DevOps for Better Software Security in the Cloud

Author version

Martin Gilje Jaatun
SINTEF Digital
Trondheim, Norway
martin.g.jaatun@sintef.no

ABSTRACT

The DevOps paradigm means that development and opera-
tions for an organisation blend together. For security, this
implies that information on detected attacks can be fed back
to the development, enabling faster eradication of vulnera-
bilities in software. This is particularly important in cloud
installations, where release cycles can be less than a day.
This paper argues that DevOps can be employed for overall
improved software security.

CCS CONCEPTS

¢ Security and privacy — Software security engineering;

KEYWORDS
DevOps, Software Security, Cloud Security, Security Metrics

ACM Reference Format:

Martin Gilje Jaatun, Daniela S. Cruzes, and Jesus Luna. 2017.
DevOps for Better Software Security in the Cloud : Author version.
In Proceedings of ARES ’17. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3098954.3103172

1 INTRODUCTION

Cloud computing brings with it many advantages, but on-
demand self service [18] is perhaps the most significant for
system developers; computer resources can be deployed and
scaled up and down from web-accessible dashboards in a
matter of seconds. This in turn has paved the way for Dev-
Ops: a new paradigm in developing and operating software
systems, sometimes condensed to the phrase "You build it,
you run it" [21].

Whereas practices that ease the development, deployment
and operation of software are great, it cannot be denied
that security breaches are happening all around us. Soft-
ware systems have developed to the point that we use and
depend upon them daily in the same way that we depend
upon traditional infrastructures and utilities such as power,

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ARES 17, August 29-September 01, 2017, Reggio Calabria, Italy
© 2017 Copyright held by the owner/author(s). Publication rights
licensed to Association for Computing Machinery.

ACM ISBN 978-1-4503-5257-4/17/08. .. $15.00
https://doi.org/10.1145/3098954.3103172

Daniela S. Cruzes
SINTEF Digital
Trondheim, Norway
danielac@sintef.no

Jesus Luna
Technische Universitiat Darmstadt
Darmstadt, Germany
jluna@cs.tu-darmstadt.de

transportation and telecommunication. The value of sensitive
information in computer systems is constantly increasing,
and the same can be said for the corresponding threats, but
measures to reduce the resulting vulnerability are not de-
veloped at the same pace. The consequences of this lack of
investment in software security can be catastrophic.

The Heartbleed vulnerability has been called one of the
Internet’s biggest and most dangerous security threats. This
vulnerability was present in running software for over two
years, but only publicly discovered in April 2014. Almost two-
thirds of all sites on the Internet were exposed. Reports say
that the US National Security Agency (NSA) knew about the
Heartbleed vulnerability from the start, and regularly used
it to gather intelligence and access information on millions of
users. The full extent of the consequences of this bug is as yet
unknown, because it is impossible to trace the activities of
the ones that took advantage of this vulnerability. Although
the lack of software security is already a serious problem, it
may become much worse in the future due to the increase in
complexity, connectivity and extensibility of software systems.

A major problem in software security is that it is impossible
to know all attacks that the system will be exposed to. Besides,
uncovered vulnerabilities remain unresolved, often for many
years, even in organizations that are particularly exposed to
espionage. Still, far fewer vulnerabilities than normal software
faults are typically reported [23]. These are reasons why there
is a false sense that software security is not a big problem,
and that related vulnerabilities are not prioritized over other
software faults. However, considering the consistent rate of
vulnerability reports and the immeasurable cost of insecure
software, a systematic study of vulnerability characteristics
and how they are created during the software development
process is a subject of immediate need.

The fundamental way of solving the security problem is
by building secure software, defending against exploitation
from the earliest stages of development, with a consistent
maintenance of a "security-push" throughout the whole de-
velopment life-cycle. The tools of software engineering can,
therefore, play an integral part in supporting security devel-
opment activities, becoming powerful aids in reducing the
number and severity of potential vulnerabilities. A major
challenge is that available approaches for ensuring security
during the software development are outdated for today’s
practices. Today’s software development business requires
high-speed software delivery from the development team. In
order to provide fast delivery of products, organizations have
made transformations from their conventional development

https://doi.org/10.1145/3098954.3103172
https://doi.org/10.1145/3098954.3103172

ARES '17, August 29-September 01, 2017, Reggio Calabria, Italy

approach to agile development methods. These methods have
a huge impact on how software is developed worldwide.

