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Abstract—We present a method for developing executable
algorithms for quantitative cyber-risk assessment. Exploiting
techniques from security risk modeling and actuarial approaches,
the method pragmatically combines use of available empirical
data and expert judgments. The input to the algorithms are
indicators providing information about the target of analysis,
such as suspicious events observed in the network. Automated
execution of the algorithms facilitates continuous assessment.

I. INTRODUCTION

Managers and decision makers need to know the cyber-
risk they face in order to decide how to deal with such
risks. Quantified estimates allow risks to be weighted against
the cost of available countermeasures. However, providing
quantified assessments of cyber-risk cost is difficult, due to
factors such as the technical and changing nature of cyber-
risks, the variations in potential cost resulting from incidents,
and lack of suitable empirical data.

The contribution of this paper is a method for developing
executable algorithms for quantitative assessment of expected
cyber-risk cost. Our aim is to provide a method that documents
risk models in a comprehensive format, is feasible without
requiring prohibitive effort and facilitates exploitation of avail-
able empirical data sources. The intended users of the method
are professionals interested in developing new algorithms, such
as consultants or dedicated cyber-risk experts in larger orga-
nizations. The final end users of the algorithms developed by
the method will typically include decision makers responsible
for selecting countermeasures to implement.

In Section II, we give an overview of the method, which
consists of four steps. In the next four sections, we describe
each step, illustrated by a running example. Section VII relates
our work to other approaches, while Section VIII concludes.

II. OVERVIEW OF THE METHOD

Fig. 1 shows an overview of the method. We assume that
the purpose, scope and target of analysis have already been
established, and that risk levels will be defined in terms of
frequency and monetary cost of incidents. Roughly speaking,
this means that the context establishment of the risk analysis
process has been performed [1]. The white document symbols
represent inputs and outputs to the steps. Those attached to
the arrow from one step to another represent output from the
preceding step that serve as input to the next step.
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Fig. 1. Overview of method for developing cyber-risk assessment algorithms

In Step 1, we develop a graphical risk model that documents
the assets, risks, threats and vulnerabilities. We also identify
indicators that capture dynamic factors assumed to influence
the risk level. Each indicator defines an input to the algorithm.
No estimates of likelihood or consequence values are made at
this point; such estimates are represented by variables. In Step
2, we define the algorithm structure based on the risk model. In
Step 3, we exploit available empirical data sources to complete
the algorithm by assigning estimates to the variables identified
in Step 1 and defining the impact of the indicator values on the
assessments. Finally, in Step 4 we validate the algorithm by
executing it on selected sets of inputs and checking whether
the outputs are plausible with respect to existing empirical data
and expert judgments.

III. STEP 1: CYBER-RISK MODELING

Step 1 consists of two sub-steps. In Step 1.1, the user
creates a risk model and defines variables for the likelihood
and consequence values to be estimated in Step 3. In Step 1.2,
the user identifies indicators with respect to the risk model to
support the risk estimation. The output of this step is a risk
model with variables and indicators, which is used as basis
for building the structure of the risk assessment algorithm in
Step 2.

A. Step 1.1: Risk modeling

There are many different kinds of modeling languages for
describing risks. In our method, we use CORAS [2], which
is a comprehensive framework for model-driven risk analysis
consisting of a language, a tool, and a method. Fig. 2 gives an
overview of the CORAS notation. Threats, threat scenarios,
unwanted incidents, assets, relations and vulnerabilities are
collectively used to create CORAS risk models, which docu-
ment risks as well as events and circumstances that can cause
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Fig. 2. Overview of the CORAS notation (cp=conditional probability).

risks. Notice that the different relations are used to connect
different nodes: the initiates relation goes from a threat to a
threat scenario or an unwanted incident. The leads to relation
goes from a threat scenario or an unwanted incident to a threat
scenario or an unwanted incident. The impacts relation goes
from an unwanted incident to an asset.

To support risk estimation, CORAS uses likelihood values,
conditional probabilities, and consequence values on certain
nodes and relations as illustrated in Fig. 2. The indicator
construct, which is not part of the standard CORAS notation,
is introduced in our approach to capture dynamic factors that
support risk estimation. Indicators are discussed in detail in
Section III-B.

