
Schematic Generation of English-prose Semantics for a Risk Analysis Language
Based on UML Interactions

Gencer Erdogan∗†, Atle Refsdal∗ and Ketil Stølen∗†
∗Department for Networked Systems and Services, SINTEF ICT,

PO Box 124 Blindern, N-0314 Oslo, Norway
Email: {gencer.erdogan, atle.refsdal, ketil.stolen}@sintef.no

†Department of Informatics, University of Oslo,
PO Box 1080 Blindern, N-0316 Oslo, Norway

Abstract—To support risk-driven testing, we have developed
CORAL, a language for risk analysis based on UML interac-
tions. In this paper, we present its semantics as a translation of
CORAL diagrams into English prose. The CORAL semantics
is developed to help software testers to clearly and consistently
document, communicate and analyze risks in a risk-driven
testing process. We first provide an abstract syntax and a
translation algorithm. Then, we evaluate the approach based
on some examples. We argue that the resulting English prose
is comprehensible by testers, is consistent with the semantics
of UML interactions, and has a complexity that is linear to the
complexity of CORAL diagrams in terms of size.

Keywords-risk analysis language; risk-driven testing; UML
interaction; sequence diagram; CORAL diagram;

I. INTRODUCTION

In earlier work, we presented a systematic method for
designing test cases by making use of risk analysis [1], [2].
As part of the method, we also introduced a risk analysis
language based on UML interactions which we refer to as
CORAL. CORAL extends UML interactions with constructs
for representing risk-related information in sequence dia-
grams, and it is specifically developed to support software
testers in a risk-driven testing process.

As we explain in [1], [2], testers may use CORAL in
three consecutive steps to identify, estimate, and evaluate
risks. The graphical icons representing risk-related infor-
mation in CORAL are based on corresponding graphical
icons in CORAS [3]. This is a deliberate design decision
because the graphical icons in CORAS are empirically
shown to be cognitively effective [4]. However, without
supporting natural-language semantics, CORAL diagrams,
i.e., interactions represented by CORAL constructs, may be
interpreted differently by different testers. Thus, in order to
help software testers to clearly and consistently document,
communicate and analyze risks, we present a structured
approach to generate the semantics of CORAL diagrams in
terms of English prose. We evaluate the approach based on
some examples.

The remainder of this paper is organized as follows.
Section II lists the success criteria our approach aims to

fulfill. Section III gives a stepwise explanation of the ap-
proach, and presents the examples we base our evaluation
on. Section IV elaborates on the fulfillment of the success
criteria. Section V provides an overview of related work.
Finally, Section VI gives some concluding remarks.

II. SUCCESS CRITERIA

There are three key design decisions that shape our
success criteria.

First, the main target audience of CORAL is software
testers. CORAL is supposed to be used by testers to docu-
ment, communicate and analyze risks in a risk-driven testing
process. Thus, our first success criterion is: The resulting
English prose must be comprehensible by software testers
when conducting risk analysis.

Second, CORAL is based on UML interactions and only
extends UML interactions with constructs representing risk-
related information. Thus, our second success criterion is:
The CORAL semantics of the constructs inherited from
UML interactions must be consistent with their semantics
in the UML standard.

Third, the approach must ensure scalability. Thus, our
third success criterion is: The complexity of the resulting
English prose must scale linearly with the complexity of
CORAL diagrams in terms of size.

III. APPROACH

Inspired by CORAS [3], we generate the English-prose
semantics in three consecutive steps, as shown in Figure 1. In
Step 1, we translate a CORAL diagram into a corresponding
textual representation. This step takes a CORAL diagram as
input. First, for each construct in the CORAL diagram, we
identify its corresponding syntactical element in the abstract
syntax of CORAL. Second, we replace the variables in the
syntactical element with content from the construct in the
diagram. The output of this step is a textual representation of
the CORAL diagram given as input to the step. The abstract
syntax of CORAL is defined in Section III-A.

In Step 2, we translate the textual representation of a
CORAL diagram into English prose, by making use of the

The final publication is available at IEEEXplore via https://doi.org/10.1109/ISSREW.2014.73

Step 2: Translate

textual

representation

into English prose

Step 3: Structure

English prose by

making use of a

pretty-printer

Pretty-printed

English prose of

CORAL diagram

CORAL diagram

Textual

representation of

CORAL diagram

English prose of

CORAL diagram

Step 1: Translate

CORAL diagram

into textual

representation

Figure 1. Generating English-prose semantics of CORAL diagrams.

translation algorithm defined in Section III-B. The transla-
tion algorithm is defined in terms of a function that takes
syntactical elements as input and provides their translation
as English prose.

