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Abstract:
Inspired by the motion of biological snakes, this paper presents an overview of recent results in
modelling and control of snake robots. The objective of the research underlying this paper is to
contribute to the mathematical foundation of the control theory of snake robots. To this end, the
paper presents two mathematical models of planar snake robot dynamics, which are employed to
investigate stabilisability and controllability properties of snake robots. Furthermore, averaging
theory is used to derive properties of the velocity dynamics of snake robots. Moreover, a straight
line path following controller is proposed and cascaded systems theory is employed to prove that
the controller K-exponentially stabilizes a snake robot to any desired straight path.

1. INTRODUCTION

Snake robots are robotic mechanisms designed to move
like biological snakes. The advantage of such mechanisms
is their long and flexible body, which enables them to move
and operate in challenging environments where human
presence is unwanted or impossible. Future applications
of these mechanisms include search and rescue operations,
inspection and maintenance in industrial process plants,
and subsea operations.

Due to their many degrees of freedom and unique forms
of propulsion, snake robots pose many interesting con-
trol design challenges. Research on snake robots has been
conducted for several decades. For instance, the world’s
first snake robot was developed in Japan already in 1972
[Hirose, 1993]. There are, however, still many theoretical
and practical aspects of snake robot locomotion which
have not yet been addressed in the snake robot liter-
ature. Current literature is characterised by numerous
approaches to modelling and control of these mechanisms,
but a unified theoretical foundation of snake robots has not
yet been established. The reader is referred to Liljebäck
et al. [2012c] for a detailed review of existing literature on
snake robots.

In this paper, we present an overview of recent results in
modelling and control of snake robots. The goal of our
research is to contribute to the mathematical foundation
of the control theory of snake robots. To this end, the paper
covers the following topics. In Section 2, we present two
models of planar snake robot dynamics. The first model is
derived directly from first principles, whereas the second
model is based on simplifying assumptions which make it
less accurate, but more suitable for model-based control
design. In Section 3, one of the models of the snake robot

is analysed using nonlinear system analysis tools in order
to derive controllability and stabilisability properties of
snake robot dynamics. The velocity dynamics of snake
robots is investigated in Section 4 using averaging theory.
Furthermore, Section 5 considers the problem of enabling
a snake robot to track a straight path. Finally, Section 6
presents a summary of the paper. For further details on the
specific topics treated in the paper, the reader is referred
to Liljebäck et al. [2012b].

2. MODELS OF SNAKE ROBOT LOCOMOTION

In this section, we present two models of planar snake
robot locomotion. The second model is based on simpli-
fying assumptions which make it less accurate, but more
suitable for model-based control design. The material is
based on Liljebäck et al. [2011, 2012b].

2.1 A Complex Model of Snake Robot Locomotion

We consider a planar snake robot consisting of N links
of length l interconnected by N − 1 motorized joints.
The kinematics of the robot is defined in terms of the
symbols illustrated in Fig. 1. All N links have the same
mass m and moment of inertia J . The total mass of the
robot is therefore Nm. The mass of each link is uniformly
distributed so that the link CM (center of mass) is located
at its center point. The snake robot moves in the horizontal
plane and has N + 2 degrees of freedom. The position of
the CM (center of mass) of the robot is denoted by p =
(px, p y) ∈ R2. The absolute angle θi of link i is expressed
with respect to the global x axis with counterclockwise
positive direction. As seen in Fig. 1, the relative angle
between link i and link i + 1 (i.e. the angle of joint i)
is given by φi = θi − θi+1.



Fig. 1. Kinematic parameters of the snake robot.

Each link is subjected to an anisotropic viscous ground
friction force, which means that the ground friction normal
to the link is larger than the ground friction parallel to
the link. This property is also present in biological snakes
and, as will be shown in Section 3, this helps the links glide
forward instead of just slipping sideways. Since the friction
is anisotropic, a link has two viscous friction coefficients,
ct and cn, describing the friction force in the tangential
and normal direction of the link, respectively.