Back in day of the waterfall era, developers and operators
lived in different worlds. Huge software projects took years
to complete, and were then handed off to operations. With
the advent of agile development, all this changed. With the
focus on early release and short development cycles, software
is being deployed at the sharp end much quicker than before,
often with less testing than previously.

The rest of this paper is structured as follows: In Section
2 we present relevant background material. In Section 3 we
introduce recent trends in software security, and then propose
a metrics-based approach in Section 4. We discuss in Section
5, and offer conclusions in Section 6.

2 BACKGROUND

Software security is the property of being able to withstand
attack [16]. It is tempting to believe that this is a property
that is only important in security software, but in reality
it is important in all software that is somehow exposed to
external input [14]. The classic example here is Adobe’s
Acrobat Reader, which is a seemingly simple application for
viewing Portable Document Format (PDF) files; certainly not
security software by any stretch of the imagination. However,
Acrobat Reader contained an error that allowed an attacker
to craft a special PDF file which when opened on a victim’s
computer allowed execution of malware code that effectively
gave the attacker full remote control of the victim’s computer.

2.1 Cloud and DevOps

According to Bass, Weber and Zhu, "DevOps is a set of
practices intended to reduce the time between committing a
change to a system and the change being placed into normal
production, while ensuring high quality." [3].

As illustrated in Figure 1, DevOps removes the wall that
divides the development and operations teams in an organi-
sation.

Cloud computing is an important enabler for DevOps,
since it allows rapid deployment in a virtual infrastructure;
a new version can be launched in a matter of hours [28].

2.2 DevOps Security in the Literature

DevOps seems to still be fairly high in the hype cycle, but
much of the literature related to DevOps security seems to be
blog entries and other non-validated channels. Zhu et al. [28]
claim that DevOps enable "reliable" rapid deployment, but
do not delve into whether this also covers "secure". In an
interview with Hulme [11], Muntner takes issue with the
notion that DevOps provides any security benefits in and of
itself. Kim [15] argues that by integrating security testing
into the daily operations of Dev, defects are found (and fixed)
more quickly than before. However, Kim seems reluctant to
leave potential security defects to post-deployment testing,
stating "...it must be tested before the code is deployed".
This might seem contradictory, since a problem with agile
development in general seems to be that developers "do not

Martin Gilje Jaatun, Daniela S. Cruzes, and Jesus Luna

have time to think about security", and thus might not be
qualified to identify which components that need extra testing.
Furthermore, it is a tenet that "you cannot test yourself to
security" [16].

Fitzgerald and Stol [10] advocate "continuous security" to
make security a key concern in all development phases, but
do not offer any tangible advice on how to accomplish this,
other tan wishing for "a smart and lightweight approach" to
identify software vulnerabilities. However, they do point out
that security may have to be improved even when nothing else
changes, e.g., if other events cause a loss of public confidence
in a software solution.

3 SOFTWARE SECURITY TRENDS
3.1 Science of Security

Science of Security (SoS) is an area of research that seeks to
apply a scientific approach to the study and design of secure
and trustworthy information systems [9]. SciencedAZs core
goal is to develop fundamental laws that let us make accurate
predictions. In software security, the only prediction we can
usually make confidently is that a system will eventually fail
when faced with sufficiently motivated attackers. However,
the need and opportunity exists to develop a foundational
science to guide the development and understand the security
and robustness of the complex systems on which we depend.
Suitable metrics, for example, would let designers evaluate
alternative designs and determine which is more secure for a
given deployment (cf., Section 4). Designers would also be
able to reason about the minimum capabilities and effort an
attacker needs to violate the security properties.

