study method, the main findings are strongly bound by the context of the
selected cases. To mitigate this threat, we conducted three case studies in three different companies that
provide services and products in different domains. Furthermore, our main contribution lies in the cross-
company comparisons based on which we concluded about the variability of the onboarding practices. As such,
it shall be valid despite the limitations of the cases. The main contributions of this paper may be of interest and
applicable to researchers and practitioners that work in similar contexts. To allow the transferability of the
findings of this work, we detailed the description of the investigated cases, within the limits imposed by the
associated non-disclosure agreements. Note that more details were provided regarding the Case 3 since we
could describe the case in such a level of detail. We had to omit the name of the companies of Cases 1 and 2
due to the non-disclosure agreements we signed.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the strategies employed by three different companies to onboard software
developers in globally distributed legacy projects. To do so, we used the model for successful onboarding
proposed by Bauer [1] and evaluated the coverage of the onboarding functions in all three cases.

In response to our research question, we learned that the employed onboarding strategies are semi-
formalized and vary from company to company, and depend on the context of onboarding. When it comes to
the specifics of the context of the chosen companies, i.e. the distribution and the legacy products, we found that
these aspects significantly challenged the onboarding of software developers. We identified that in globally
distributed projects some parts of the employed onboarding strategies differ between different sites. This
means that some of the onboarding functions are centralized, while others are executed locally on the site level.
One important implication of this finding is that the onboarding outcomes cannot be always predicted and
controlled by the central management.

We also learned that onboarding in globally distributed projects with legacy code is especially challenging,
due to the difficulty to connect newcomers onboarded in offshore locations with the original developers, the

difficulty to learn the legacy code, and potential onboarding strategy fragmentation due to the distribution. Our
results also suggest that legacy projects, even co-located, require hands-on training and longer mentoring
periods than new projects.

The use of the Bauer’s model facilitated in the analysis of the coverage and prevalence of the different
onboarding functions. Among the case companies, the most common practice is coaching and mentoring,
where the companies incorporate the new employees into existing teams and rely on the ability of the
experienced team members to help the newcomers in their learning process. Some drawbacks of this approach
is that this hinders productivity of the mentors, who experience frustration and stress associated with the
inability to do their own work.

In our investigation, we also reflect on the repertoire of the onboarding strategies of the case companies,
compared to the experience from companies from various disciplines collected by Bauer. While we are unable
to judge on the sufficiency or efficiency of the documented strategies, we can see how the case companies can
enhance their onboarding programs. For example, orientation was the most neglected function in our three
cases.

Finally, we put forward the following future research directions:
 More empirical studies investigating onboarding in a holistic way. For future studies, we believe, it

would be beneficial to conduct more empirical research, both investigating onboarding in a holistic
way (accounting for all onboarding function categories together and their interplay) and investigating
separate onboarding function categories in depth.

 Quantitative studies that evaluate the effectiveness of onboarding strategies. By the time we
conducted this investigation, we were not able to collect quantitative data. However, we believe that
such data as retention of developers and performance of the onboarded developers and teams over
time might allow understanding which onboarding strategies lead to better outcomes.

 Synthesis of the experiences with training as an onboarding function category. Training is the most
studied onboarding function category in existing software engineering literature, with even venues
fully dedicated to the topic (e.g. Conference on Software Engineering Education and Training,
CSEE&T). However, to the best of our knowledge, there is no study that aggregates the existing
empirical evidence. Therefore, we suggest carrying out a comprehensive secondary study to portray
the state-of-the-art with respect to training as a part of onboarding strategies.

 Linking the findings from the motivation research and the onboarding research. Existing literature
suggests that software developers are a distinct occupational group with particular drives or
motivators [49]. Software developers are said to have a high need for growth and independence. It is
fair to assume that software developers may, therefore, have also particular onboarding needs in
comparison to other occupational groups. One important question for future research is then to
understand the ways how to enrich the onboarding strategies to better outline the growth opportunities
for the new software developers and provide them with the sense of independence as soon as possible.