We define the actuated and unactuated degrees of freedom

of the robot as qa = [φ1, . . . , φN−1]
T ∈ RN−1 and qu =

[θN , px, py]
T ∈ R3, respectively, and we construct the state

vector of the robot by defining x1 = qa, x2 = qu, x3 = q̇a,

x4 = q̇u, and x =
[
xT1 ,x

T
2 ,x

T
3 ,x

T
4

]T ∈ R2N+4. As shown
in Liljebäck et al. [2011], the model can be written as the
control-affine system

ẋ =

 x3

x4

u
A (x) + B (x1)u

 = f (x) +

N−1∑
j=1

(
gj (x1)uj

)
(1)

where

f (x) =

 x3

x4

0(N−1)×1
A (x)

 , gj (x1) =

0(N−1)×1
03×1
ej

Bj (x1)

 (2)

and where j ∈ {1, . . . , N − 1}, ej denotes the jth standard
basis vector in RN−1 (the jth column of IN−1), u =

[u1, . . . , uN−1]
T ∈ RN−1 is a transformed set of control

inputs corresponding to the joint accelerations, A (x) ∈ R3

and B (x1) ∈ R3×(N−1) are functions of the states, and
Bj (x1) denotes the jth column of B (x1).

2.2 A Simplified Model of Snake Robot Locomotion

Background for the Model The motivation behind the
simplified model is to make model-based control design
and stability analysis more feasible. The idea behind the
model is illustrated in Fig. 2 and is motivated by an
analysis presented in Liljebäck et al. [2012b], which shows
that:

• The forward motion of a planar snake robot is pro-
duced by the link velocity components that are nor-
mal to the forward direction.
• The change in body shape during forward locomotion

primarily consists of relative displacements of the CM
of the links normal to the forward direction of motion.

Based on these two properties, the simplified model de-
scribes the body shape changes of a snake robot as lin-
ear displacements of the links with respect to each other

Fig. 2. The idea behind the simplified model is to model
the revolute joints as prismatic joints.

Fig. 3. The robot position and orientation with respect to
the two coordinate frames used in the model.

instead of rotational displacements. The linear displace-
ments occur normal to the forward direction of motion
and produce friction forces that propel the robot forward.
This essentially means that the revolute joints of the snake
robot are modelled as prismatic (translational) joints and
that the rotational motion of the links during body shape
changes is disregarded. However, the model still captures
the effect of the rotational link motion during body shape
changes, which is a linear displacement of the CM of the
links normal to the forward direction of motion.

Equations of Motion The snake robot has N links of
length l and mass m interconnected by N − 1 prismatic
joints, which control the normal direction distance between
the links. The normal direction distance from link i to
link i + 1 is denoted by φi and represents the coordinate
of joint i. The model employs the two coordinate frames
illustrated in Fig. 3. The x-y frame is the fixed global
frame. The t-n frame is always aligned with the snake
robot, i.e. the t and n axis always point in the tangential
and normal direction of the robot, respectively. The global
frame orientation of the snake robot, denoted by θ ∈ R, is
defined as the angle between the t axis and the global x
axis with counterclockwise positive direction.

We choose the state vector of the system as

x = (φ, θ, px, py,vφ, vθ, vt, vn) ∈ R2N+4 (3)

where φ ∈ RN−1 are the joint coordinates, θ ∈ R is
the absolute orientation, (px, p y) ∈ R2 is the global

frame position of the CM, vφ = φ̇ ∈ RN−1 are the

joint velocities, vθ = θ̇ ∈ R is the angular velocity,
and (vt, v n) ∈ R2 is the tangential and normal direction
velocity of the snake robot.

Each link is influenced by a ground friction force (acting
on the CM of the link) and constraint forces that hold
the joints together. A model of these forces is presented
in Liljebäck et al. [2012b], where it is also shown that the



complete model of the snake robot can be written as

φ̇ = vφ (4a)

θ̇ = vθ (4b)

ṗx = vt cos θ − vn sin θ (4c)

ṗy = vt sin θ + vn cos θ (4d)

v̇φ = u (4e)

v̇θ = −λ1vθ +
λ2

N − 1
vte

Tφ (4f)

v̇t = − ct
m
vt +

2cp
Nm

vne
Tφ− cp

Nm
φTADvφ (4g)

v̇n = −cn
m
vn +

2cp
Nm

vte
Tφ (4h)

where u ∈ RN−1 is a transformed set of control inputs,
A, D, D, and e are constant matrices, ct and cn are
the tangential and normal direction friction coefficients of
the links, cp is a particular propulsion coefficient, and λ1
and λ2 are positive scalar constants which characterise the
rotational motion of the robot.

