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PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the
12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and
Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also
known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997.
So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim.
The conferences focuses on the application of CFD in the oil and gas industries, metal production,
mineral processing, power generation, chemicals and other process industries. In addition pragmatic
modelling concepts and bio-mechanical applications have become an important part of the
conference. The papers in this book demonstrate the current progress in applied CFD.

The conference papers undergo a review process involving two experts. Only papers accepted by the
reviewers are included in the proceedings. 108 contributions were presented at the conference
together with six keynote presentations. A majority of these contributions are presented by their
manuscript in this collection (a few were granted to present without an accompanying manuscript).

The organizing committee would like to thank everyone who has helped with review of manuscripts,
all those who helped to promote the conference and all authors who have submitted scientific
contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal

Production and NanoSim.
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ABSTRACT

CFD simulations of fluidized bed reactors are generally
limited to the laboratory scale because of the fine grid
sizes that are required to resolve complex particle
clustering phenomena. The filtered Two Fluid Model
(fTFM) approach has recently emerged as a promising
method for allowing reasonable predictions of large-
scale fluidized beds. This paper presents a verification
study of new two-marker fTFM closures. In general, the
fTFMs matched well to the resolved simulations. It was
shown that the two-marker models significantly
increased the predicted degree of phase segregation
(resolved in coarse grid simulations), and hence have
superior capabilities compared to simpler one-marker
models. Also, the two-marker model predicted a more
dynamic transient flow behaviour. However, further
work is recommended to extend the present study over a
wider range of flow conditions.

Keywords: CFD, Fluidized beds, verification, filtered
two-fluid model.

NOMENCLATURE

Greek Symbols

a Volume fraction, [].

4 Dynamic viscosity, [kg/m's].
L Density, [kg/m*].

’?S Stress tensor, [Pa].

U Velocity, [m/s].

Af Filter size, [m].

Latin Symbols
d Particle diameter, [m].

D Mass diffusivity, [m?/s].
g Gravitational acceleration, [m/s?].
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K, Momentum exchange coefficient, [kg/m3s].
p Pressure, [Pa].

S Shear rate magnitude, [1/s].

[ Time, [s].

V, Terminal settling velocity, [m/s].

X, Mass fraction of species A, [].

Subscripts, superscripts and accents
[ Filtered.

g Gas.

s Solids.

Algebraic volume average.

O

—

Phase-weighted volume average.
Time average.

Vector quantity.

Scaled or non-dimensionalized quantity.

Fluctuating quantity.

INTRODUCTION

Fluidized beds are widely used in industry due to their
excellent mass and heat transfer properties. In the last
three of decades, CFD has emerged as a useful tool with
which to investigate the reactive flow in these reactors,
although significant challenges remain (Cloete et al.,
2012). The most important limitation of this approach
remains the excessive computational times involved in
simulating industrial scale reactors, due to the large
number of particles (in the order of 102).

The filtered Two-Fluid Model (fTFM) (Igci et al., 2008)
offers a solution to this problem. The TFM closed by
the Kinetic Theory of Granular Flow (KTGF) (Lun et
al., 1984, Gidaspow et al., 1992), where the fluctuations
in the particle velocities are treated analogous to that of
gas molecules in the kinetic theory of gases, are often
employed in fluidized bed simulations. However,
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KTGF-based TFMs suffer from the limitation that they
require a high enough grid resolution to resolve the
small scale structures (particle clusters and gas bubbles)
for accurate model predictions, leading to
computationally expensive simulations. The fTFM aims
to reduce the required computational time substantially
by relying on spatially-averaged (i.e., “filtered”)
governing equations. However, this leads to additional
terms in these equations (that account for small-scale
fluctuations) which must be closed. These closures are
generally formulated as a function of the size of the
averaging region, and additional marker quantities.
Closures may be obtained by fitting a proposed
functional form to data obtained from fine grid TFM
simulations.