Security research is a long way from establishing a sci-
entific approach based on the understanding of empirical
evaluation and theoretical foundations as developed in other
sciences, and even from software engineering in general. The
area suffers from a lack of credible empirical evaluation, a
split between industry practice and academic research, and
a huge number of methods and method variants, with dif-
ferences little understood and artificially magnified. There
is little evidence of how to implement security practices in
the software industry, much less in an agile context. In 2010,
Alnatheer et al. [1] found 62 papers on the topics of agile
and security, from these, only five were empirical. Empiri-
cal studies are a powerful approach to be used in security
research. In particular, longitudinal extended case studies [7]
and ethnographic methods [22] are helpful in generating rich
and detailed accounts of software project teams, their in-
teractions with project stakeholders, and their approaches
for delivering products, as well as in-depth accounts of their
experiences. By performing real-world type of empirical stud-
ies, results from research can also be faster introduced and
validated in practice.

3.2 Agile Security

The goal of agile development is to work with the customer
to explore their requirements and deliver a final software
product incrementally [8, 19]. One can hypothesize that the

DevOps for Better Software Security in the Cloud

Development

Operations

Customers

i » &

ARES '17, August 29-September 01, 2017, Reggio Calabria, Italy

- fiih

Customers

Figure 1: Transition from traditional development to DevOps

opportunity to quickly (within a few iterations) address a new
security flaw will be an advantage of agile over traditional
software engineering approaches. However, agile projects of-
ten focus on immediate features and functionality requested
by the stakeholders over security requirements [2]. An im-
portant misconception is that addressing security delays the
development process [27].

Trying to amalgamate security initiatives into an efficient
well-built application can be an overwhelming task. With
the possible exception of Microsoft SDL Agilel7 there are
no security engineering practices developed specifically for
agile processes. Traditional security engineering processes
and models, such as Microsoft Security Development Life-
cycle, Cigital Touchpoints, Common Criteria, measurement
models such as the Building Security in Maturity Model
(BSIMM)[17], and standards such as the ISO/IEC 27034, are
all based on a traditional, prescriptive waterfall approach.
However, agile development does not fit the sequential use of
activities or the requirements for extensive documentation of
these traditional security engineering processes.

Furthermore, the suitability of traditional security engi-
neering processes has rarely been empirically evaluated in
industrial agile development settings. Current research fo-
cuses on theoretically analyzing if a certain security practice
can adhere to agile principles, concluding that some activities
are suitable for agile development and some are not. Thus,
there is little empirical evidence on how to implement security
practices in agile software development. Besides, there is a
need to better understand how to apply security practices
across different industrial contexts.

Lhttps://www.microsoft.com/en-us/SDL/Discover/sdlagile.aspx

4 CLOUD SECURITY METRICS AND
DEVOPS

According to NIST 500-37 2, a metric is a “standard of
measurement that defines the conditions and the rules for
performing the measurement and for understanding the result
of a measurement”. Metrics are commonly used to set the
boundaries and margins of the quality levels that ICT systems
are able to provide. The importance of security quantification
for ICT systems trustworthiness is extensively recognised by
academic research, practitioner and standards organizations
such as ENISA [25], CIS [6] and NIST [26]. Despite the
conspicuous advantages of this approach, measuring the level
of security in a given piece of software is notoriously difficult
[13], and instead it has been argued that the next-best thing
is to measure second-order effects, i.e., measure the software
security activities that are performed by the developers as
part of the development process [17]. One such activity is the
ability to make quick changes in the code if a vulnerability is
discovered in operations. A closely related activity is ensuring
that flaws or bugs that are discovered in operations are fed
back to development. With the wall between development
and operation torn down, these two activities are much easier
to perform.

In the case of DevOps, a promising approach relies on
the elicitation of security metrics during the Software De-
velopment Life Cycle (SDLC) in order to allow the continu-
ous/agile evaluation of required vs. achieved security levels.
This approach has proven its usefulness for improving the
levels of security assurance and transparency in cloud com-
puting systems [20] [24] [12]. From a high-level perspective,
the proposed approach consists of the six incremental stages
shown in Figure 2 and presented in the rest of this section.

