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PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the
12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and
Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also
known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997.
So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim.
The conferences focuses on the application of CFD in the oil and gas industries, metal production,
mineral processing, power generation, chemicals and other process industries. In addition pragmatic
modelling concepts and bio-mechanical applications have become an important part of the
conference. The papers in this book demonstrate the current progress in applied CFD.

The conference papers undergo a review process involving two experts. Only papers accepted by the
reviewers are included in the proceedings. 108 contributions were presented at the conference
together with six keynote presentations. A majority of these contributions are presented by their
manuscript in this collection (a few were granted to present without an accompanying manuscript).

The organizing committee would like to thank everyone who has helped with review of manuscripts,
all those who helped to promote the conference and all authors who have submitted scientific
contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal
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HIGH TEMPERATURE FLUIDIZATION - INFLUENCE OF INTER-PARTICLE
FORCES ON FLUIDIZATION BEHAVIOR

Milan MIHAJLOVIC' , Ivo ROGHAIR", Martin van Sint ANNALAND'
' Eindhoven University of Technology, 5600 MB Eindhoven, NETHERLANDS

* E-mail: |.Roghair@tue.nl

ABSTRACT

Recent experiments have shown an influence of temperature on
the minimum fluidization conditions in gas-solid fluidized
beds, even when the gas phase density and viscosity were kept
constant (Campos Velarde et al., 2016). Correlations that are
available in the open literature, for predicting the minimum
fluidization velocity and the bed voidage at minimum
fluidization conditions at elevated temperatures, fail to describe
their experimental data, in particular how the bed porosity at
incipient fluidization conditions is changing with temperature.

It is hypothesized that at higher temperatures inter-particle
forces play an important role in this phenomenon. Inter-particle
forces, specifically van der Waals forces, are known to be
important in the fluidization of very fine powders, and may
incur detrimental effects on the process such as the formation
of particle agglomerates or reduced particle mixing. However,
the experimental results by Campos Velarde et al. (2016) have
indicated that such forces may also become important during
the fluidization of larger particles at increased temperatures. In
this work, we characterize the effects of inter-particle forces
using simulations with a Discrete Particle Model (DPM).

DPM is an Euler-Lagrange type model with a discrete
description of the solids phase and a continuous description of
the gas phase. The motion of each individual particle is tracked
and described with Newton’s second law, with van der Waals
forces used to describe the inter-particle forces. Van der Waals
forces are described with a Hamaker constant, which depends
on the particle material and fluidization gas properties and may
depend on temperature (Castellanos et al., 2003). Particle-
particle interactions are dealt with using a soft-sphere collision
model, which allows multiple simultaneous contacts between
several pairs of particles. The gas phase is described with a set
of volume-averaged Navier-Stokes equations, and full two-way
coupling between the phases is implemented.

In this work we investigate the influence of the inter-particle
forces (by variation of the Hamaker constant) on the minimum
fluidization velocity (Uns) and the bed porosity at minimum
fluidization (ews), and relate the effects to the dominating

phenomena prevailing at high-temperature fluidization.

Keywords: Discrete Particle Model, fluidized beds,
minimum fluidization, interparticle forces.
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NOMENCLATURE

Greek Symbols

density, [kg/m?].

porosity, [-].

dynamic viscosity, [kg/m.s].

viscous stress tensor, [kg/m s?].

inter-phase momentum exchange coefficient, [-].
rotational velocity, [rad/s].

sphericity, [-].

SEe™ R O

Latin Symbols

Ar Archimedes number, [-].
particle diameter, [m].
force, [N].

gravitational acceleration, [m/s?].
Hamaker constant, [J].
moment of inertia, [kg m?].
slope, [m/s?].

mass, [kg].

Nyars number of particles, [-].
pressure, [Pa].

Sy ~me oma

Reynolds number, [-].

particle position, [m].

particle radius, [m].

inter-surface distance between two spheres, [m]
torque, [N m].

time, [s].

velocity, [m/s].

o superficial gas velocity, [m/s].

v particle velocity, [m/s].

V' volume, [m?].

S R T - s

Sub/superscripts

0 initial state

a particle index

g gas phase.

p particle phase.

cont contact forces.

vdW van der Waals forces.

mf minimum fluidization point
mb minimum bubbling point



INTRODUCTION

Fluidized bed reactors are often used in the chemical
process industry. Due to their sheer size, many studies
have been and are being performed to optimize the
operation of these reactors. Most industrial processes
using fluidized beds are operated at reactive conditions,
i.e. at elevated temperatures (Kunii and Levenspiel,
1991). Research has shown that operation at elevated
temperature has an effect on the bed voidage and
minimum fluidization velocity (Lettieri et al., 2001).
However, there is an ongoing debate on the mechanism
by which the temperature influences the fluidization
process.