Most of the research in this field has been limited to
developing models for the filtered hydrodynamics (Ozel
et al., 2013, Schneiderbauer and Pirker, 2014, Sarkar et
al., 2016), where sub-grid corrections to the interphase
drag and solids stresses are essential. However, in
reactive flows further closures are required to correct
the reaction rate and species dispersion for sub-grid
effects. Models have been proposed for these effects
(Holloway and Sundaresan, 2012, Agrawal et al., 2013),
but have not been verified so far.

This paper will therefore evaluated the reactive fTFM
closures developed by the Princeton group (Igei and
Sundaresan, 2011, Holloway and Sundaresan, 2012,
Agrawal et al., 2013). Additionally, a new set of
closures for the filtered drag, solids pressure and
reaction rate will be tested. These comparisons will give
an indication of the ability of the fTFM approach to
predict reactive flow on coarse grids and will help
identify areas of improvement for the existing models.

MODEL DESCRIPTION

Governing equations

Two types of simulations are performed in this study:
coarse grid simulations using fTFM closures and
resolved TFM simulations against which to verify the
coarse grid results. The resolved TFM simulations
follow a standard KTGF approach as commonly
employed in the literature, e.g. (Cloete et al., 2017), and
the equations and closures used will therefore not be
described here in detail.

However, the equations and fTFM closures employed in
the coarse grid simulations warrant further discussion.
Two sets of fTFM closures are evaluated in this
verification study: a model from the Princeton group
and a new model proposed in this study. To derive
filtered equations, a spatial average is performed on all
equations and averages of products are rearranged by
defining the instantaneous value of a quantity as the
sum of its averaged value and a fluctuating component.
Employing this procedure to the solids momentum
equation, the following equation is obtained.

2 (p.ad)+v-(pads)=-aVp-vp,

s7s Vs

—V(psalﬁ'D'J+V~?+aspxgr+l<gs (13 —55)—(1 Vp
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For the hydrodynamics, closures are required for the
filtered kinetic theory stresses (second term and fourth
term on the right), the meso-scale solids stresses (third
term on the right), the filtered drag force (sixth term on
the right) and an added mass-like force due to the
subgrid pressure gradient fluctuations (last term on the
right). Additionally, similar meso-scale stresses in the
gas momentum equation will require closure. However,
in this study these stresses are neglected, since they are
generally considered to be much smaller than the
particle phase meso-scale stresses (Milioli et al., 2013).

For the fTFM hydrodynamics from the Princeton group,
the model by Igci and Sundaresan (2011) is used, which
closes the filtered solids stresses and the filtered drag as
a function of the filter size and the filtered solids
volume fraction. Although more advanced models using
an additional marker have been published, a recent
hydrodynamic verification study (Cloete et al., 2017)
showed that these advanced models perform poorly in
predicting the hydrodynamics in 2D flows, whereas the
simpler Igci model performed very well.

For the fTFM proposed in this study, the following
closures are suggested. The filtered drag force and the
pressure gradient fluctuation term are modelled together
as a correction to the microscopic drag law, as follows.

' dp/
gs,microscopic (Ug i T Usi )

The drag correction factor, C, is calculated as a function
of the dimensionless filter size (Igci et al., 2008), the
filtered solids volume fraction and the filtered slip
velocity magnitude scaled by the steady state slip
velocity (Cloete et al.). This scaling of the slip velocity
was shown to lead to a better distribution of data in the
parameter space and to a simple dependency of the drag
correction factor on the filtered slip velocity, resulting
in a better fit of the correlation to the resolved
simulation data. The following correlation is used:

atan (x, (A/ -AL )“7 a, ) x

tog(c) =" (4 -4 ) (1] 3)
x, log 1;2/,,, +x, (A/ ,A/) +

x, (log z~):,,p (-
atan (x8 (A, -A. ))/(%j)

Where x; = 46.75, x, =51.51, x3 =1.370, x, =
0.8632, x5 =0.05360, x,=0.4776, x;,=364.1,
xg = 260.7, x9 =0.889, x;5 =0.494, and T4, =
0.55. The fine grid scaled filter size is set to Ag;,=
0.1286.