ACKNOWLEDGEMENT

This research was funded by the Swedish Knowledge Foundation (Grant 2009/0249), and by the Research Council
of Norway (Grant 235359/O30). The authors are very thankful to Ericsson and all the company employees involved
in and being sincerely interested in our research.

REFERENCES

1. Bauer, T.N. (2011) Onboarding new employees: Maximizing success. SHRM Found.
2. Cable, Daniel M.; Gina, Francesca; & Staats, B. (2013) Reinventing Employee Onboarding. MIT Sloan

Manag. Rev., 54 (3), 22–29.
3. Bauer, T.N., and Green, S.G. (1994) Effect of newcomer involvement in work-related activities: a

longitudinal study of socialization. J. Appl. Psychol., 79 (2), 211–223.
4. Klein, H.J., Polin, B., and Leigh Sutton, K. (2015) Specific Onboarding Practices for the Socialization

of New Employees. Int. J. Sel. Assess., 23 (3), 263–283.
5. Zahrly, J., and Tosi, H. (1989) The differential effect of organizational induction process on early work

role adjustment. J. Organ. Behav., 10 (1), 59–74.
6. Louis, M.R. (1980) Surprise and sense making: What newcomers experience in entering unfamiliar

organizational settings. Adm. Sci. Q., 25 (2), 226–251.
7. Louis, M.R., Posner, B.Z., and Powell, G.N. (1983) The availability and helpfulness of socialization

practices. Pers. Psychol., 36 (4), 857–866.
8. Lynch, K., and Buckner-Hayden, G. (2010) Reducing the new employee learning curve to improve

productivity. J. Healthc. risk Manag., 29 (3), 22–28.
9. Rocha, J., Rollag, K., and Johnson, L. (2005) Get your new managers moving. Harvard Manag.

Updat., 3–6.
10. Bauer, T., Morrison, E., and Callister, R. (1998) Organizational socialization: A review and directions

for future research. Res. Pers. Hum. Resour. Manag. Vol 16., 16 (January), 149–214.
11. Gruman, J.A., Saks, A.M., and Zweig, D.I. (2006) Organizational socialization tactics and newcomer

proactive behaviors: An integrative study. J. Vocat. Behav., 69 (1), 90–104.
12. Bauer, T.N., and Erdogan, B. (2011) Organizational socialization: The effective onboarding of new

employees, in APA handbook of industrial and organizational psychology, Vol 3: Maintaining,
expanding, and contracting the organization, pp. 51–64.

13. Van Maanen, J., and Schein, E.H. (1979) Toward a theory of organizational socialization. Res. Organ.
Behav., 1, 209–269.

14. Buchanan, B. (1974) Building organizational commitment: The socialization of managers in work
organizations. Adm. Sci. Q., 19 (4), 533–546.

15. Feldman, D.C. (1976) A contingency theory of socialization. Adm. Sci. Q., 21 (3), 433–452.
16. Morrison, E.W. (2002) Newcomers’ relationships: The role of social network ties during socialization.

Acad. Manag. J., 45 (6), 1149–1160.
17. Ashforth, B.E. (2001) Role transitions in organizational life: An identity-based perspective, Mahwah,

NJ:Lawrence Erlbaum Associates.
18. Klein, H.J., and Heuser, A. (2008) The learning of socialization content: A framework for researching

orientating practices. Res. Pers. Hum. Resour. Manag., 27, 278–336.
19. Chao, G.T., O’Leary-Kelly, A.M., Wolf, S., Klein, H.J., and Gardner, P.D. (1994) Organizational

Socialization: Its contents and consequences. J. Appl. Psychol., 79 (5), 730–743.
20. Jones, G.R. (1986) Socialization Tactics, Self-Efficacy, and Newcomers’ Adjustments To

Organizations. Acad. Manag. J., 29 (2), 262–279.
21. Bauer, T.N., Bodner, T., Erdogan, B., et al. (2007) Newcomer adjustment during organizational

socialization: A meta-analytic review of antecedents, outcomes and methods. J. Appl. Psychol., 92,
707–721.