3. CONTROLLABILITY AND STABILISABILITY
ANALYSIS OF SNAKE ROBOTS

In this section, we consider the model in (1) and employ
nonlinear system analysis tools for investigating funda-
mental properties of snake robot dynamics. The material
is based on Liljebäck et al. [2011].

3.1 Stabilisability Properties of Planar Snake Robots

We begin by presenting a fundamental theorem concerning
the properties of an asymptotically stabilising control law
for snake robots to any equilibrium point.

The model in (1) maps the state x and the control input
u of the robot into the resulting derivative of the state
vector, ẋ. For any equilibrium point (x1 = xe1, x2 = xe2,
x3 = 0, x4 = 0), where (xe1,x

e
2) is the configuration of the

system at the equilibrium point, we have that ẋ = 0. A
well-known result presented in Brockett [1983] states that
a necessary condition for the existence of a time-invariant
(i.e. not explicitly dependent on time) continuous state
feedback control law, u = u (x), that makes (xe1,x

e
2,0,0)

asymptotically stable, is that the image of the mapping
(x,u) 7→ ẋ contains some neighbourhood of ẋ = 0. A
result presented in Coron and Rosier [1994] states that
a control system that can be asymptotically stabilised (in
the Filippov sense) by a time-invariant discontinuous state
feedback law can be asymptotically stabilised by a time-
varying continuous state feedback law. If, moreover, the
control system is affine (i.e. linear with respect to the
control input), then it can be asymptotically stabilised
by a time-invariant continuous state feedback law. These
results can be used to prove the following fundamental
theorem for planar snake robots:

Theorem 1. An asymptotically stabilising control law for
a planar snake robot described by (1) to any equilibrium
point must be time-varying, i.e. of the form u = u (x, t).

3.2 Controllability Analysis of Planar Snake Robots

In this section, we investigate the controllability of planar
snake robots described by the model (1).

Controllability with Isotropic Ground Friction We begin
by first assuming that the viscous ground friction is
isotropic (i.e. not anisotropic as described in Section 2.1).
In this case, it turns out that the equations of motion take
on a particularly simple form that enables us to study the
controllability by inspecting the equations of motion. In
particular, we show in Liljebäck et al. [2011] that the CM
acceleration of the snake robot can be written as[

p̈x
p̈y

]
= − c

m

[
ṗx
ṗy

]
(5)

which implies that the snake robot is unable to accelerate
its CM when it starts from rest. We can therefore state
the following theorem:

Theorem 2. A planar snake robot influenced by isotropic
viscous ground friction is not controllable.

Controllability with Anisotropic Ground Friction The
equations of motion of the snake robot in (1) become
far more complex under anisotropic friction conditions.
However, we can still study the controllability of the robot
by investigating Lie brackets of the system vector fields,
i.e. the drift vector field f (x) and the control vector fields
gj (x1) of the snake robot defined in (1). To calculate
Lie brackets, we assume that the snake robot consists of
N = 4 links, which gives us a (2N + 4) = 12-dimensional
state space. The following controllability results will also
be valid for snake robots with more links since a robot
with N > 4 links can behave as a robot with N = 4 links
by fixing (N − 4) joint angles at zero degrees and allowing
the remaining three joint angles to move.

Using Lie bracket calculations, we define the accessibility
algebra [Nijmeijer and Schaft, 1990] of our system, evalu-
ated at an equilibrium point xe, as

∆ (xe) = [g1, g2, g3, [f , g1] , [f , g2] , [f , g3] ,
[f , [f , g1]] , [f , [f , g2]] , [f , [f , g3]] ,

[[f , g1] , [f , g2]] , [[f , g1] , [f , g3]] , [[f , g2] , [f , g3]]]
(6)

which we employ in Liljebäck et al. [2011] to prove the
following theorem:

Theorem 3. A planar snake robot with N ≥ 4 links
influenced by anisotropic viscous ground friction (ct 6= cn)
is locally strongly accessible from any equilibrium point xe

except for certain singular configurations.