2http://csre.nist.gov

https://www.microsoft.com/en-us/SDL/Discover/sdlagile.aspx

ARES '17, August 29-September 01, 2017, Reggio Calabria, Italy

y
[/ 1-lmpact
| analysis
\ (profiling) /
y//é—MonitoF\ _/
[/ CSPand
(own
\ controls/
Ire) metricy
5 Nmetric
=] .
C
9]
o
-~
L2
& .
/" 5Select \
; csp
| implement
_ metrics / Jpnt—
[/ 4-Assess
CSP specificandown | available
controls/metrics ~ \ CSPs

o

Martin Gilje Jaatun, Daniela S. Cruzes, and Jesus Luna

Risk Profiling/
Assessment

S 2Elicit
[security

\ controls/

Baseline & tailored
controls/metrics

/ \\

' SSEke
(Cloud

\

Risk Treatment

Figure 2: DevOps and the cloud security metrics life-cycle

The key elements for the successful adoption of a secure
DevOps approach particularly suited for the cloud are the de-
veloper organization’s understanding of the (a) cloud-specific
characteristics influencing the software development, (b) the
architectural components for each cloud service type and de-
ployment model, (¢) along with each cloud actor’s precise role
in orchestrating a secure ecosystem. The cloud customer’s
confidence in accepting the risk from using cloud services
depends on how much trust they place in the entities orches-
trating (and developing) the cloud ecosystem.

The risk management process ensures that issues are iden-
tified and mitigated early in the development process and
followed by periodic reviews aligned to the agile DevOps vi-
sion. As cloud customers and the other cloud actors involved
in securely orchestrating a cloud ecosystem have varying
degrees of control over cloud-based IT resources (including
software components), they need to share the responsibility
of implementing and monitoring the security requirements.
Cloud actors also need to assess the correct implementa-
tion and continuously monitor all identified security controls
which will become part of the cloud service to develop. The
approach shown in Figure 2 is a cyclically executed process
composed of a set of coordinated activities for overseeing and
controlling risks during the DevOps life-cycle. This set of
activities consists of the following tasks:

e Risk Assessment.
e Risk Treatment.
e Risk Control.

These tasks collectively target the enhancement of DevOps
security in cloud systems, which goes beyond the capabili-
ties offered by widely used security control frameworks and
methodologies introduced in Section 2.

A risk-based approach to DevOps for cloud services is an
holistic activity that should be integrated into every aspect
of the developer organization, from planning and system
development life cycle processes (Steps 1 — 2 in Figure 2)
to security controls/metrics allocation (Steps 3 — 5). The
resulting set of security controls (baseline, tailored controls,
controls inherited from providers and under customer’s di-
rect implementation and management) lead gradually to the
creation of the security metrics in Step 5. Elicited metrics
can be monitored during the life-cycle of the cloud service in
order to enable the agile (and secure) iterations as required
by DevOps.

5 DISCUSSION

DevOps is closely tied to rapid release cycles. Frequent re-
leases can lead to big problems if operations and development
are siloed; new releases will be deployed, and first-line sup-
port may find themselves in a situation where they have no
way of knowing whether an issue reported by users is a bug
or a new feature.

Ben Othmane et al. [4] list added cost as a disadvantage of
the agile security engineering scheme they propose. However,
one could argue similarly that fixing syntax errors in the
code introduces extra work and associated costs, but no one

DevOps for Better Software Security in the Cloud

would propose that such errors should not be fixed in order to
save money. Furthermore, it is necessary to consider the total
lifecycle cost of a software product, and it is actually cheaper
to fix errors at the design or coding stage than when they
are discovered after deployment [5]. However, the dramatic
differences that Boehm refer to may be less noticeable when
we are talking about DevOps; the big difference presumably
comes when SW is shrink-wrapped and shipped, and updat-
ing something which is only sold as a service is clearly less
arduous.

Prioritsation of defects is challenging. Highly critical secu-
rity defects can be defined as blocking defects, and as such
are easier to deal with - they have to be fixed as quickly as
possible. Level 2 or lower security defects are more tricky;
they have to compete with all other feature requests and
defects, and risk getting pushed back at every junction. On
approach to deal with this might be to set a time limit for
all lower-priority security defects that are discovered. This
will acknowledge that there may be more important issues
for the developers to fix right at the moment, but will take
into account that the likelihood of a security defect being
exploited will increase as time goes by, and eventually it will
become a number 1 priority.