It is assumed that the filtered kinetic theory stresses are
much smaller than the meso-scale stresses for filter sizes
large enough for practical use (Igci et al., 2008).
Therefore closures for the former stresses are neglected.
However, the following closure is proposed for the



dimensionless filtered frictional pressure, which was
found to be significant:

ps,fr[c — * * 2
S =a (A A, X
pvvt

—y * a" (4)

(2, ma
Where x; =4.016, x, = —0.005543, x; = 0.1905,
x, = 1.939, x; = 1.658, x4, = 0.03935, x, = 12.78,
xg = 5.084 and &g, = 0.63. The dimensionless
filtered solids shear rate magnitude, .STS*, is calculated as
done by Milioli et al. (2013).

It was found that the effect of modelling the off-
diagonal component of the solids meso-scale stress on
the coarse grid simulations were small, therefore a new
model was not derived as part of this study and the
model of (Sarkar et al., 2016) is used. For the diagonal
components of the solids meso-scale stresses the
following correlation is proposed:
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Where x; = 1.522, x, =15.49, x; =1.162, x, =
0.5660, x5 = 1.385, x5 =0.07166, x, = —0.9543,
and @4, = 0.6043. The correlation shape is based on
a Smagorinsky-type model as used by Sarkar et al.
(2016), with modifications to have zero meso-scale
stresses at the filter size where the resolved simulations
were performed, and non-zero meso-scale stresses at
zero filtered shear rates. The latter is motivated by an
observation of Schneiderbauer (2016).

A simple irreversible, first-order, solids-catalysed
reaction of species A to species B is considered in this
study. The filtered gas species transport equation,
formulated for the mass fraction of species A, is:

(0, X)+V (0, X5, ) = V-(Da,p,X,)

r— v 6
—V-[pgagXAug)—kApgasXA ©)

The first term on the right is neglected, considering that
the molecular diffusion is small relative to species
dispersion due to the meso-scale velocity fluctuations
(i.e., the second term on the right). The species
dispersion due to the meso-scale velocity fluctuations is
modelled as an added diffusivity as proposed by
Agrawal et al. (2013).

The last term on the right hand side of the species
transport equation is modelled as follows:

alX, = Rai;(: (7

The reaction rate correction factor R accounts for the
effect of wunresolved concentration and voidage
fluctuations on the filtered reaction source term. It can
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be calculated from finely-resolved reaction rate data,
and can be defined such that it also accounts for non-
local effects (i.e., gradient terms) as suggested by
Holloway and Sundaresan (2012). This was also done in
our present contribution. For the Princeton fTFM setup
the model by Holloway and Sundaresan (2012) is used.
A new model for R, adding an additional marker for the
scaled slip velocity, is proposed as part of this study.
The proposed model is limited to the specific case of a
reaction rate constant giving a Thiele modulus of 0.16.

atan (x] (A, —A, ) a, ) x

s [xz (Aj . ) XJ )

(@, -a)
~log(R) = atan (x3 (A, —A. )) x
atan(x, B:Hp)
atan (x3 (A*, - A*lm’ ))

x, log vy, + x,

Where x; =7.925, x, =17.31, x3 = 0.3511, x, =
0.7772, x5 = 0.1366, xz = 1.007, x, = —0.09253,
xg = —0.003722 and &4, = 0.5627.

Verification cases

The average superficial inlet gas velocity for this study
is chosen to be at the geometric center of the bubbling
fluidization regime, according to Bi and Grace (1995),

giving an average superficial velocity of 0.468 % at the

inlet. A solids flux of 150 % is specified.