Fig. 3 shows a CORAS risk model of a session hijacking
attack in the context of web-applications. This risk model is
one of 10 risk models we developed in the WISER project [3].
These risk models were not developed for a particular target
of analysis, but primarily intended for an arbitrary European
SME. We will use the risk model in Fig. 3 as a running
example throughout the rest of this paper. The model describes
an Hacker carrying out session fixation or accesses, intercepts,
or modifies HTTP cookies in order to hijack a session. The
risk is that a session is hijacked, which has an impact on
confidentiality.

Having created the risk model, the user needs to define
identifiers for the assets, threat scenarios, and unwanted inci-
dents, as well as variables for the likelihood values, conditional
probabilities, and the consequence values. This is carried out
using the naming convention in Table I. For example, we see
that the two threat scenarios in Fig. 3 are identified by S1
and S2, respectively, and that their corresponding likelihood
variables are defined as l S1 and l S2, respectively.

B. Step 1.2: Identifying indicators

In order to identify dynamic factors that influence the vari-
ables of the risk model, we identify so-called indicators and
attach them to the relevant risk-model element. An indicator
is a piece of information that is relevant for assessing the risk
level. An indicator may be assigned to any risk-model element.

For example, consider the vulnerability Improper manage-
ment of session time and state in Fig. 3. A potential indicator
for this vulnerability could be that the target under analysis

TABLE I
NAMING CONVENTIONS FOR DEFINING LIKELIHOOD AND CONSEQUENCE

VARIABLES. THE LETTERS x AND y REPRESENT INTEGERS.

Name Meaning
Ax Asset x
Sx Scenario x (“S” means threat scenario)
Ux Incident x (“U” means unwanted incident)
l Ux Likelihood of Ux
l Sx Likelihood of Sx
c Ux Ay Consequence of Ux for Ay
cp Sx to Sy Conditional probability of Sx leading to Sy
cp Sx to Uy Conditional probability of Sx leading to Uy

treats invalid sessions as valid. If we gather information indi-
cating that there are invalid sessions treated as valid sessions,
we may argue that the target under analysis is most likely
vulnerable to Improper management of session time and state.
The indicators supporting likelihood estimation are defined as
yes/no questions, for example, Are any invalid sessions treated
as valid?

Indicator values may be obtained by different means. For
example, in some cases it is sufficient to base the indicator
value on expert knowledge provided by a representative of
the target under analysis, while in other situations it may
be necessary to implement sensors at the network layer in
order to derive indicator values based on continuous network
monitoring. We differentiate between four types of indicators.

• Business configuration (blue): Indicator values are ob-
tained by asking business related questions. The indicator
values are thus based on expert knowledge.

• Test (green): Indicator values are obtained by carrying
out software tests. The indicator values are thus based on
test results.

• Network-layer monitoring (yellow): Indicator values are
obtained by monitoring the network layer.

• Application-layer monitoring (red): Indicator values are
obtained by monitoring the application layer.

Fig. 3 illustrates all except network-layer indicators. The
reader is referred to [4] for a set of guiding questions to help
identify indicators.

In summary, the output of Step 1 is a CORAS risk model
capturing risks, likelihood and consequence variables, as well
as indicators for collecting relevant information to support the
risk estimation.

IV. STEP 2: ALGORITHM STRUCTURE DEFINITION

In Step 2, we define the part of the algorithm that can
be established from the CORAS diagram, without performing
any estimation of likelihoods, consequences or impact from
indicators. The result is an algorithm structure (skeleton),
which will be extended to a complete algorithm in Step 3.

We follow an actuarial approach, where the likelihood
(frequency) of unwanted incidents and the consequence (eco-
nomic loss) are separately modeled through the probabilistic
framework of Bayesian Networks (BN) [5].
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Fig. 3. Cyber-risk model Session hijacking expressed in CORAS.

The algorithm is implemented using the R programming
language [6] for statistical computing and the HydeNet pack-
age [7] which provides a powerful interface to construct BNs
and perform inference. The package handles hybrid BNs [8],
that is networks where the random variables are not bound
to be discrete or (conditionally) Gaussian. The underlying
calculations are performed by MCMC (Markov-Chain-Monte-
Carlo) using the ‘rjags’ package.

Understanding the underlying principles of our approach
should not require prior knowledge about the R programming
language. Therefore we will not show the actual R code.
For detailed guidelines on how to create an R script from
a CORAS model, we refer to [4].