Before presenting the translation function, we need to
explain weak sequencing, which is a key construct in UML
interactions. Weak sequencing is the implicit composition
mechanism combining the constructs of an interaction, and
is defined as follows [5]:

1) The transmission of a message must occur before its
reception.

2) Events on the same lifeline are ordered in time, where
time proceeds from the top of the lifeline towards the
bottom of the lifeline, and where an event is either
the transmission of a message or the reception of a
message.

In the translation function, we use the term ‘weakly se-
quenced by’ to denote weak sequencing as defined above.
In Step 3, we make use of a pretty-printer to format the
English prose in a structured manner. The technical details
of such a pretty-printer are outside the scope of this paper,
and are therefore not discussed here.

A. Abstract Syntax of CORAL

In this section, we define the abstract syntax of CORAL
expressed in the Extended Backus-Naur Form [6]. The
syntax defined in this section is an excerpt of the complete
syntax, but it is sufficient for walking through the examples
in the paper. The complete syntax is given in a technical
report [7].

We use the following undefined terms in the grammar:
identifier, asset lifeline, frequency, conditional ratio,
and consequence. The term identifier is assumed to
represent any alphanumeric string. The term asset lifeline
is assumed to represent an alphanumeric string describing
the name of an asset lifeline. The term frequency is
assumed to represent an alphanumeric string describing
a likelihood value in terms of frequency. The term
conditional ratio is assumed to represent an expression
that evaluates to a subset of R≥0 (the non-negative real

numbers including 0). The term consequence is assumed
to represent an alphanumeric string describing the impact
an unwanted incident has on an asset.

risk interaction = message | weak sequencing
| potential alternatives
| referred interaction
| parallel execution
| frequency assignment
| conditional ratio assignment
| consequence assignment;

message = risky message
| unwanted incident message;

risky message = rm(identifier, transmitter lifeline,
receiver lifeline, message category);

unwanted incident message = uim(identifier,
transmitter lifeline,
asset lifeline);

transmitter lifeline = general lifeline
| deliberate threat lifeline;

receiver lifeline = general lifeline
| deliberate threat lifeline;

general lifeline = gl(identifier);

deliberate threat lifeline = dtl(identifier);

message category = non-manipulative | manipulative;

non-manipulative = general;

manipulative = new | alter;

weak sequencing = seq({risk interaction}−);

potential alternatives = alt({risk interaction}−);

referred interaction = ref(identifier);

parallel execution = par({risk interaction}−);
frequency assignment =

fa(kind, risky message, frequency)
| fa(transmission, unwanted incident message,
frequency);

kind = transmission | reception;

transmission = !;

reception = ?;

conditional ratio assignment =
cra((kind, risky message), conditional ratio,
(kind, risky message));

consequence assignment =
ca(unwanted incident message, consequence);

B. English-prose Semantics of CORAL

The English-prose semantics of a syntactical element is
defined by the function J K, which is defined below for the
excerpt of the abstract syntax presented in Section III-A. Let
the syntactical variables:

• d range over risk interaction
• id range over identifier
• t range over transmitter lifeline
• r range over receiver lifeline
• al range over asset lifeline
• f range over frequency
• cr range over conditional ratio
• c range over consequence

The pair of square brackets, ‘[’ and ‘]’, is a part of the
semantics that is used to enclose an operand.