22. Cable, D.M., and Parsons, C.K. (2001) Socialization tactics and person-organization fit. Pers. Psychol.,
54 (1), 1–23.

23. Saks, A.M. (1995) Longitudinal field investigation of the moderating and mediating effects of self-
efficacy on the relationship between training and newcomer adjustment. J. Appl. Psychol., 80, 211–
225.

24. Feldman, D.C. (1981) The multiple socialization of organization members. Acad. Manag. Rev., 6, 309–
318.

25. Morrison, E.M. (2002) Newcomers’ relationships: The role of social network ties during socialization.
Acad. Manag. J., 45, 1149–1160.

26. Meyer, J.P., and Allen, N.. . (1988) Links between work experiences and organizational commitment
during the first year of employment: A longitudinal analysis. J. Occup. Psychol., 61 (3), 195–209.

27. Maier, G., and Brunstein, J.C. (2001) The role of personal work goals in newcomers’ job satisfaction
and organizational commitment: A longitudinal analysis. J. Appl. Psychol., 86 (5), 1034–1042.

28. Klein, H.J., Fan, J., and Preacher, K.J. (2006) The effects of early socialization experiences on content
mastery and outcomes: A mediational approach. J. Vocat. Behav., 68, 96–115.

29. Klein, H.J., and Weaver, N.A. (2000) The effectiveness of an organizational-level orientation training
program in the socialization of new hires. Pers. Psychol., 53, 47–66.

30. Ostroff, C., and Kozlowski, S.W.J. (1993) The role of mentoring in the information gathering
processes of newcomers during early organizational socialization. J. Vocat. Behav., 42, 170–183.

31. Tockey, S. (2015) Insanity, Hiring, and the Software Industry. Computer (Long. Beach. Calif)., 48
(11), 96–101.

32. Casalnuovo, C., Vasilescu, B., Devanbu, P., and Filkov, V. (2015) Developer Onboarding in GitHub:
The Role of Prior Social Links and Language Experience. ESEC/FSE Conf., 817–828.

33. Matturro, G., Fontán, C., and Raschetti, F. (2015) Soft Skills in Scrum Teams A survey of the most

valued to have by Product Owners and Scrum Masters. SEKE 2015, (July 2015), 42–45.
34. Fagerholm, F., Sanchez Guinea, A., Borenstein, J., and Munch, J. (2014) Onboarding in Open Source

Projects. IEEE Softw., 31 (6), 54–61.
35. Fagerholm, F., Guinea, A.S., Münch, J., and Borenstein, J. (2014) The role of mentoring and project

characteristics for onboarding in open source software projects. Proc. ACM-IEEE 8th Int. Symp. Softw.
Engineeering Meas. - ESEM’14, 1–10.

36. Britto, R., Smite, D., and Damm, L. (2016) Software architects in large-scale distributed projects: An
Ericsson case. IEEE Softw., 33 (6), 48–55.

37. Labuschagne, A., and Holmes, R. (2015) Do Onboarding Programs Work? Proc. IEEE/ACM 12th
Work. Conf. Min. Softw. Repos., 381–385.

38. Monasor, M.J., Vizcaíno, A., and Piattini, M. (2012) Cultural and linguistic problems in GSD: a
simulator to train engineers in these issues. J. Softw. Evol. Process, 24 (6), 707–717.

39. Steinmacher, I., Conte, T.U., Treude, C., and Gerosa, M.A. (2016) Overcoming open source project
entry barriers with a portal for newcomers. Proc. 38th Int. Conf. Softw. Eng., 273–284.

40. Steinmacher, I., Graciotto Silva, M.A., Gerosa, M.A., and Redmiles, D.F. (2015) A systematic
literature review on the barriers faced by newcomers to open source software projects. Inf. Softw.
Technol., 59 (March), 67–85.