A. Building a BN skeleton

In our approach, the frequency of unwanted incidents is
calculated following the logic of the CORAS model. The fist
step is to define a BN skeleton based on the structure of the
CORAS model. Fig. 4 shows the BN skeleton reflecting the
CORAS model in Fig. 3. A risk captured in a CORAS diagram
(by an impacts relation from an unwanted incident to an asset)
is represented by a childless node in the BN (R1 in Fig. 4).
The overall goal is to compute a risk level for risk nodes, as
a function of indicators. Any risk node has two parent nodes:
one representing the frequency of the unwanted incident and
another representing the consequence for the asset. In our
example, the risk node R1 has the parent nodes l U1 and
c U1 A1, representing the frequency of the incident U1 and
its consequence for the asset A1, respectively.

The frequency node of an unwanted incident has a parent
node for each incoming leads to relation to the incident in

Fig. 4. BN skeleton for CORAS model in Fig. 3.

the CORAS diagram, representing the likelihood contribution
from each incoming relation. For example, node l U1 in Fig. 4
has two parent nodes: l U1S1 and l U1S2.

The likelihood contribution from each leads to relation
depends on the likelihood of its threat scenario (the source
node) and the conditional probability that an occurrence of this
threat scenario will lead to the unwanted incident. Therefore,
the node l U1S1 depends on the root nodes l S1 (likelihood
of scenario S1) and cp S1 to U1 (the conditional probability
that an occurrence of S1 will lead to U1). Similarly l U1S2
depends on l S2 and cp S2 to U1.

Notice that l U1S1 and l U1S2 represent internal nodes in
the BN structure that do not occur as variables in the CORAS
diagram. Moreover, the indicators, which represent the input
to the final algorithm, are not represented in the BN structure.
They will be used to compute the values for the parentless
nodes, as further explained in Section V.



B. Nodes representing frequency of unwanted incidents

For each unwanted incident in a CORAS model, a corre-
sponding frequency node is included in the BN structure (node
l U1 in Fig. 4). The probability distribution assigned to l U1
is defined as follows:

l U1 = l U1S1 + l U1S2
= l S1 · cp S1 to U1 + l S2 · cp S2 to U1.

Notice that node l U1 is deterministic, since its value at each
step of the simulation is calculated by a formula from the
values of its parent nodes.

The likelihoods of the parentless ancestor nodes of l U1
(l S1, l S2, cp S1 to U1 and cp S2 to U1 in Fig. 4) are
represented by uniform distributions whose extremes depend
on the indicators affecting the nodes. Uniform distributions
were chosen to ease the estimate elicitation. CORAS uses
intervals for the same reason. The specific functions from
indicator values to the extremes of the distributions are defined
as a part of the estimation in Step 3.

C. Nodes representing consequence of incidents

Consequence nodes model the consequence, in terms of
economic loss, generated by a unwanted incident (node
c U1 to A1 in Fig. 4).

The main problem in identifying suitable parametric fam-
ilies of probability distributions to model the consequence
(severity) of the losses generated by cyber-risk incidents is that
there is very little historical data regarding such losses, which
prevents use of standard fitting algorithms such as maximum
likelihood.

The following distribution families are currently used in
actuarial practice to model losses: lognormal, gamma, Weibull
and other heavy-tailed (mixtures of) distributions [9]. The
above families all contain at least two parameters; in general,
the parameters are estimated from data using methods such
as the maximum likelihood or the method of moments, see
e.g. [10], [11]. This, however, requires a sufficient number
of datapoints; as a rule of thumb, 50-100 datapoints seems
a reasonable minimum. In scenario analysis performed for
operational risk management, however, a different approach
is followed. For a given risk, a two-parameter distribution is
chosen for the consequence (e.g. the lognormal) and experts
are requested to provide a typical case loss and a worst
case loss. This provides the minimal amount of information
required to describe the main features of the distribution, that
is a value which is experienced frequently and a value which
is extreme (experienced rarely). Usually, the typical case loss
is identified with a location index, such as the median or the
mode of the distribution (the mean is often considered a less
stable location index, since it is influenced by the presence
of outliers). The worst case loss is identified with a suitably
large quantile of the distribution. This gives a nonlinear system
of two equations in two variables (the parameters of the
distribution), which can be solved by a Newton-like numerical
approximation method [12], [13], [14].