Accessibility does not imply controllability since it only
infers conclusions on the dimension of the reachable space
from an equilibrium point. The singular configurations
referred to in Theorem 3 mean that the dimension of
the reachable space from certain configurations is not full-
dimensional, as revealed by the following property:

Property 4. The accessibility algebra ∆ (xe) drops rank at
equilibrium points where all relative joint angles are equal
(φ1 = . . . = φN−1).

Property 4 is interesting since it suggests that the joint
angles of a snake robot should be out of phase during
snake locomotion. This agrees well with observations of
biological snake locomotion, which generally consists of
oscillatory motion patterns that are propagated along the
body of the snake.

The next theorem can be shown to hold by investigating
so-called good and bad Lie brackets of the system using



sufficient conditions presented in Sussmann [1987], Bian-
chini and Stefani [1990].

Theorem 5. At any equilibrium point xe, a planar snake
robot with N ≥ 4 links influenced by viscous ground
friction does not satisfy sufficient conditions for small-time
local controllability (STLC).

STLC implies that the control input can steer the system
in any direction in an arbitrarily small amount of time.
Theorem 5 does not claim that a snake robot is not STLC
since the theorem only considers sufficient conditions. Note
also that STLC is not a requirement for controllability
since it is in fact a stronger property than controllabil-
ity. In summary, the above results do not enable us to
conclude that a snake robot influenced by anisotropic
ground friction is controllable. However, the above results
are hopefully an important step towards formally proving
that such mechanisms are controllable, which we consider
highly likely to be the case.

4. AVERAGING ANALYSIS OF SNAKE ROBOT
LOCOMOTION

In this section, we use averaging theory [Sanders et al.,
2007] to derive properties of the velocity dynamics of
a snake robot during lateral undulation [Hirose, 1993],
which is the most common type of snake locomotion. The
material is based on Liljebäck et al. [2012b]

4.1 An Averaged Model of the Velocity Dynamics

We begin by using the simplified model in (4) to derive a
model which describes the average effect of the oscillatory
joint motion on the propulsion of the robot. The gait
pattern lateral undulation is achieved by controlling joint
i ∈ {1, . . . , N − 1} according to

φi,ref = α sin (ωt+ (i− 1) δ) + φo (7)

where α and ω are the amplitude and frequency, respec-
tively, of the sinusoidal joint motion, δ determines the
phase shift between the joints, φo is a joint offset assumed
in this section to be constant, and where

φ̇i,ref = αω cos (ωt+ (i− 1) δ) (8)

During lateral undulation, where the snake robot joints
move according to (7) and (8), it can be shown that the
velocity dynamics of the simplified model, which is given
by (4f), (4g), and (4h), can be rewritten as

dv

dτ
= εf(τ,v) (9)

where v = [vt, vn, vθ]
T ∈ R3 is the velocity state vector,

f(t,v) is a nonlinear vector function, τ = ωt is the time
variable scaled by the frequency of the sinusoidal joint
motion, and ε = 1/ω is a parameter characterising the
periodic perturbations of the system. The model in (9) is in
the standard form of averaging [Sanders et al., 2007], which
means that a system that, in ‘average’, behaves similarly
to the system in (9) is given by

dv

dτ
= ε

1

2π

2π∫
0

f(τ,v)dτ (10)

We show in Liljebäck et al. [2012b] that the resulting
averaged model is given by the linear system

v̇ = A (φo)v + b (α, ω, δ) (11)

where

A (φo) =


− ct
m

2 (N − 1)

Nm
cpφo 0

2 (N − 1)

Nm
cpφo −cn

m
0

λ2φo 0 −λ1

 (12)

b (α, ω, δ) =

 cp
2Nm

α2ωkδ

0
0

 (13)

and where kδ is a function of the constant phase shift, δ.