Since the early work by Geldart (1972), we know that
different particle classes show very different fluidization
behaviour even at ambient conditions. The boundaries
between the different classes change at higher
temperatures (Botterill et al., 1982). For instance,
Botterill et al. (1982) and Lettieri et al. (2001) showed
that particles that are originally classified as one Geldart
type can change their fluidization characteristics to those
belonging to another Geldart type with increasing
temperature. One possible explanation for these changes
in fluidization behaviour, according to Lattieri and
Botterill, is that at high temperatures the gas phase
properties (i.e. density and viscosity) change. However,
other research suggests that also inter-particle
forces (IPF) can have an important additional influence
(Baerns (1966), Formisani et al. (1998)). Although the
influence of the gas properties and IPFs occurs
simultaneously  during fluidization at elevated
temperatures, researchers have debated about the relative
contributions of these phenomena at different conditions.
For example, Shabanian (2013) and Baerns (1966) have
found that IPFs have a significant role using Geldart C
type particles, whereas for Geldart B and D not much
influence of IPFs were found. For Geldart A type
particles, the debate is still ongoing.

Numerical analysis was performed in different studies in
order to investigate the influence of the van der Waals
(denoted as vdW) forces on the fluidization behaviour.
Ye et al. (2004) and Kobayashi et al. (2006) performed
an analysis on the fluidization of Geldart A type particles
including vdW forces between adjacent particles. Ye et
al. (2004) specifically examined the influence of the
Hamaker constant on the fluidization behaviour. Results
showed, for example, that for higher values of the
Hamaker constant, Geldart A particles can exhibit the
fluidization behaviour of Geldart C type particles. In their
study, the value of the Hamaker constant was chosen with
the objective to demonstrate the influence, but the value
was not directly related to actual particle properties. In
this work, we adopt a similar approach, where we extend
the study to Geldart B type particles.

In a recent study done by Campos Velarde et al. (2016),
a novel experimental approach was used for high
temperature fluidization. The authors have carried out
experiments where fluidization was performed with two
different gas mixtures that possessed the same properties
(density and viscosity) at different temperatures. It was
shown that these two cases show different fluidization
behaviour. This has lead the authors to suggest that IPFs
could be the reason behind the observed phenomena.
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In the work of Castellanos (2003) it is shown that the
Hamaker constant is dependent on temperature which
indicate that the magnitude of the IPFs will also change
with temperature. This work gives a first look on how the
change of IPFs could influence the fluidization.
Specifically, this work uses DEM simulations to show
the influence of the vdW forces via the Hamaker constant
on the minimum fluidization conditions (U,rand &,y) and
average particle circulation patterns of Geldart A and
Geldart B particles.

MODEL DESCRIPTION

The model used in this work originates from the work of
Hoomans et al. (1996), Ye et al. (2004), and
Tan et al. (2014). The gas flow is modelled by the
volume-averaged Navier—Stokes equations

a(ep,)
+
a

V. (gpgu)zo (1)

d(ep,u)
a

where ¢ is the porosity, and pg, u#, T and p are the density,
velocity, viscous stress tensor, and pressure of the gas
phase, respectively. The source term S, is defined as:

1)

Note that V is the volume of the fluid cell, 7, the volume
of particle, v, the particle velocity, r, is the position of a
particle, Nya the number of particles and £ is the inter-
phase momentum exchange coefficient. The &-function
ensures that the drag force acts as a point force at the
(central) position of a particle. The distribution function
for mapping the properties from the Lagrangian particle
positions to the Eulerian computational grid and vice
versa is implemented in a straightforward manner
through volume-weighing techniques (Hoomans et al.,
1996), which is often used when the volume of the
smallest computational cell for the fluid is (much) larger
than the volume of a particle. The integration calculates
the total drag force between the gas phase and the
particles in a computational cell.

For the solids phase, the motion of each particle is
described with Newton’s second law of motion. The
translational motion of a single particle with mass m, and
volume ¥, is computed with the following equation:

+V. (gpguu)z -&Vp-8,-V-(er)+ep,g (2)

/art ﬁV

a= 01_

€)

dzra Vaﬁ
ma dt2 :Fcnnt,a

vdw,a

“4)

+m,g

The forces on the right hand side of Equation (4)
represent the contact force, vdW force, drag force,
pressure gradient and gravity respectively. The rotational
force balance is given by

)



where T, is the torque, /, the moment of inertia, and w,
the rotational velocity.