Typically, in operational risk loss modelling one assigns a
relatively small value to the typical case, while the worst case
might be significantly larger. This entails that the ensuing dis-
tribution is characterised by strong asymmetry (skew) towards
the upper right tail. This characteristic is in fact often observed
for operational loss data.

We adopted the lognormal distribution for modeling conse-
quence nodes. In modelling loss data, the lognormal distribu-
tion is observed to provide good fits in many cases; for this
reason it is often used for modelling severity in operational
risk and particularly for the scenario analysis component, see
e.g. [11], [15].

As explained above, the median is typically considered
in risk management, as it provides a more robust location
index than the mean. To estimate the lognormal parameters,
we assume one knows an estimate for the median (typical
case) and an estimate for a high percentile (worst case), say
corresponding to a probability level of p. This probability value
can be obtained in several ways [9]. For simplicity, based on
common practice, we adopted p = 99.9%.

Typical and worst case loss information can be established
by the user instantiating the algorithm for a specific context or
organization, who might have more information regarding the
context where these losses arise. Since this represents input
to the algorithm, it is captured by the business configuration
indicator attached to the impacts relation from U1 to A1 in
the CORAS diagram.

D. Nodes representing risk level

Risk level nodes model the yearly aggregate loss distribu-
tion, R1 in our current example. The probability distribution
assigned to R1 is defined as follows:

R1 = l U1 · c U1 to A1

In summary, the output of Step 2 is an R script representing
the structure of the risk assessment algorithm, containing the
rules for calculating the risk level of unwanted incidents,
and hence their frequency and consequence. The script is
incomplete at this point, as the probability distributions for
the parentless nodes in the BN have not been defined yet, this
is part of Step 3.

V. STEP 3: CYBER-RISK ESTIMATION

The purpose of Step 3 is to provide estimates for the
parameters of the probability distributions of the parentless
nodes of the BN skeleton defined in Step 2, as a function of
the indicator values in the risk model.

In our experience, the information basis needed to estimate
the parameters is not at hand or incomplete. Hence, we
advocate a pragmatic approach where estimation based on
expert judgment is complemented with factual statements.

In the running example, we need to estimate how often the
threats scenarios leading up to session hijacking occur (that
is, we need to provide numerical values for the parameters of
the distributions of nodes l S1, and l S2), how likely it is that
they succeed if initiated (provide values for the parameters of



nodes cp S1 to U1 and cp S2 to U1), and the consequence
of the risk (parameter values for node c U1 A1). Table II
reports the indicators involved in this example.

As explained in Section IV, the probability distribution of
node l U1 is calculated based on the other variables in the
model. However, in our experience, it is still a good idea to
provide estimates of upper and lower bounds for this variable
as well, as this can be useful later on in the validation step
(Step 4).

TABLE II
DEPENDENCE ON INDICATORS OF PARENTLESS NODES.

Node Related indicators
l S1 IN-34, IN-41, IN-35, IN-51, IN-52, IN-42.
l S2 IN-30, IN-41, IN-42, IN-52.
cp S1 to U1 IN-30, IN-34, IN-51, IN-35, IN-42, IN-52.
cp S2 to U1 IN-42, IN-52.

A. Step 3.1: Identifying data sources and facts

The purpose of Step 3.1 is to gain more information which
can be used to estimate parameter values for frequency and
consequence distributions, and to document this in a structured
manner.

Step 3.1 has two main activities: (I) Search for documents
(or other sources) that contain historical data and statistics of
relevance to the risk model; (II) Search through each document
and identify facts that can aid the estimation of likelihood
and consequence parameters, and document these in a table
containing the following information for each fact:

• Id: The identifier of the fact.
• Source: Reference to the a data source containing the fact.
• Basis: Description of the data basis from which the fact

is derived (if applicable).
• Fact: Textual description of the fact.
In the development of the 10 algorithms, we identified about

40 facts from 15 different data sources found via Google. Two
of these facts which are relevant to risk model of Fig. 3 are
shown in Table II. Notice that the data of Table II is not
specific to a particular organization. The reason for this is that
the risk model of our running example is intended to apply
for an arbitrary SME. However, company specific data could
also be used, if available.

B. Step 3.2: Estimating baseline likelihood and consequence
values

The purpose of Step 3.2 is to use the facts identified in
Step 3.1 to estimate baseline values for the parameters of the
likelihood and consequence distributions. The user documents
the results in a table which contains the following information
for each likelihood and consequence parameter in the risk
model:

• Name: The name of the parameter to be estimated in the
risk model.