It could be argued that software security education of
developers is more important in agile development than in
traditional waterfall. However, exactly how much is needed
is a matter for debate. We certainly don’t think that it will
be possible to teach every developer to be a software security
expert, but we could aspire to teach every developer enough
to enable them to identify areas where they would benefit
from the advice of an expert [13]. It has been claimed that if
we can only make developers think about security, the number
of security defects are reduced by 50%.

Tools are important, and anything that can be automated
should be automated. This is particularly true in DevOps,
where rapid deployments are only possible due to tightly
configured deployment scripts. Communications between Dev
and Ops is also vital in any situation where they are not
actually the same persons. It therefore becomes important
to establish who should know what.

The Building Security in Maturity Model (BSIMM) [17]
states the necessity of having a Software Security Group in
any software development organisation, but based on indus-
try reports it seems even more important to have security
champions who are part of the development teams. An exter-
nal SSG who performs short-term helicopter-style incursions
will inevitably be perceived as an outside agent hindering
progress. Another issue is the size of the development organ-
isation; many of the BSIMM organisations have hundreds
and thousands of developers, and it is not immediately clear
if their experiences are applicable to small European firms
with tens of developers.

The main notion behind approaches like BSIMM is the
existence of quantitative/qualitative security metrics that
can be related to the SDLC. In Section 4 we have presented
a promising approach for eliciting and monitoring in a con-
tinuous way the security of cloud services, just as required

ARES '17, August 29-September 01, 2017, Reggio Calabria, Italy

by DevOps. The usage of cloud security metrics for similar
purposes (e.g., security cer‘ciﬁcationg7 and continuous security
monitoring™) is still on its early days, and thus more valida-
tion is necessary to make it suitable for industrial adoption.
Particular efforts are needed for developing cloud-adapted
risk management methodologies suitable for DevOps, along
with relevant control frameworks and security metrics beyond
those available nowadays to practitioners.

Some argue that security is just another quality issue, but
a long history shows us that saying it does not make it so.
More concretely, since many security defects are non-obvious,
they can lie dormant for years before discovery, as was the
case of the Heartbleed® bug.

At the end of the day, there is currently much hypothesising
and many opinions regarding DevOps and security, but few if
any empirical studies that measure a before-and-after effect.

6 CONCLUSIONS

DevOps represents both a challenge and an opportunity for
software security. It is clear that the ability to make quick
changes will shrink the window of opportunity for attackers
once a security vulnerability has been discovered, but at the
same time it must be acknowledged that rapid releases are
not always conducive to thorough testing schemes. We have
proposed a metrics-based approach to improve DevOps secu-
rity, but further empirical research is necessary to establish
how DevOps and software security can be reconciled.

ACKNOWLEDGMENT

The research reported in this paper has been supported by the
Norwegian Research Council through the SoS-Agile project.

REFERENCES

[1] Ahmed Alnatheer, Andrew M. Gravell, and David Argles. 2010.
Agile Security Issues: An Empirical Study. In Proceedings of
the 2010 ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM ’10). ACM, New
York, NY, USA, Article 58, 1 pages. https://doi.org/10.1145/
1852786.1852860
S. Bartsch. 2011. Practitioners’ Perspectives on Security in Agile
Development. In Availability, Reliability and Security (ARES),
2011 Sixth International Conference on. 479-484. https://doi.
org/10.1109/ARES.2011.82
Len Bass, Ingo Weber, and Liming Zhu. 2015. DevOps: A Software
Architect’s Perspective. Addison-Wesley Professional.
L. ben Othmane, P. Angin, H. Weffers, and B. Bhargava. 2014.
Extending the Agile Development Approach to Develop Accept-
ably Secure Software. IEEE Transactions on Dependable and
Secure Computing (2014).
Barry Boehm and Victor R Basili. 2005. Software defect reduction
top 10 list. In Foundations of empirical software engineering:
the legacy of Victor R. Basili. Vol. 426.
[6] Boyle K., et.al. 2010. The CIS security metrics. Technical Report
TR-28. Center for Internet Security. http://benchmarks.cisecurity.