The contact force between two particles (or a particle and
a sidewall) is calculated by use of the soft-sphere model
developed by Cundall and Strack (1979). In this model, a
linear-spring and a dashpot are used to formulate the
normal contact force, while a linear-spring, a dashpot and
a slider are used to compute the tangential contact force,

. . . .2
where the tangential spring stiffness is ;th of the normal

spring stiffness.

In order to resolve the time-dependent motion of particles
and the dynamics of the gas phase, two different time
steps are used to solve the particle collisions and the
Navier—Stokes equations. The time step in the soft-sphere
model depends on the duration of a contact and should be
sufficiently small to make sure that the contact lasts for a
certain number of time steps. Doing so helps to avoid
problems concerning energy conservation due to the
numerical integration, which is inevitable in the soft-
sphere model. The time step for the particle phase can
calculated from:

At =——t =

contact,n

where Ky is the minimum number of steps during one
contact and normally in the range of 15-50. Using the
normal stiffness k, determined from the Youngs modulus
will result a very small time step which will require a
large computation time. It has been found (Tsuji, 1993),
however, that one can set &, to a lower value than the one
derived from material properties without loss of accuracy
for gas—solid fluidized beds. At the same time, &, should
be a value sufficiently large so that the maximum overlap
between particles is below 1% of the particle diameter to
ensure that the computed hydrodynamics are not
affected. As shown in Table 1, k, is set to a value such
that at the very least 15 particle time steps are taken to
evaluate a single contact, which gives 1x10s as the time
step for the selected particle phase in this work.

To calculate the inter-particle vdW forces, we adopt the
Hamaker scheme (Israelachvili, 1991):

H 2131”2(S'+r1 +r2)
3 [S(S+2r+2n)f

vdw,ab —

2 (7N
—1

9 (S +27 +27,)
(S‘*‘”l +r2)2_(r1 _”2)2

where, S is the inter-surface distance between two
spheres, H the Hamaker constant, and »; and r; the radii
of the two spheres, respectively. However, Eq. (7)
exhibits an apparent numerical singularity that the vdW
interaction diverges if the distance between two particles
approaches zero. In reality, such a situation will never
occur, because of the short-range repulsion between
particles. In the present model, we have not included this
repulsion, however, we can avoid the numerical
singularity by defining a cut-off (maximal) value of the
vdW force between two spheres. In the simulations only
particle-particle vdW forces have been used, no particle-
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wall interactions other than collisions have been
considered.

Numerical simulations

Input parameters

In order to investigate the influence of vdW forces we
consider two systems: one with Geldart A type particles
with diameter of 100 pm and a density of 900 kg/m?, and
a second one with Geldart B type particles with diameter
0f 500 um and a density of 2525 kg/m?>. Input parameters
used for both systems are shown in Table 1.

Table 1: Parameters used in simulation for vdW forces.

Particle type Geldart A | Geldart B
Number of particles 7000 | 12000
Particle diameter, d) 100 500 pm
Particle density, p 900 | 2525 kg/m’
Normal restitution coefficient, e, 0.9 0.97 -
Tangential restitution coefficient, e 0.9 0.33 -
Friction coefficient, u: 0.3 0.1 -
Normal spring stiffness, k» 420 7000 N'm
Tangential spring stiffness, 120 2000 N'm
CFD time step 1x107 s
Particle time step, At 1x10°6 s
Minimum interparticle distance, S, 0.4 nm
System height, Zmax 15 | 45 mm
System width, Xmax 2 | 10 mm
System depth, Ymax 1 | 10 mm
CFD grid height, Ax 250 | 1250  pm
CFD grid width, Ay 250 | 1250  um
CFD grid depth, 4z 250 | 1250  pum
Shear viscosity of gas, u 1.8 x 107 Pa's
Gas temperature, 7' 293 K

Hamaker constant, H 1019/1029/1021/1022 J

Procedure and initial condition

The Hamaker constant is known to be dependent on
particle properties and the gas properties between the
particles (Lefévre (2009), Hamaker (1937)). In this
research the primary goal is to investigate how the vdW
forces affect the minimum fluidization conditions, so a
value range of the Hamaker constant will be taken from
10" down to 1022 J. All simulations start by fluidizing
the particles by a relatively large gas velocity for 2 s
(Geldart A at 0.04 m/s; Geldart B at 0.45 m/s), and after
the initial fluidization the gas supply is switched off
causing the particles to drop down to form a packed bed.
After a short settling period, the superficial gas velocity
Uy is set to increase slowly and linearly in time:

U, = Kt (8)
Here the rate constant K is 0.03 m/s?, which is by Ye et
al. (2005) optimal in the sense that this yields a
reasonable speed-up compared to the step-wise method,
where the deviation in the predicted pressure drop and
bed height is minimal (again compared to the results from
the step-wise method).



