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PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the
12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and
Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also
known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997.
So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim.
The conferences focuses on the application of CFD in the oil and gas industries, metal production,
mineral processing, power generation, chemicals and other process industries. In addition pragmatic
modelling concepts and bio-mechanical applications have become an important part of the
conference. The papers in this book demonstrate the current progress in applied CFD.

The conference papers undergo a review process involving two experts. Only papers accepted by the
reviewers are included in the proceedings. 108 contributions were presented at the conference
together with six keynote presentations. A majority of these contributions are presented by their
manuscript in this collection (a few were granted to present without an accompanying manuscript).

The organizing committee would like to thank everyone who has helped with review of manuscripts,
all those who helped to promote the conference and all authors who have submitted scientific
contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal

Production and NanoSim.
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ABSTRACT

Besides their huge technological importance, fluidized beds have
attracted a large amount of research because they are perfect play-
grounds to investigate highly dynamic particulate flows. Their over-
all behavior is determined by short-lasting particle collisions and the
interaction between solid and gas phase. Modern simulation tech-
niques that combine computational fluid dynamics (CFD) and dis-
crete element methods (DEM) are capable of describing their evo-
lution and provide detailed information on what is happening on the
particle scale. However, these approaches are limited by small time
steps and large numerical costs, which inhibits the investigation of
slower long-term processes like heat transfer or chemical conver-
sion.

In a recent study (Lichtenegger and Pirker, 2016), we have intro-
duced recurrence CFD (rCFD) as a way to decouple fast from slow
degrees of freedom in systems with recurring patterns: A conven-
tional simulation is carried out to capture such coherent structures.
Their re-appearance is characterized with recurrence plots that al-
low us to extrapolate their evolution far beyond the simulated time.
On top of these predicted flow fields, any passive or weakly coupled
process can then be investigated at fractions of the original compu-
tational costs.

Here, we present the application of rCFD to heat transfer in a lab-
scale fluidized bed. Initially hot particles are fluidized with cool
air and their temperature evolution is recorded. In comparison to
conventional CFD-DEM, we observe speed-up factors of about two
orders of magnitude at very good accuracy with regard to recent
measurements.

Keywords: recurrent patterns, fluidized beds, multiphase heat
and mass transfer, multiscale simulations .

NOMENCLATURE

Greek Symbols

o volume fraction, []

At time step, [s]

p  density, [kg/m’]

T deviatoric stress tensor, [k8/s2m]

Latin Symbols

C  specific heat capacity, [*/s2k].

D diameter, [m].

D random fluctuations parameter, [m%/s].
D dissimilarity norm, [].

dw  random step, [m].

f force density, [ks/s2m?].

F  force, [kem/s2].
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k thermal conductivity, [kem/sk].
m  mass, [kg].

0 heat transfer, [ks/s3m|.
R recurrence norm, [].
t time, [s].

T  temperature, [K].

u field velocity, [/s].
v point velocity, [m/s].
Sub/superscripts

f fluid.

n normal.

p particle.

p pressure.

rec  recurrence.

t tangential.

v volume.
INTRODUCTION

Modeling and simulation of fluidized beds is extremely de-
manding due to the various scales present. In the spatial do-
main, submillimeter particles are to be contrasted with the
geometric dimensions of industrial-size plants. In the tem-
poral domain, collisions set the lower limit of time scales at
small fractions of a second while heat transfer or chemical
conversion happens much more slowly.

Substantial progress has been made in up-scaling well-
established mesoscopic methods like CFD-DEM (Cundall
and Strack, 1979; Tsuji et al., 1993) or the two-fluid model
(TFM) (Anderson and Jackson, 1967; Gidaspow, 1994) to
macroscopic sizes. To allow for coarser meshes so that larger
systems can be described, sub-grid heterogeneities need to be
modeled appropriately (Heynderickx et al., 2004; Igci et al.,
2008; Igci and Sundaresan, 2011a,b; Milioli et al., 2013;
Ozel et al., 2013; Parmentier et al., 2012; Radl and Sun-
daresan, 2014; Schneiderbauer et al., 2013; Schneiderbauer
and Pirker, 2014; Wang et al., 2008, 2010; Yang et al., 2003;
Zhang and VanderHeyden, 2002).

Although industrial-size reactors may be simulated with
these methods, they are still bound to short-term investi-
gations. Here, we show a systematic way to circumvent
this problem and apply it to heat transfer in a lab-scale flu-
idized bed. In a recent paper, we introduced the idea of
rCFD (Lichtenegger and Pirker, 2016) to time-extrapolate
the behavior of systems dominated by reappearing structures.
We use fields from short-term simulations with conventional
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CFD-DEM or TFM to create long sequences of flow patterns
with the aid of recurrence plots (Eckmann et al., 1987).

On these sequences, we simulate heat transfer between gas
and solid particles as measured by Patil et al. (Patil et al.,
2015) and obtain speed-up factors of about two orders of
magnitude.

MODEL DESCRIPTION

In the following, we briefly summarize the CFD-DEM
method and refer the interested reader to extensive reviews
(Deen et al., 2007; Zhou et al., 2010). Afterwards, the rCFD
strategy is explained.