Furthermore, the profile of the velocity, solids volume
fraction and reactant mass fraction at the inlet is
specified to be non-uniform. This allows more rigorous
testing of the filtered models by creating mean gradients
in the flow. The gas phase superficial velocity is chosen
to be half the average superficial velocity at the sides of
the domain and increases linearly towards the center.
Zero slip between the phases is specified at the inlet.
The solid volume fraction is set to a minimum at the
centre and increases linearly to the sides. The value of
the minimum solids volume fraction is set equal to half
the solids volume fraction required to deliver the
specified solids flux at the mean gas superficial
velocity. Finally, the reactant species mass fraction is
set to 1 at the center and 0 at the sides.

The simulation domain consists of a rectangular reactor
region, 0.96 m by 1.6 m, and a small outlet region with
walls sloping at 45° towards the outlet. The wall
boundary condition is set as free slip for the solids to
minimize the effect of the outlet region on the flow in
the rest of the domain. The outlet has a small width of
10 cm to prevent backflow, which could potentially
cause numerical instabilities. The sides of the
fluidization region are specified as periodic boundaries,
since the models evaluated in this study was derived for
periodic flows far away from wall-effects.

Due to the large computational expense of performing
resolved simulations (performed at a grid size equal to



11.8 times the particle diameter) in such a large domain,
all simulations were performed in 2D. Testing filtered
models in 2D remains a valid approach, since filtered
models derived from 2D and 3D simulations have been
shown to be qualitatively similar (Igci et al., 2008).

The particle and fluid properties used in the simulations
are summarized in Table 1.

Table 1: Summary of particle and fluid properties

d Particle diameter 75%10°m

P, Particle density 1500 kg/m?

P, Gas density 1.3 kg/m?

u, Gas viscosity 1.8x107° kg/ms

v, Terminal §ett11ng 02184 m/s
velocity

D Mass diffusivity 1.385%1075 m%/s

The coarse grid simulations are allowed to run for 10 s
of simulation time to reach a statistical steady state,
after which the results are time averaged for 50 s. The
resolved simulation has been time-averaged for 9 s.
Two values are used to quantify the overall reactor
behaviour: the average solids holdup and the average
scaled conversion. The average solids holdup is
calculated as the time-averaged solids volume fraction
averaged over the rectangular region of the geometry.
The scaled conversion of the reactant is calculated as
—1log;o(X,). To calculate (X,) the time-average reactant
mass fraction is averaged over a horizontal line at a
height of 1.5 m (0.1 m below the start of the outlet
region). The averaging regions for both quantities are
chosen in such a way as to minimize the effect of the
outlet region on the results.

RESULTS

Results will be presented and discussed in two main
sections. Firstly, the overall model performance will be
compared using the holdup and conversion performance
parameters discussed in the previous paragraph. Then, a
more detailed comparison between the different model
predictions for the spatial distribution of key quantities
will be presented and discussed.

Overall comparison

Model performance is summarized in Figure 1. Firstly,
the need for filtered modelling on coarse grids is readily
visible from the cases without any filtered models.
Predictions of the holdup without any filtered modelling
are lower by about 20% because clusters are not
resolved and drag is over-predicted. A much larger error
is observed for the reaction rate because mass transfer
limitations caused by clustering are strongly under-
predicted when not resolving the clusters. It is notable
that the overall conversion is over-predicted by up to
100% even though a substantially lower solids holdup is
predicted.
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Figure 1: Deviation of model predictions from the resolved
simulations for the solids holdup and reactant conversion.

Both filtered models investigated in this work resulted
in substantial improvements relative to the cases
without any filtered modelling. However, it is also clear
that both models show significant grid dependencies,
implying that work is still needed to improve the filter
size dependency on the models. The primary difference
between the performance of the Princeton and NTNU
model setups is the trend of reactant conversion with an
increase in grid size. The Princeton model increasingly
under-predicts the reactant conversion at larger grid
sizes, whereas the NTNU model over-predicts it. For the
NTNU model, this trend is aligned with the increase in
solids holdup at larger filter sizes, so the trend can be
partly explained by the imperfect hydrodynamic
models. For the Princeton models, on the other hand, the
trend is in opposition to the holdup trend, implying that
significant improvements to the reaction rate model are
required.