• Value: The estimated value.
• Description: A description of the meaning of the param-

eter.

• Rationale: A justification of the estimated value based on
previously identified facts (if possible).

For the uniform distributions representing the likelihood of
threat scenarios one provides estimates for the minimum and
maximum times per year a threat scenario occurs. In Table
III, we give an example of an estimated baseline value for
one of the variables in the risk model in the running example.
The entries in the value column determine the parameters of
the probability distributions at the respective nodes of the
BN model. The values 0 and 25 for l S1 are the extremes
of a uniform distribution representing the number of attacks
per year. Notice that in the rationale column, we referred
to facts in Table II, but there are also many assumptions
based on expert judgment due to lack of data. For the nodes
representing consequence distributions, as explained in Section
IV, parameters are obtained by providing estimates for the
typical and worst case cost of an unwanted incident.

C. Step 3.3: Defining likelihood functions

The purpose of this step is to define the likelihood functions.
These are documented in a table where the columns contain the
indicator names and the likelihood parameter to be estimated,
and the rows represent different indicator value vectors. Each
row should also contain an explanation/justification of the
estimate (see Table V for an example).

It is often difficult to find statistics and historical data which
can be used to estimate precisely how the indicator values
will affect the likelihood parameters. We therefore propose
the following heuristic: Identify the indicator value vector
in which all indicators are triggered (meaning that they are
assigned the value which would increase the likelihood value
the most) and estimate the likelihood for this case. Then
identify the indicator which will affect the estimate the most,
and estimate the value for the case where this indicator is
triggered, regardless of whether or not the other indicators are
triggered. Then do the same for the indicator which affects
the estimate second most, and proceed in this way until we
have reached the case where no indicator is triggered. Table V
gives an example of the definition of an indicator function1.
Here T stands for true, F stands for false, and * stands for
ignore, i.e. either true or false.

After all the likelihood functions have been defined and
documented in tables, the R script encoding the BN structure
(developed in Step 2) is updated with the new likelihood
function definitions. This updated R script, constituting the
cyber-risk assessment algorithm, is the output of Step 3.

VI. STEP 4: VALIDATION

The purpose of Step 4 is to validate the algorithm produced
in Step 3. Initially, a validation team is assembled and an
analysis leader is selected among them. The team should
consist of domain experts, i.e. persons that have knowledge
about the risks and threats of the risk model. The validation

1Due to space limitation we only show two rows of the table.



TABLE III
EXAMPLE OF FACTS

ID Source Basis Fact
F1 UK Cyber Security

Breaches Survey
2016, p.34 and 35
[16].

Statistics collected
from 1008 compa-
nies/organizations

25% of UK businesses experienced one or more cyber security breaches within a 12
month period. Among companies/organizations who had any breach or attack (428 out
of 1008) 13% of the attacks were related to ”Access to computers, networks or services
without permission and 8% of the attacks were relate to ”Personal information stolen”

F2 OWASP Top 10, Ta-
ble on p. 4 [17].

N/A Broken Authentication and Session Management is number two on the OWASP list of
top ten most critical web application risks.

TABLE IV
EXAMPLE OF BASELINE ESTIMATES

Name Value Description Rationale
l S1 Occurrences

per year: [0,
25]

The
likelihood
that session
fixation
attack will
be initiated

Due to F2, we know that Broken Authentication and Session Management is rated as the second most
critical web-application risk by OWASP. Furthermore, there are automated tools for checking whether a
web-application is vulnerable to this kind of attack. We therefore believe that the attack may be fairly
common against web-pages that may seem vulnerable to the attack, but less common otherwise. However,
we believe that the attack is not extremely common (i.e. not much more than twice each month), since
it likely that the attack has to be tailored to the web-application (not completely automated).

TABLE V
EXAMPLE OF INDICATOR FUNCTION DEFINITION FOR PARAMETER L S1 WHOSE LIKELIHOOD IS ESTIMATED BY OCCURRENCES PER YEAR

ID IN-
34

IN-
41

IN-
35

IN-
51

IN-
52

IN-
42

l S1 Rationale

I1 F T T T T T [15,30] In this case, there is a very strong possibility that a successful attack has
occurred or is occurring. The baseline estimate of l S1 ([0,25]), particularly
the lower bound, has therefore been increased.