Simulation results

Geldart A type particles

The main focus of this part of the study is to investigate
the influence of vdW forces on the minimum fluidization
velocity. A number of snapshots of the simulations from
a central slice of the bed (using no vdW forces, and
Hamaker constants in the range of 102! to 10" J) are
shown in Figure 1. We observe that bubble formation is
suppressed for higher Hamaker constants.

Figure 1: Snapshots from simulations showing the influence
of the Hamaker constant on fluidization. Simulations were
performed for Geldart A particles with the same superficial

gas velocity.

From Figure 2, showing the pressure drop over the bed
as a function of the superficial gas velocity, we can draw
the quantitative conclusion that vdW forces have a
negligible influence on U,: The biggest influence is
observed during the transition from a fixed bed to the
fluidized bed. Simulations that include vdW forces in the
Ap-U,s graph show a more smooth transition from
packed bed state towards the fluidized state as the
Hamaker constant increases. One explanation for this
behaviour would be that with a higher Hamaker constant
particles form channels and clusters and by doing so
allow gas to pass through the bed (Ye et al., 2004). We
can take a look at snapshots from simulations presented
in the Appendix (Figure 7), showing the gas density on a
slice in the middle of the bed at the specific times. These
snapshots show that for # = 10'° and 102°J there is a
longer homogeneous fluidization, which may be due to
formed small clusters or channels. A further investigation
on the emergence, whereabouts and possibly
disintegration of these structures (channels and clustered
particles) will be reported in a future work. An algorithm
that can accurately locate such structures is under
development.

Values of U, determined from the simulations for
different Hamaker constants are given in Table 2:

Table 2: Determined Umf for various Hamaker constants

Hamaker constant H [J] Determined Uy [m/s]

0 3.94 x1073
1022 3.94 x1073
102! 4.01 x10°
1020 4.07 x10°
10°1° 3.8 1073
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Figure 2: Influence of the Hamaker constant on the pressure
drop as a function of the gas velocity for Geldart A particles.

We conclude that these changes are unimportant and that
the biggest influence of the Hamaker constant is the
reduction of the hysteresis and a slight decrease in the
Ap-U,yslope of the homogeneous part of the fluidization.
This effect could be explained in two ways; firstly, a
reason could be a numerical artefact due to the soft sphere
method that was employed in the DPM code for the
particle collisions. As indicated in the model description,
we assume a certain value of the spring stiffness that will
avoid particle overlap exceeding 1% of their particle
diameter during the simulation. Although for all the other
types of simulation with fluidized beds this maximum
overlap yielded satisfactory results, for simulations with
higher Hamaker constants this maximally allowed
overlap of 1% could still be too large. We can take a look
at snapshots from simulations presented in the Appendix
(Figure 9), showing the particle overlap for different
Hamaker constants at the same gas velocity. Further
investigation is ongoing on this topic to investigate
whether it is necessary reduce the maximally allowed
overlap. The second explanation lies in a possible
existence of clusters and channels that would allow gas
bypass which would reduce the pressure drop.
Compared with work of Ye et al. (2004), our conclusions
are matching well, the biggest difference is that their
approach for determining U,,s was a step-wise method of
increasing the gas velocity instead of a continuous
incrementing gas flow rate.

The values determined from the simulations are slightly
higher in comparison to the values calculated using the
basic Ergun equation (Eq 9) with the bed porosity taken
from our simulations.

1.75 (Remf)z . 150(1—3mf)

Re, )= Ar
e )

)

where the Reynolds number at minimum fluidization and
the Archimedes number are defined as

dU. .
Remf :% (10)
4
- d )
= Pr=PIEP(d)) an

(1,)



Substituting the simulation data into these equations we
obtain a value for the minimum fluidization velocity of
0.0034 m/s for &,r= 0.4. This value is not significantly
different from the values obtained from Figure 2.
Simulations including Van der Waals forces show a clear
influence on the average bed porosity (Figure 3). The bed
porosity for increasing Hamaker constant is increasing,
however, we observe for the largest Hamaker constant
that the bed height and porosity are lower than the case
without vdW forces. As noted before, this effect could be
due to the soft sphere method.