2

3

4

5

org/

[7] Michael Burawoy. 1998. The Extended Case Method. Sociological
Theory 16, 1 (1998), 4-33. https://doi.org/10.1111/0735-2751.
00040

3 https://cloudsecurityalliance.org/star/
4http://www.specs-project.cu/
Shttp://heartbleed.com/

https://doi.org/10.1145/1852786.1852860
https://doi.org/10.1145/1852786.1852860
https://doi.org/10.1109/ARES.2011.82
https://doi.org/10.1109/ARES.2011.82
http://benchmarks.cisecurity.org/
http://benchmarks.cisecurity.org/
https://doi.org/10.1111/0735-2751.00040
https://doi.org/10.1111/0735-2751.00040

ARES '17, August 29-September 01, 2017, Reggio Calabria, Italy

(8]

10

(11

(12

13

(14

(1]

16

[17

18

(19]

[20

[21

[22

[23

(24

25

(26]

[27

(28

Claudia de O. Melo, Daniela S. Cruzes, Fabio Kon, and Reidar
Conradi. 2013. Interpretative case studies on agile team productiv-
ity and management. Information and Software Technology 55,
2 (2013), 412 — 427. https://doi.org/10.1016/j.infsof.2012.09.004
Special Section: Component-Based Software Engineering (CBSE),
2011.

D. Evans and S. Stolfo. 2011. Guest Editors’ Introduction: The
Science of Security. IEEE Security & Privacy 9, 3 (May 2011),
16-17. https://doi.org/10.1109/MSP.2011.50

Brian Fitzgerald and Klaas-Jan Stol. 2015. Continuous software
engineering: A roadmap and agenda. Journal of Systems and
Software (2015), —. https://doi.org/10.1016/j.jss.2015.06.063
George V. Hulme. 2015. The Myth of DevOps as a Catalyst
to improve Security? (2015). http://devops.com/2015/07/16/
the-myth-of-devops-as-a-catalyst-to-improve-security/

J. Luna, A. Taha, R. Trapero, and N. Suri. 2015. Quantitative
Reasoning about Cloud Security Using Service Level Agreements.
In Trans. on Cloud Computing 99 (2015).

Martin Gilje Jaatun. 2012. Hunting for Aardvarks: Can Software
Security Be Measured? In Multidisciplinary Research and Prac-
tice for Information Systems, Gerald Quirchmayr, Josef Basl,
Ilsun You, Lida Xu, and Edgar Weippl (Eds.). Lecture Notes in
Computer Science, Vol. 7465. Springer Berlin Heidelberg, 85-92.
https://doi.org/10.1007/978-3-642-32498-7_7

Martin Gilje Jaatun and Per Hikon Meland. 2011. Special Issue
from the 5th International Workshop on Secure Software Engi-
neering. International Journal of Secure Software Engineer-
ing 2, 4 (2011), i-ii. http://www.igi-global.com/Files/Ancillary/
1947-3036_2 4 Preface.pdf

Gene Kim. 2012. Top 11 Things You Need to Know About
DevOps. (2012). https://www.thinkhdi.com/~/media/HDICorp/
Files/White-Papers/whtppr-1112-devops-kim.pdf

Gary McGraw. 2006. Software Security: Building Security In.
Addison-Wesley.

Gary McGraw, Sammy Migues, and Jacob West. 2015. Building
Security In Maturity Model (BSIMM 6). (2015). http://bsimm.
com.

Peter Mell and Tim Grance. 2011. The NIST definition of cloud
computing. Computer Security Division, Information Technol-
ogy Laboratory, National Institute of Standards and Technology,
Gaithersburg. (2011).