4.2 Properties of the Forward Velocity

Since the averaged model in (11) is a linear system, we can
easily show that the average velocity of the snake robot will
converge exponentially to the steady state velocity

v∗ =

[
v∗t
v∗n
v∗θ

]
= −A−1b, (14)

where the analytical expression for the steady state for-
ward velocity is given by

v∗t =α2ωkδ
Ncncp

2
(
N2ctcn − (4N2 − 8N + 4) c2pφ

2
o

) (15)

The result in (15) is interesting since it enables us to derive
some fundamental relationships between the gait pattern
parameters and the forward velocity of the snake robot.
In particular, we see from (15) that the forward velocity
is proportional to the term α2ωkδ, which means that the
following theorem holds:

Theorem 6. Consider a planar snake robot with N links
modelled by (4) and moving according to the gait pattern
lateral undulation defined in (7) and (8). The average
forward velocity of the snake robot will converge expo-
nentially to a value which is proportional to:
- the squared amplitude of the sinusoidal joint motion, α2.
- the angular frequency of the sinusoidal joint motion, ω.
- the function of the constant phase shift, δ, given by kδ.
Moreover, for a given α and ω, the phase shift, δ, that
maximises the average forward velocity is given by the δ
that maximises kδ.

5. PATH FOLLOWING CONTROL

In this section, we consider the problem of enabling a snake
robot to track a straight path. The material is based on
Liljebäck et al. [2012a].

Remark 7. The control design in this section is based on
the simplified model in (4). In Liljebäck et al. [2011], the
authors employ the more complex model in (1) to analyse
a path following controller using a Poincaré map.

5.1 The Control Objective

The control objective is to steer the snake robot so that it
converges to and subsequently tracks a straight path while
maintaining a heading which is parallel to the path. To this
end, we define the global coordinate system (see Fig. 3) so
that the global x axis is aligned with the desired straight
path. The y axis position, py, is thereby the cross-track
error and the orientation, θ, is the angle that the robot



Fig. 4. Left: The coordinate transformation of the snake
robot. Right: The Line-of-Sight (LOS) guidance law.

forms with the desired path. The control objective is thus
to design a feedback control law such that

lim
t→∞

py(t) = 0 (16)

lim
t→∞

θ(t) = 0 (17)

We choose not to explicitly control the forward velocity.
Instead, the forward velocity is assumed to be a non-zero
and positive parameter satisfying vt ∈ [Vmin, Vmax], where
Vmin and Vmax are boundary values.

5.2 Model Transformation

To simplify the control design, we introduce the change
of coordinates illustrated to the left in Fig. 4. In partic-
ular, we move the point that determines the position of
the snake robot a specific distance along the tangential
direction of the robot to a new location

(
px, py

)
, which

is precisely where the body shape changes of the robot
(characterised by eTφ in (4h)) generate a pure rotational
motion and no sideways force. With this coordinate trans-
formation, the model of the robot is transformed into

φ̇ = vφ (18a)

θ̇ = vθ (18b)
.
py = vt sin θ + vn cos θ (18c)

v̇φ = u (18d)

v̇θ = −λ1vθ +
λ2

N − 1
vte

Tφ (18e)
.
vn = Xvθ + Y vn (18f)

where vn is the transformed sideways velocity and where
X and Y are two scalar constants.

5.3 The Path Following Controller

We control the snake robot according to the gait pattern
lateral undulation defined in (7) and we make the joints
track these reference signals by specifying the control input
according to the exponentially stabilizing control law

u = φ̈ref + kvφ

(
φ̇ref − φ̇

)
+ kφ (φref − φ) (19)

where kφ > 0 and kvφ > 0 are scalar controller gains and

φref ∈ RN−1 is the reference defined in (7).