The minimum bubbling velocity U, can be determined
by using a combination of the snapshots of the bed
porosity and from Ap-Uy graph. For all cases, bubbles
start to appear at around 0.023 m/s, which is lower than
the value reported in Ye et al.’s (2004) work. It is
important to mention that our simulations were
performed in 3D, whereas Ye et al. (2004) used 2D
simulations.

06
H=1'|:|.13J _,_,r'"-"-"
=20 L

£0.55 —H10 ke -
o H=10"%" J o
= H=10" 4
205 :
=] Without VdW forces
2 o
@ 0.45 o s
= /i .
&
Z 04 =

035

L

0.00% 0.01 2015
Superficial gas velocity [m/s]

Figure 3: Average bed porosity as a function of the
superficial gas velocity.

The influence of van der Waals forces on the time-
averaged solids velocity is shown in Figure 8 in the
Appendix.

The time averaged solids velocities were plotted
for H=10"9202!1 J at gas velocities 0.004 m/s and
0.014 m/s. For all the cases the circulation patterns
follow the anticipated profile with solids flowing
upwards in the centre of the bed and downwards near the
walls of the column. For cases with the superficial gas
velocity close to the minimum velocity, the solids
circulation rate is somewhat reduced for cases with
higher Hamaker constants, as expected. At higher
superficial gas velocities this effect is similar, but
somewhat less pronounced.

Geldart B type particles

As a first step in the investigation of high-temperature
fluidization of Geldart B type particles, we have
examined the minimum fluidization conditions.
Compared to Geldart A particles, a similar effect on U,
was observed also for Geldart B particles. For higher
Hamaker constants, the superficial gas velocity at
incipient fluidization conditions is slightly higher (see
Figure 4). However, we do not observe a decrease in the
minimum fluidization gas velocity for H=10"'" J, but
found a significant increase in the minimum fluidization
velocity. The values for the minimum fluidization
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velocity determined from the simulation results are given
in Table 3:

Table 3: Determined U,y for various Hamaker constants

Hamaker constant H [J] Determined Uy [m/s]

0 0.2224
1022 0.2274
102 0.2277
1020 0.2321
10" 0.2885

When calculating U,s using Ergun’s equation with
characteristics for Geldart B particles and with the
porosity from simulations (e,= 0.4), we find 0.226 m/s,
which is very close to the simulated values.
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Figure 4: Influence of the Hamaker constant on the pressure
drop vs. the superficial gas velocity for Geldart B particles.

For the time-averaged bed porosity a slightly different
behaviour was observed compared to our findings for
Geldart A particles. It was also found that by increasing
the gas velocity the bed porosity tends to increase (Figure
5). However, for a very high Hamaker constant, the bed
porosity was larger than for the case without vdW forces,
which is clearly different from the Geldart A simulations.
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Figure 5: Bed porosity as a function of the gas velocity,
influence of the Hamaker constant on the bed compaction.

A possible reason for this behaviour we can find in the
fact that simulations start by fluidizing the particles with
a relatively large gas velocity for 2 s, after which the gas
flow is switched off and the particles drop down to form
the initial situation before the velocity starts to increase
linearly in time. By doing so, the particles in the
simulations with a larger Hamaker constant tend to form
clusters that affect the overall bed porosity with the
formation of larger voids. In comparison, the case
without vdW forces shows that particles have been



distributed more uniformly over the bottom of the reactor
(Appendix, Figure 10) resulting in a higher overall bed
porosity.

Similar to the results for Geldart A particles, the average
overlap is higher for the case with a stronger Hamaker
constant (Figure 6) and this needs to be further
investigated.
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Figure 6: Average overlap between particles during the
simulations, the effect of the Hamaker constant on the bed
porosity may be related to the increased particle overlap.

In a future work a more detailed comparison will be
carried out between the experiments at high temperatures
and DPM simulations including vdW forces.

CONCLUSIONS

The main conclusions are:

1. For both Geldart A and Geldart B particles vdW
forces increase the minimum fluidization bed
porosity (increased bed height).

2. For higher Hamaker constants Geldart B
particles tend to form unstable channels and
clusters.

3. The effect of the maximum particle overlap has
to be further investigated. The current
maximum allowed overlap may not suitable for
the cases of the strongest considered Hamaker
constants, where the average particle overlap is
higher.
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APPENDIX
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Figure 7: Gas density distribution in the bed of Geldart A particles.

Figure 8: Average particle velocity for different Hamaker constants. Geldart A particles.
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Figure 9: Overlap between the particles for different Hamaker constants at Up
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Figure 10: Slice of the bottom of the bed after the particle drop. Influence of vdW forces on fixed bed.
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