Jseq(d1, d2, .., dm)K = [Jd1K] weakly sequenced by
[Jd2K] weakly sequenced by ...
weakly sequenced by [JdmK]Jalt(d1, d2, .., dm)K = either [Jd1K] or [Jd2K] or ...

or [JdmK]

Jref(id)K = refer to interaction: idJpar(d1, d2, .., dm)K = [Jd1K] parallelly merged with
[Jd2K] parallelly merged with ...
parallelly merged with [JdmK]Jrm(id, t, r,general)K = the message id is transmitted

from JtK to JrK
Jgl(id)K = id

Jdtl(id)K = the deliberate threat idJrm(id, t, r,new)K = the new message id is transmitted
from JtK to JrKJrm(id, t, r,alter)K = the altered message id is
transmitted from JtK to JrKJuim(id, t, al)K = the unwanted incident id occurring

on JtK impacts asset alJfa(?, (id, t, r,new), f)K =
the reception of the new message id by JrK
from JtK occurs with frequency fJfa(!, (id, t, al), f)K =
the unwanted incident id occurring on JtK
impacts asset al with frequency fJcra((!, (id, t, r,alter)), cr, (?, (id, t, r,alter)))K =
the transmission of the altered message id from JtK
leads to its reception by JrK with conditional ratio crJca((id, t, al), c)K =
the unwanted incident id occurring on JtK
impacts asset al with consequence c

We demonstrate the schematic translation of CORAL
diagrams into English prose by first giving some examples of
CORAL diagrams (see Figure 2), and then translating these
diagrams into their corresponding English prose using the
translation functions (see Figure 3). The CORAL diagrams
in Figure 2 were obtained by applying our method [1], [2]
on a guest book that is available in the Damn Vulnerable
Web Application [8].

IV. DISCUSSION

In this section, we discuss the fulfillment of the three
success criteria given in Section II.

A. The resulting English prose must be comprehensible by
software testers when conducting risk analysis

The comprehensibility of the resulting English prose is
supported both from a general viewpoint and from a software
testing viewpoint.

From a general viewpoint, we observe the following two
points. First, the structure of the translations in Figure 3 is
similar to the structure of their corresponding CORAL dia-
grams in Figure 2. In particular, the ordering of the translated
CORAL constructs is maintained. For example, let us con-
sider the translation in Figure 3a. The first sentence states:
“The new message forgedURLReplacingMsgWithXSSscript
is transmitted from the deliberate threat Hacker to C”. By
comparing the translation in Figure 3a to its corresponding
diagram in Figure 2a, we see that the first sentence corre-
sponds to the first message in the diagram. Similarly, we
see that the second sentence in Figure 3a corresponds to the
second message in Figure 2a, and so on. Second, the user-
defined text is unchanged in the translations. By user-defined
text, we mean the text typed in CORAL diagrams, such
as the text on messages, lifelines, frequency assignments,
consequence assignments, and so on.

From a software testing viewpoint, we observe that risk-
related concepts from CORAL are integrated with concepts
from UML interactions, in the resulting English prose.
UML interaction is among the top three modeling language
within the testing community and is often used for testing
purposes [9]. It is therefore reasonable to assume that testers
understand the concepts from UML interactions. Moreover,
we find it reasonable to assume that testers also comprehend
the risk-related concepts we introduce in CORAL, such
as altered messages and messages representing unwanted
incidents, because these are concepts that are also known
within the testing community. For example, in fuzz testing,
the expected behavior of a system is altered by providing
invalid, unexpected, or random data, which may lead to
unwanted incidents [10].

To illustrate this, let us consider the first message in
Figure 2d. This message represents an altered message. In
CORAL, an altered message is a message in the system
model which has been altered due to unexpected system

sd Cross-site request forgery attack on guest book

Integrity of GB

Source Code

GBDatabase:

MySQLHacker

executeForgedURL

GBForm :

PHPForm
C : Client

forgedURLReplacingMsgWithXSSscript

signGB(name,XSSscript)

alt

ref Validate msg parameter then submit entry

ref Do not validate msg parameter then submit entry

sd Validate msg parameter then submit entry

Integrity of GB

Source Code

GBDatabase:

MySQL

true

submit(name,SanitizedXSSscript)

GBForm :

PHPForm

validateMsgParamter

sd Do not validate msg parameter then submit entry

Integrity of GB

Source Code

GBDatabase:

MySQL

true

(UI1) XSS script

injected in database

submit(name,XSSscript)

GBForm :

PHPForm

deleteAllGBEntries

sd Man-in-the-middle attack on guest book

<<create>>

interceptGBFormHTTPResponse

Availability of

GB Entries

GBDatabase:

MySQL

(UI2) GB entries deleted by intercepting HTTP response

Hacker

interceptHTTPResponse

GBForm :

PHPForm
C : Client

PT :

ProxyTool

configureAutoDelete

GBEntriesInHTTPResponse

display(allGBEntries)