In order to steer the robot towards the desired path, we
employ the Line-of-Sight (LOS) guidance law

θref = − arctan(
py
∆

) (20)

where py is the cross-track error and ∆ > 0 is a design
parameter referred to as the look-ahead distance. As illus-
trated to the right in Fig. 4, the LOS angle θref corresponds
to the orientation of the snake robot when it is headed
towards the point located a distance ∆ ahead of the snake
robot along the desired path. We use the joint offset
coordinate φo in (7) to ensure that the heading of the snake
robot θ tracks the LOS angle given by (20). In particular,
we show in Liljebäck et al. [2012a] that choosing φo as

φo =
1

λ2vt

(
θ̈ref + λ1θ̇ref − kθ(θ − θref)

− λ2
N − 1

vt

N−1∑
i=1

α sin(ωt+ (i− 1) δ)

)
(21)

where kθ > 0 is a scalar controller gain, enables us to
combine the model and the controller of the snake robot
into a cascaded system of the form[ .

py.
vn

]
= C(py)

[
py
vn

]
+Hξ(py, vn, ξ)ξ (22a)

ξ̇ =

[
0 1
−kθ −λ1

]
ξ +Hηη (22b)

η̇ =

[
0(N−1)×(N−1) IN−1
−kφIN−1 −kvφIN−1

]
η (22c)

where η is the error variable of the joint coordinates, ξ is
the error variable of the heading, and where C(py), Hξ,
and Hη are state-dependent matrices. The model in (22)
is a cascaded system since the η-dynamics perturbs the ξ-
dynamics through the interconnection term Hηη, and the
ξ-dynamics perturbs the (py, vn)-dynamics through the
interconnection term Hξ(py, vn, ξ)ξ. We show in Liljebäck
et al. [2012a] that the cascaded system is K-exponentially
stable and that the following theorem holds:

Theorem 8. Consider a planar snake robot described by
the model (18). If the look-ahead distance ∆ of the LOS
guidance law (20) is chosen such that

∆ >
|X|
|Y |

(
1 +

Vmax

Vmin

)
(23)

then the path following controller defined by (7), (19),
(20), and (21) guarantees that the control objectives (16)
and (17) are achieved for any set of initial conditions
satisfying vt ∈ [Vmin, Vmax].

5.4 Simulation Results

To illustrate the performance of the straight line path
following controller, we present in Fig. 5 a simulation result
(generated using Matlab) where a snake robot described
by the simplified model in (4) with N = 10 links is
controlled according to the control law proposed in Section
5.3. The robot, which is initially headed away from the
desired straight path, converges rapidly towards the path
as predicted. See Liljebäck et al. [2012a] for more details
regarding these simulation results.

5.5 Experimental Results

We have also investigated the performance of the proposed
path following controller using one of our physical snake
robots, Wheeko. One of the experimental results is shown



(a) The path of the snake robot. (b) Cross-track error, py. (c) Heading angle, θ.

Fig. 5. Simulation of the proposed straight line path following controller.

Fig. 6. Experimental investigation of the proposed straight
line path following controller.

in Fig. 6. The robot is initially headed away from the
desired path, which is indicated by a black line on the floor.
The robot converges rapidly to the path and continues to
locomote along the path. See Liljebäck et al. [2012a] for
more details regarding these experimental result.

6. SUMMARY AND FUTURE WORK

Inspired by the motion of biological snakes, the objective
of the research underlying this paper has been to increase
our understanding of snake robot locomotion through ana-
lytical investigations of equations of motion. The paper has
presented two mathematical models of planar snake robot
dynamics, which were employed to investigate stabilisabil-
ity and controllability properties of snake robots. Averag-
ing theory was used to derive properties of the velocity
dynamics of snake robots conducting lateral undulation.
Furthermore, a straight line path following controller was
proposed and cascaded systems theory was employed to
prove that the controller K-exponentially stabilizes a snake
robot to any desired straight path.

Many research challenges still remain before we will see
useful applications of snake robots, and much remains to
be understood about the dynamics of these fascinating
mechanisms. An important topic which the authors are
currently investigating concerns new models and control

strategies to support intelligent and adaptive snake robot
locomotion in challenging and cluttered environments, i.e.
environments which are not flat.
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P. Liljebäck, K. Y. Pettersen, Ø. Stavdahl, and J. T.
Gravdahl. Snake Robots - Modelling, Mechatronics,
and Control. Advances in Industrial Control. Springer,
2012b.
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