Detailed comparison

A good idea about model behaviour can be formed by
inspecting the contours of instantaneous solids volume
fraction and conversion presented in Figure 2 and
Figure 3.



Figure 2: Instantaneous contours of solids volume fraction.
Top row: no filtered modelling. Middle row: Princeton model.
Bottom row: NTNU model. Each row shows the resolved
simulation on the left and then the coarse grid simulations on
grids of 20, 40 and 80 mm. The blue-red colour map spans a
range of 0-0.6.

Figure 2 clearly shows the increased holdup simulated
by the filtered models relative to the coarse grid
simulations with no filtered modelling. In addition, the
NTNU models (two-marker models) generally predict
more phase segregation than the Princeton models (i.e.,
primarily one-marker models). This is the result of a
wider range of variation for each filtered quantity
ensured by a two-marker model relative to a one-marker
model. The variation of filtered quantities (e.g. drag,
pressure, etc.) will therefore be more pronounced in
adjacent cells and the resulting force gradients will lead
to greater phase segregation. As expected, it is also
clearly visible that the amount of phase segregation
reduces as the grid size (and filter size) is increased.

When inspecting the resolved simulation profiles, it
appears as if the prediction of denser “clusters of
clusters” by the filtered model is correct. Denser regions
with many clusters and more dilute regions with fewer
clusters are clearly visible in the resolved simulation.
The resolution of these denser regions is gradually lost
as the grid size is increased in the filtered simulations,
especially for the one-marker Princeton models.
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Figure 3: Instantaneous contours of reactant conversion
(— loglo(X—A)). Top row: no filtered modelling. Middle row:
Princeton model. Bottom row: NTNU model. Each row shows
the resolved simulation on the left and then the coarse grid
simulations on grids of 20, 40 and 80 mm. The blue-red colour
map spans a range of 0-7.

The reactant conversion profiles in Figure 3 show that
the filtered models generally capture the reactant
transport correctly: low conversion in the central part of
the inlet (high velocities and reactant mole fractions,
and low volume fractions) with higher conversions at
the sides of the domain. In addition, regions of low and
high conversion in the developed flow regions seem to
be qualitatively captured by the filtered models. As may
be expected, these regions are aligned with the regions
of low and high solids volume fraction in Figure 2.

It should be noted that the conversion looks
misleadingly low in the filtered simulations because of
the log scaling used to visualize the conversion. Spatial
averages over a range of conversions (— loglo(X—A))
would be heavily weighted towards lower sample
values.

Another perspective is given by the time-averaged
solids volume fraction and conversion plots given in
Figure 4 and Figure 5. The solids volume fraction
contours show that the Princeton models generally
predict higher solids volume fraction regions on the
sides of the domain than the NTNU models. This is
accentuated as the grid size is increased until a central
spout between two dense regions is predicted on the 80
mm grid. In this measure, the NTNU models appear to
match more closely with the resolved simulations,



although the triangular shape of the central inlet spout is reasonable accuracy in the bottom-side regions of the
gradually lost as the grid size is increased. domain, but the conversion in these regions is

significantly under-predicted. This may be related to a

over-prediction of the scalar dispersion rate.
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Figure 4: Time-averaged contours of solids volume fraction. l . . .
Top row: no filtered modelling. Middle row: Princeton model.

Bottom row: NTNU model. Each row shows the resolved Figure 5: Time-averaged contours of reactant conversion
simulation on the left and then the coarse grid simulations on
grids of 20, 40 and 80 mm. The blue-red colour map spans a
range of 0.1-0.36.