PTdisplay(noGBEntries)

0.2

Moderate

sd Sign guest book

GBDatabase:

MySQL

signGB(name,msg)

GBForm :

PHPForm
C : Client

submit(name,msg)

true

selectAllGBEntries()

allGBEntries

ref Sign guest book

[50, 150>:1y

[10, 30>:1y

(a)

(b)

(c)

(d)

(e)

Figure 2. Examples of CORAL diagrams.

behavior or unexpected input data. Figure 3d shows the
corresponding translation as: “The altered message sub-
mit(name,XSSscript) is transmitted from GBForm to GB-
Database”. The translation shows that we have a message
that is transmitted between two lifelines (concepts from
UML interactions), and we have added that the message
is altered (risk-related concept from CORAL).

B. The CORAL semantics of the constructs inherited from
UML interactions must be consistent with their semantics in
the UML standard

The CORAL constructs inherited from UML interactions
are messages and the interaction operators: seq, ref, alt, par
and loop. The interaction operator weak sequencing (seq)
is defined and related to CORAL in Section III.

According to UML [5], a message defines a particular
communication between lifelines of an interaction. The sig-
nature of a message is the content specification of that very

message. A message also defines the lifeline from which it is
sent (i.e., the transmitter lifeline) and the lifeline receiving it
(i.e., the receiver lifeline). Thus, a message may be defined
as the triple (id, t, r), where id represents the signature,
t represents the transmitter lifeline, and r represents the
receiver lifeline. We define a message in a similar manner.
However, we also distinguish between the category of a
message, i.e., whether it is manipulative, non-manipulative,
or an unwanted incident, as explained in Section III. As
we can see from the translations in Figure 3, the English
prose of messages are generated according to their category,
and contain information about the message signature, the
lifeline transmitting the message and the lifeline receiving
the message.

According to UML [5], an interaction-use (ref) refers to
an interaction. The interaction-use is shorthand for copying
the contents of the referred interaction where the interaction-

Schematic translation of CORAL diagram: Cross-site request forgery attack on guest book.

 [

The new message forgedURLReplacingMsgWithXSSscript is transmitted from the deliberate threat Hacker to C.
]

 Weakly sequenced by [

The new message executeForgedURL is transmitted from C to C.
]

 Weakly sequenced by [

The altered message signGB(name,XSSscript) is transmitted from C to GBForm.
]

 Weakly sequenced by [

Either [
Refer to interaction: Validate msg parameter then submit entry.

]

or [
Refer to interaction: Do not validate msg parameter then submit entry.

]
]

Schematic translation of CORAL diagram: Man-in-the-middle attack on guest book.

 [

 Refer to interaction: Sign guest book.
]

 Weakly sequenced by [

The new message «create» is transmitted from the deliberate threat Hacker to PT.
]

 Weakly sequenced by [

The new message configureAutoDeleteGBEntriesInHTTPResponse is transmitted from

the deliberate threat Hacker to PT.
]

 Weakly sequenced by [

The new message interceptGBFormHTTPResponse is transmitted from the deliberate threat Hacker to PT.
]

 Weakly sequenced by [

The new message interceptHTTPResponce is transmitted from PT to GBForm. The reception

of the new message interceptHTTPResponce by GBForm from PT occurs with frequency [50, 150>:1y.
]

 Weakly sequenced by [

The altered message display(allGBEntries) is transmitted from GBForm to PT. The transmission of the
altered message display(allGBEntries) from GBForm leads to its reception by PT with conditional ratio 0.2.

]

 Weakly sequenced by [

 The new message deleteAllGBEntries is transmitted from PT to PT.
]

 Weakly sequenced by [

The unwanted incident (UI2) GB entries deleted by intercepting HTTP response occurring on PT impacts asset
Availability of GB Entries with frequency [10, 30>:1y. The unwanted incident (UI2) GB entries deleted by

intercepting HTTP response occurring on PT impacts asset Availability of GB Entries with consequence Moderate.
]

 Weakly sequenced by [

 The new message PTdisplay(noGBEntries) is transmitted from PT to C.
]

(a)

(b)

Schematic translation of CORAL diagram:

Do not validate msg parameter then submit entry

 [

The altered message submit(name,XSSscript) is transmitted from

GBForm to GBDatabase.
]

 Weakly sequenced by [

The message true is transmitted from GBDatabase to GBForm.
]

 Weakly sequenced by [

The unwanted incident (UI1) XSS script injected in database

occurring on GBDatabase impacts asset Integrity of GB Source Code.
]

(e)

(c)

(d)

Schematic translation of CORAL diagram:

Validate msg parameter then submit entry.