41. Cubranic, D., Murphy, G.C., Singer, J., and Booth, K.S. (2005) Hipikat: A project memory for
software development. IEEE Trans. Softw. Eng., 31 (6), 446–465.

42. Malheiros, Y., Moraes, A., Trindade, C., and Meira, S. (2012) A source code recommender system to
support newcomers. Proc. IEEE 36th Int. Conf. Comput. Softw. Appl., 19–24.

43. Canfora, G., Di Penta, M., Oliveto, R., and Panichella, S. (2012) Who is Going to Mentor Newcomers
in Open Source Projects? Proc. ACM SIGSOFT 20th Int. Symp. Found. Softw. Eng. (FSE’12, 44:1-
44:11.

44. Steinmacher, I., and Gerosa, M.A. (2014) Choosing an appropriate task to start with in open source
software communities: A hard task. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.
Intell. Lect. Notes Bioinformatics), 8658 LNCS, 349–356.

45. Smite, D., and Van Solingen, R. (2015) What’s the true hourly cost of offshoring? IEEE Softw., 33 (5),
60–70.

46. Runeson, P., Höst, M., Rainer, A., and Regnell, B. (2012) Case Study Research in Software
Engineering: Guidelines and Examples, John Wiley & Sons.

47. Robson, C., and McCartan, K. (2015) Real World Research, Wiley.
48. Cohen, J.A. (2006) Best Kept Secrets of Peer Code Review: Modern Approach. practical Advice,

Smart Bear Inc.
49. Beecham, S., Baddoo, N., and Hall, T. (2008) Motivation in software engineering : a systematic

literature review. Inf. Softw. Technol., 50 (9), 860–878.

APPENDIX 1 – Interview guide 1

APPENDIX 2 – Interview guide 2

1. Please provide your background.
2. How does the recruiting process work?

a. What are the characteristics that are mandatory for a candidate to be hired?
b. What are the characteristics that are not appreciated in new candidates?
c. Is the recruiting process evaluated?

3. How does the learning process work?
 a. What are the scenarios wherein developers need to be trained?

 b. What are the main learning needs (technical knowledge, methodological knowledge,
product knowledge, soft skills)?
c. How are the people being trained evaluated before, during and after the learning process?
d. What are the learning practices/activities employed during the learning process?
e. In which levels does training take place (individual, group)?
f. How is the learning process evaluated?

4. How does the onboarding process work?
a. What are the scenarios wherein people are onboarded (single or group onboarding)?
b. What aspects are considered when forming new or restructuring existing teams?
c. What are the team-building activities performed?
d. How are the teams evaluated?
e. What is perceived as a mature team?
f. What is perceived as a stable team?
g. How is the onboarding process evaluated?

1. Please provide your background.
2. How were you recruited?

a. What are the characteristics you have that were mandatory for the company to hire you?
b. What’s your opinion about the recruiting process?
c. Have you ever been asked your opinion about the recruiting process? If so, please
elaborate on that.

3. How were you trained?
a. What are the main things you had to learn to perform your work (technical knowledge,
methodological knowledge, product knowledge, soft skills)?
b. What are the learning practices/activities employed during your learning process?
c. Does your learning process take place in the individual or group level?
d. Have you ever been evaluated before, during and after any activity during your learning
process? If so, please elaborate on that.

4. How does the onboarding process work?
a. What are the scenarios wherein people are onboarded (single or group onboarding)?
b. What aspects are considered when forming new or restructuring existing teams?
c. Have you ever attended any team-building activity? If so, please elaborate on that.
d. Has your team ever been evaluated in relation to its maturity level? If so, please elaborate
on that.
e. What is perceived as a mature team?
f. What is perceived as a stable team?
g. Has yourself or your team ever been evaluated in relation to how the associated
onboarding process? If so, please elaborate on that.