AV ATAVNS

(—10g19(X,)). Top row: no filtered modelling. Middle row:
Princeton model. Bottom row: NTNU model. Each row shows
the resolved simulation on the left and then the coarse grid

In general, it appears as if dense regions over the sides simulations on grids of 20, 40 and 80 mm. The blue-red colour
of the inlet tend to form more easily when less flow map spans a range of 0-6.

dynamics (driven primarily by phase segregation) are As shown in Figure 6, exclusion of the scalar dispersion
resolved. This may be expected since dynamically model led to a reactant conversion profile that is better
moving dense regions will have a lower tendency to aligned with the solids volume fraction profiles shown
stagnate in regions with low fluidization velocity, but in Figure 4. The dense regions at the sides of the domain
rather move through that region to again be swept up by above the inlet now show greater conversion. However,
the stronger central gas stream. The greater phase the effect of the scalar dispersion model is small and it
segregation resolved by the two-marker NTNU models did not significantly affect the overall conversion in the
therefore appears to improve the prediction in this case. domain.

When inspecting the reactant conversion contours in Aside from this moderate discrepancy in the lateral
Figure 5, it is seen that the profiles qualitatively align direction at the bottom of the domain, conversion also
with the volume fraction prOﬁleS in Flgure 4: denser appears to proceed too SlOle along the helght of the
regions align with higher conversion and vice versa. domain despite reasonably accurate predictions of the
However, significant improvement still seems to be solids volume fraction in Figure 4. For the NTNU
possible. Both models appear to under-predict the model, one possible explanation for this trend is that the
conversion in the bottom-side regions of the domain. phase segregation is too strong, leading to excessive
The Princeton models over-predicted solids holdup in mass transfer limitations. Further investigation is
these regions, so it would be eXpeCted that a similar required to determine whether these moderate
OVer-prediCtiOl’l in conversion will result. This becomes discrepancies are caused by inaccuracies from the
particularly evident at larger filter sizes where large hydrodynamic models or the reaction rate model. Given
regions of high volume fraction were predicted, but the relative simplicity of deriving a reaction rate model,
conversion is increasingly under-predicted. Similarly, the hydrodynamic models appear to be the more likely
the NTNU models predict the solids holdup with source of error. For the Princeton models, the filter size
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dependency of the reaction rate model appears to be too
weak, leading to progressively larger under-predictions
of conversion with an increase in the grid size.

o

.

4 1 1

| | L)
Figure 6: Time-averaged contours of reactant conversion
(—log(X A)) with the NTNU model. Top row: with scalar
dispersion model. Bottom row: without scalar dispersion
model. Each row shows the resolved simulation on the left and

then the coarse grid simulations on grids of 20, 40 and 80 mm.
The blue-red colour map spans a range of 0-6.

CONCLUSION

A new two-marker filtered Two Fluid Model
formulation is presented for solving reactive flows in
fluidized beds. The model is verified against a
computationally expensive resolved simulation to show
good agreement. However, significant grid dependency
is still present, which must be addressed in future model
development work.

The two-marker model is compared to earlier one-
marker models from the literature. Greater phase
segregation is resolved by the two-marker model
relative to the one-marker model, thereby capturing
more flow dynamics even on a coarse mesh. In this
case, the increased resolution of flow prevented
excessive stagnation in low velocity regions of the
domain.

The proposed two-marker reaction rate model
performed significantly better than the existing one-
marker model where the filter size dependency was
found to be too weak. It is likely that the required
improvements to conversion predictions can be more
readily achieved by improving the more complex
hydrodynamic models than the relatively simple
reaction rate model. Finally, it was found that the
inclusion of a model for dispersion of the reactant due to
meso-scale velocity fluctuations appeared to have a
slightly negative effect on model accuracy.

In general, this successful verification study shows the
promise of the two-marker model approach. Further
verification work over a wider range of flow conditions
is recommended for future study.
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