 [

The message validateMsgParameter is transmitted from GBForm

to GBForm.
]

 Weakly sequenced by [

The message submit(name,SanitizedXSSscript) is transmitted from

GBForm to GBDatabase.
]

 Weakly sequenced by [

 The message true is transmitted from GBDatabase to GBForm.
]

Schematic translation of CORAL diagram: Sign guest book

 [

 The message signGB(name,msg) is transmitted from C to GBForm.
]

 Weakly sequenced by [

 The message submit(name,msg) is transmitted from GBForm

to GBDatabase.
]

 Weakly sequenced by [

 The message true is transmitted from GBDatabase to GBForm.
]

 Weakly sequenced by [

 The message selectAllGBEntries() is transmitted from GBForm

to GBDatabase.
]

 Weakly sequenced by [

 The message allGBEntries is transmitted from GBDatabase

to GBForm.
]

Figure 3. Schematic translation of the corresponding CORAL diagrams in Figure 2 into English prose.

use is. Figure 2b shows an example of an interaction-use
named Sign guest book. The interaction referred to by this
interaction-use is shown in Figure 2e. We use the term ‘refer
to interaction’ to denote an interaction-use, as shown in the
translations in Figures 3a and 3b.

According to UML [5], the interaction operator potential
alternatives (alt) designates that the operands represent a
choice of behavior. UML requires that the chosen operand
must have an explicit or implicit guard expression that
evaluates to true. An implicit true guard is implied if the
operand has no explicit guard. In CORAL, we currently
allow only for the usage of implicit true guards. However,
the syntax and semantics of CORAL is easily extendable
to support explicit guards as well. As shown in Figure 3a,
we use the term ‘either’ in front of the first operand of an
alt operator, and then the term ‘or’ between each subsequent
operand to reflect the disjunctive behavior of the alt operator.

According to UML [5], the interaction operator parallel
execution (par) designates a parallel merge between the
behaviors of the operands. A parallel merge defines a set
of traces that describes all the ways that events of the
operands may be interleaved without obstructing the order of
the events within the operands. We use the term ‘parallelly
merged with’ between each operand to denote a parallel
merge between the behaviors of the operands.

C. The complexity of the resulting English prose must scale
linearly with the complexity of CORAL diagrams in terms
of size

As illustrated by Figure 2 and Figure 3, the definition
of the translation function in Section III-B ensures that
the structure of its output mirrors the input diagram, and
that there is a linear relationship between the size of input
and output. A formal argument that this would hold for

any diagram d could be given based on induction over the
syntactical structure of d.

V. RELATED WORK

To the best of our knowledge, no risk-driven testing
approach provides a similar schematic generation of nat-
ural language semantics as presented in this paper. Most
approaches use risk tables/matrices or risk annotated models
as a means for documenting, communicating and analyzing
risks. However, some approaches provide guidelines for
documenting risk-related information in natural-language
semantics. Redmill [11] provides a set of guide words
with associated definitions, which may be used as a basis
for documenting risk-related information. Gleirscher [12]
provides a similar approach and makes use of a safety
analysis pattern for describing informal test cases. Nazier
and Bauer [13] provide a template for documenting safety-
risk information, while Kumar et al. [14] provide a template
for documenting risk-related information within the domain
of aspect oriented programming. Souza et al. [15] use a
taxonomy based questionnaire for documenting risk-related
information.

VI. CONCLUSION

CORAL is a risk analysis language based on UML
interactions, and it is specifically developed to support
software testers in a risk-driven testing process. CORAL
extends UML interactions with constructs for representing
risk-related information in sequence diagrams.

In this paper, we presented a structured approach to
generate the semantics of CORAL diagrams in terms of
English prose. The CORAL semantics is developed to help
testers to clearly and consistently document, communicate
and analyze risks in a risk-driven testing process. In partic-
ular, it helps testers to: (1) obtain a correct understanding
of CORAL diagrams, (2) analyze risks posed on the system
under test in a clear and consistent manner, and (3) clearly
communicate risks posed on the system under test.