C. Melo, D. S. Cruzes, F. Kon, and R. Conradi. 2011. Agile
Team Perceptions of Productivity Factors. In Agile Conference
(AGILE), 2011. 57-66. https://doi.org/10.1109/AGILE.2011.35
Jolanda Modic, Rubén Trapero, Ahmed Taha, Jesus Luna, Miha
Stopar, and Neeraj Suri. 2016. Novel Efficient Techniques for Real-
Time Cloud Security Assessment. Elsevier Journal on Computer
& Security (Sep. 2016), 1-18. https://doi.org/10.1016/j.cose.2016.
06.003

Charlene O’Hanlon. 2006. A Conversation with Werner Vogels.
Queue 4, 4, Article 14 (May 2006), 9 pages. https://doi.org/10.
1145/1142055.1142065

Carol Passos, Daniela S. Cruzes, Tore Dyba, and Manoel Men-
donga. 2012. Challenges of Applying Ethnography to Study
Software Practices. In Proceedings of the ACM-IEEE Inter-
national Symposium on Empirical Software Engineering and
Measurement (ESEM ’12). ACM, New York, NY, USA, 9-18.
https://doi.org/10.1145/2372251.2372255

Yonghee Shin and Laurie Williams. 2011. Can traditional fault
prediction models be used for vulnerability prediction? Empirical
Software Engineering 18, 1 (2011), 25-59. https://doi.org/10.
1007/s10664-011-9190-8

Rubén Trapero, Jesus Luna, and Neeraj Suri. 2016. Quantifiably
Trusting the Cloud: Putting Metrics to Work. IEEE Security &
Privacy 14, 3 (2016), 73-77. https://doi.org/10.1109/MSP.2016.65
Trimintzios, P. 2011. Measurement Frameworks and Metrics
for Resilient Networks and Services. Discussion Draft. European
Network and Information Security Agency. (2011).

W. Jansen. 2010. Directions in security metrics research. Tech-
nical Report TR-7564. National Institute for Standards and Tech-
nology.

Carol Woody. 2013. Agile Security - Review of Current Research
and Pilot Usage. SEI White Paper. (2013).

L. Zhu, D. Xu, A. B. Tran, X. Xu, L. Bass, I. Weber, and S.
Dwarakanathan. 2015. Achieving Reliable High-Frequency Re-
leases in Cloud Environments. IEEE Software 32, 2 (Mar 2015),
73-80. https://doi.org/10.1109/MS.2015.23

Martin Gilje Jaatun, Daniela S. Cruzes, and Jesus Luna

https://doi.org/10.1016/j.infsof.2012.09.004
https://doi.org/10.1109/MSP.2011.50
https://doi.org/10.1016/j.jss.2015.06.063
http://devops.com/2015/07/16/the-myth-of-devops-as-a-catalyst-to-improve-security/
http://devops.com/2015/07/16/the-myth-of-devops-as-a-catalyst-to-improve-security/
https://doi.org/10.1007/978-3-642-32498-7_7
http://www.igi-global.com/Files/Ancillary/1947-3036_2_4_Preface.pdf
http://www.igi-global.com/Files/Ancillary/1947-3036_2_4_Preface.pdf
https://www.thinkhdi.com/~/media/HDICorp/Files/White-Papers/whtppr-1112-devops-kim.pdf
https://www.thinkhdi.com/~/media/HDICorp/Files/White-Papers/whtppr-1112-devops-kim.pdf
http://bsimm.com
http://bsimm.com
https://doi.org/10.1109/AGILE.2011.35
https://doi.org/10.1016/j.cose.2016.06.003
https://doi.org/10.1016/j.cose.2016.06.003
https://doi.org/10.1145/1142055.1142065
https://doi.org/10.1145/1142055.1142065
https://doi.org/10.1145/2372251.2372255
https://doi.org/10.1007/s10664-011-9190-8
https://doi.org/10.1007/s10664-011-9190-8
https://doi.org/10.1109/MSP.2016.65
https://doi.org/10.1109/MS.2015.23

	Abstract
	1 Introduction
	2 Background
	2.1 Cloud and DevOps
	2.2 DevOps Security in the Literature

	3 Software Security Trends
	3.1 Science of Security
	3.2 Agile Security

	4 Cloud Security Metrics and DevOps
	5 Discussion
	6 Conclusions
	References