I2 * * * * * T [12,25] In this case, there is a strong possibility that a successful attack has occurred or
is occurring, but probably not as high as in case I1. The estimate has therefore
been slightly lowered.

team should also include people that were not involved in the
definition of the algorithm to reduce social biases.

Step 4 has two sub-steps. In Step 4.1, the validation leader
selects a set of scenarios for validation. In Step 4.2 each of
these scenarios is validated by the validation team.

A. Step 4.1: Selecting validation scenarios

A scenario is a set of indicator value vectors. The purpose of
Step 4.1 is to select a subset of all possible scenarios that sat-
isfy a given coverage criterion. The scenarios are documented
in the table containing the indicators and a description of the
scenarios.

There are seven indicators in the risk model of our running
example. This gives 128 possible indicator value vectors.
Validating all these may be infeasible. We therefore chose
the following two criteria: (1) cover the borderline scenarios
(yielding the minimum and maximum risk values), and (2)
cover each path in the risk model, meaning that for each path
p (from the threat to the unwanted incident) in the risk model,
there must be a scenario where one or more indicators along
the path is triggered and the indicators for all other paths are
not triggered unless these indicators also affect path p.

Table VI gives an example of five scenarios that together
satisfy the coverage criteria. Note that the indicators IN-42
and IN-52 affect the overall risk value so strongly that they
override the contribution of the other indicators. We have
therefore chosen not to let these indicators be triggered in

TABLE VI
EXAMPLE OF SELECTED SCENARIOS

ID IN-
30

IN-
34

IN-
52

IN-
35

IN-
41

IN-
42

IN-
51

Description

C1 T T F F F F F No indicators triggered.
C2 F F F T T F T Top path indicators trig-

gered except IN-42 and
IN-52.

C3 F T F F T F F Bottom path indicators
triggered IN-42 and IN-
52.

C4 T T T F F T F Indicators IN-42 and IN-
52 triggered.

C5 F F T T T T T All indicators triggered.

scenario C2 and C3 to better show the difference between
these scenarios w.r.t the overall risk value.

B. Step 4.2: Running the validation scenarios

The purpose of this sub-step is to validate the scenarios
selected in Step 4.2. That is, checking whether the output
of the algorithm under each of these scenarios is reasonable.
This sub-step is carried out in a meeting by the validation
team. There are many ways in which the algorithm can be
validated. In the following we describe how we did it during
the development of 10 different algorithms.

Before each validation meeting, the validation leader ex-
ecuted the algorithm for each scenario to be validated to
produce plots/charts showing the



Fig. 5. Validation scenario 2

• median (typical) case and the 5% and 95% percentiles of
the frequency of the risks in the risk model;

• shape of the frequency distribution for the risks;
• median (typical), mean, and 90% percentile of the risk

values of the risks in the model.

During these meetings, the validation leader presented the risk
model to the validation team, before showing the plots/charts
to the validation team for each scenario. The validation team
then checked whether the values were roughly correct, i.e.
intuitive and/or reasonable.

As an example, the plots produced for scenario 2 are shown
in Fig. 5. The top panel shows a boxplot and a histogram for
the simulated distribution of the unwanted incident session
hijacking (l U1). The typical frequency (median) is 0.44 times
per year (i.e. roughly once every second year) and there is a
95% probability that the frequency is less than 0.81 times per
year. The histogram shows that the shape of the frequency
distribution is slightly skewed to the left. The bottom panel
shows a boxplot for the simulated risk value of the unwanted
incident session hijacking (R1) is shown. Here we see that
the typical (median) expected loss per year is 303 Euros per
year, that the mean is 1807 Euros per year, and that there is
90% probability that the expected loss is below 3421 Euros
per year.

VII. RELATED WORK

Unlike the method presented here, most risk assessment
approaches do not support automated continuous assessment.
Neither do they combine techniques from security risk analysis
with actuarial techniques to provide quantitative estimates of
cyber-risks. However, there are some approaches that share
similarities with parts of our approach. In the following, we
give an overview.