We argue that the resulting English prose is compre-
hensible by testers because: (1) it preserves the structure
of CORAL diagrams, (2) it keeps the user-defined text in
CORAL diagrams unchanged, and (3) it uses concepts that
are known to software testers. In addition, the resulting
English prose of the constructs inherited from UML in-
teractions is consistent with their semantics in the UML
standard [5]. Moreover, the complexity of the resulting
English prose scales linearly with the complexity of the
CORAL diagrams in terms of size.

ACKNOWLEDGMENT

This work has been conducted as a part of the
DIAMONDS project (201579/S10) funded by the Research
Council of Norway, the NESSoS network of excellence
(256980) and the RASEN project (316853) funded by

the European Commission within the 7th Framework Pro-
gramme, as well as the CONCERTO project funded by the
ARTEMIS Joint Undertaking (333053) and the Research
Council of Norway (232059).

REFERENCES

[1] G. Erdogan, A. Refsdal, and K. Stølen, “A Systematic Method
for Risk-Driven Test Case Design Using Annotated Sequence
Diagrams,” in Proc. 1st International Workshop on Risk
Assessment and Risk-driven Testing (RISK’13). Springer,
2014, pp. 93–108.

[2] ——, “A Systematic Method for Risk-Driven Test Case
Design Using Annotated Sequence Diagrams,” SINTEF In-
formation and Communication Technology, Technical Report
A26036, 2014.

[3] M. S. Lund, B. Solhaug, and K. Stølen, Model-Driven Risk
Analysis: The CORAS Approach. Springer, 2011.

[4] B. Solhaug and K. Stølen, “The CORAS Language - Why it
is designed the way it is,” in Proc. 11th International Con-
ference on Structural Safety and Reliability (ICOSSAR’13).
CRC Press, 2013, pp. 3155–3162.

[5] Unified Modeling Language (UML), superstructure, version
2.4.1, Object Management Group, 2011, OMG Document
Number: formal/2011-08-06.

[6] ISO/IEC 14977:1996(E), Information technology – Syntactic
metalanguage – Extended BNF, first edition, International
Organization for Standardization, 1996.

[7] G. Erdogan, A. Refsdal, and K. Stølen, “Schematic Genera-
tion of English-prose Semantics for a Risk Analysis Language
Based on UML Interactions,” SINTEF Information and Com-
munication Technology, Technical Report (to appear), 2014.

[8] “Damn Vulnerable Web Application,” accessed September
16, 2014. [Online]. Available: http://www.dvwa.co.uk/

[9] A. D. Neto, R. Subramanyan, M. Vieira, and G. Travassos, “A
Survey on Model-based Testing Approaches: A Systematic
Review,” in Proc. 1st ACM International Workshop on Em-
pirical Assessment of Software Engineering Languages and
Technologies (WEASELTech’07). ACM, 2007, pp. 31–36.

[10] P. Oehlert, “Violating assumptions with fuzzing,” Security
Privacy, IEEE, vol. 3, no. 2, pp. 58–62, 2005.

[11] F. Redmill, “Theory and practice of risk-based testing,” Soft-
ware Testing, Verification and Reliability, vol. 15, no. 1, pp.
3–20, 2005.

[12] M. Gleirscher, “Hazard-based selection of test cases,” in Proc.
6th International Workshop on Automation of Software Test
(AST’11). ACM, 2011, pp. 64–70.

[13] R. Nazier and T. Bauer, “Automated risk-based testing by
integrating safety analysis information into system behavior
models,” in Proc. 23rd International Symposium on Software
Reliability Engineering Workshops (ISSREW’12). IEEE,
2012, pp. 213–218.

[14] N. Kumar, D. Sosale, S. N. Konuganti, and A. Rathi,
“Enabling the adoption of aspects-testing aspects: A risk
model, fault model and patterns,” in Proc. 8th ACM Interna-
tional Conference on Aspect-Oriented Software Development
(AOSD’09). ACM, 2009, pp. 197–206.

[15] E. Souza, C. Gusmão, and J. Venâncio, “Risk-based testing:
A case study,” in Proc. 7th International Conference on
Information Technology: New Generations (ITNG’10). IEEE,
2010, pp. 1032–1037.