Refsdal et al. [18] present a model-based approach to
make use of measurable indicators in order to obtain a risk
picture that is continuously or periodically updated. However,
they offer no support for exploiting empirical data sources,
and little guidance on consequence assessment. The approach
proposed by Ligaarden et al. [19] focuses on the security
of dynamic services in the more complex setting of systems
of systems. Krautsevich et al. [20] propose an approach to
make use of run-time attribute monitoring to support risk-
based enforcement of usage control (UCON) policies.

Saripalli et al. [21] propose a quantitative impact and risk
assessment framework specialized for cloud security. Similar
to our approach, they also make use of existing data sources, in
particular data from the SANS institute, to support probability
estimation of risks. However, they do not collect and organize
existing data in a systematic approach as in our method (see
Section V). Similar to our approach, Saripalli et al. [21]
carry out a validation step to validate the estimated impact
(consequence) and probability (likelihood) values. This is done
by carrying out the Wide-band Delphi method [22], which is
a forecasting technique used to collect expert opinion in an
objective way, and arrive at consensus conclusion based on
that. We believe a similar technique could be used during the
validation step of our method, although this has not been done.

Poolsappasit et al. [23] propose an approach for dynamic
security risk management using Bayesian Attack Graphs
(BAGs). This approach is dynamic in the sense that it allows
system administrators to tweak the probability of events cap-
tured by a BAG in order to see how this propagates in the
complete risk picture. While their approach only facilitates
manual update of probability of events, our method facilitates
both manual as well as automatic update of the likelihood of
events. The manual update in our method is based on input
provided by representatives of the target under analysis, while
the automatic update is based on input collected from tests,
application-layer monitoring, and network-layer monitoring.
Moreover, similar to our approach, Poolsappasit et al. [23]
make use of estimates from statistical data sources (in partic-
ular data from the SANS institute).

As argued by Neil et al. [5] BNs provide a flexible and
attractive solution to the problem of modeling (operational)
risk. In particular, BNs enable an analyst to combine quantita-
tive information (e.g. available historical data) with qualitative
information (e.g. subjective judgments) regarding the loss-
generating processes. In the context of cyber-risk, BNs have
been used for a variety of purposes, such as to model attack
graphs or loss event frequencies [23], [24].

The actuarial component of our framework is based on the
Loss Distribution Approach (LDA), which is typically used
to model operational risk and its insurability [9], provided
that a sufficient amount of data is available. In the LDA,
the temporal occurrence of the losses is frequently modeled
by a Poisson process, while various families of distributions
(Gamma, Generalized Pareto, Log-normal, etc.) might be used
to model the severity of the losses.

Eling et al. [25] and Biener et al. [26] study whether



models which prove to be useful for operational risk can
also be applied to an analysis of cyber-risk. They conclude
that the LDA approach is suitable to model cyber-risk and
that it provides useful insights regarding, e.g., the distinct
characteristics of cyber-risk with respect to operational risk in
general. Regarding the insurability of cyber-risk, they conclude
that one of the main problems for pricing cyber-risk insurance
is the scarcity of data, which induces high level of uncertainty
regarding potential losses. In order to mitigate data scarcity,
the model parameters in our approach are chosen based on a
combination of available historical data and expert judgment,
and hence provide a foundation for assessments which can be
reassessed for specific firms or if new data becomes available.

VIII. CONCLUSION

The method we have presented was developed in the
WISER project [3] and used to develop 10 algorithms, thereby
demonstrating its feasibility. We estimate that developing the
algorithm for the running example took roughly eight person
days in all. The algorithms are being deployed for testing in
three pilot organizations.

Guidelines for exploiting available empirical data sources
are a part of the method. Following these, we were able to
reach consensus in the validation team for the 10 algorithms,
and to document the reasoning and empirical foundation in
a structured way. Of course, we cannot claim that our work
proves that the output of the algorithms correctly reflect reality.

For capturing risk models, we chose CORAS because it has
been empirically shown that the language is intuitively simple
for stakeholders [27]. Apart from the indicators, we employed
the standard CORAS language [2]. Our experience confirmed
that the involved participants had little problems understanding
the models. Although we do not expect all stakeholders to
understand the R script that constitutes an algorithm, an overall
understanding can be ensured by presenting outputs from the
script for selected scenarios (as in Fig. 5), as well as the
corresponding CORAS model.

Cyber-risk assessment is still an immature field, often
based on subjective estimates without proper documentation
of the reasoning and factual foundation. We believe our work
represents a step towards better cyber-risk assessment.
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