Fluid equations

If a secondary, particulate phase is present, the Navier Stokes
equations for a fluid with density pr and velocity field uy be-
come (Anderson and Jackson, 1967)

J
—ops+ V-ouprug =0

ot )

d
5 oPrur+ V-ogprusur = —0Vpr + 0V - T + Larag + fext-
)

Various correlations for particle-fluid drag fy:,; can be found
in literature, we use one obtained from lattice-Boltzmann
simulations (Beetstra et al., 2007).

To picture heat transfer, we assume incompressible condi-
tions and neglect contributions due to pressure variations to
the enthalpy transport equation from which we derive

P %afpfrf +CPV - osprusTy = V- oekTOVT + Opr. (3)
Both heat conduction V~(xfk1£eﬁ)VTf and particle-fluid heat
transfer Qp_f have to be modeled with empirical correlations
(Syamlal and Gidaspow, 1985; Gunn, 1978). Note that for
incompressible flows, Eq. (3) is decoupled from Eqgs. (1) and
(2) if density and viscosity are assumed to be temperature-
independent.

Particle equations

Solid particles are often modeled as perfect spheres which
interact with each other via contact forces ng P with a sur-

rounding fluid ng'ﬁ and possibly other sources Fl(eXt). For
each particle i with mass m;, Newton’s second law

miv; = ng'p) + Fl(p—f) + Fgext) @
determines its trajectory. The particle-particle force
R =L (1) +F)) ®)

J#i
on particle i due to all surrounding particles j consists of nor-
mal and tangential components which depend on the relative

positions and velocities of i and j and are often described via
spring-dashpot models (Cundall and Strack, 1979). The in-

teraction of particles with a fluid ng»f) is related to the drag
force and the pressure gradient in Eq. (2).

Each particle is assumed to have a homogeneously dis-
tributed temperature 7;. We neglect particle-particle heat ex-
change because of the extremely short collision times so that
only heat transfer from/to the fluid can change a particle’s

temperature via
miCP'T; = —keDNup (T; — Ti(r;)) (6)

in terms of the Nusselt number Nu,, (Gunn, 1978).
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Recurrence CFD

In a first step, we define norms for recurrence and dissimilar-
ity of states, respectively, e.g.

2

N
®)

R(it,/)=1— % /d3r(ocf(r,t) —oy(r, 1))
D(t,t') =1—R(t,t),

to assess the similarity of flow fields obtained from the solu-
tion of Egs. (1) — (4) at two times ¢’ < fiax.

2

A =max, [ droen) —ai(ed)”  ©
ensures normalization in Eq. (7). We stress that it is an as-
sumption that similarity according to Eq. (7) carries over to
other fields like the particle velocity u,. As a matter of fact,
it has to be checked a posteriori if they are sufficiently cor-
related to justify it.

Compared to binary recurrence statistics (Eckmann et al.,
1987), definition (7) allows for continuous degrees of simi-
larity, which is referred to as unthresholded recurrence statis-
tics (Marwan et al., 2007).

Given a large enough recurrence statistics R(z,1'), it is possi-
ble to extrapolate the underlying system’s behavior. Starting
at some given begin time ti(b), one randomly picks an interval
of length Az;. In this study, we used uniformly distributed
At; in the range of fiyax /20 and fmax /5. Within Ay, the corre-
sponding fields are taken as first elements of the desired se-
quence. Then, the most similar state to that at the end of the
interval tl-(e) = tl-(b) + At is identified with the aid of R(z,7") and
reconstruction is continued from there on. Again, an interval
length is chosen and its fields are appended to the sequence.
Obviously, this procedure can be repeated arbitrarily often.
Figure 2 shows an example of two states that could be iden-
tified with each other because of a sufficiently high degree of
similarity.

200 1
150
= 100
50 .
0 0
0 50 100 150 200
111

Figure 1: Degree of dissimilarity D(¢,#') for the first 5s of simula-
tion of a fluidized bed corresponding to 200 snapshots.
Besides the main diagonal with dissimilarity 0, a pat-
tern of local minima and maxima is clearly visible, cor-
responding to more or less similar states. Their align-
ment approximately parallel to the main diagonal indi-
cates pseudo-periodic behavior.
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Finally, any passive processes can now be simulated on these
fields in an extremely efficient way. The CFD-side prob-
lem of Egs. (1), (2) and (3) is replaced with the temperature
equation (3) alone. Other information like volume fraction,
density and velocity are obtained from the recurrence pro-
cess, only the temperature distribution is really calculated.
The motion of the particles is simplified with tracers that fol-
low the solid phase’s velocity field u$°® and undergo random
fluctuations dw;, viz.

dr; = u* (r;, 1)dt + /2D (x;,1)dw;.

The latter act to avoid too high tracer concentrations in com-
parison to actual solid particles. A phenomenological, possi-
bly position-dependent parameter D™ controls the strength
of the fluctuations, e.g. via

(10)

max | o (r, 1) — ocg“’(r,t),o}
O (r,1)

The constant Dy has to be chosen empirically such that nei-
ther excessive clustering occurs nor that particle diffusion is
enhanced dramatically. In neither case, the passive process
under consideration could be pictured accurately.

SIMULATION SETUP

We set up simulations in close resemblance to recent exper-
iments and simulations of heat transfer in a fluidized bed
(Patil er al., 2015) which we took as reference data. A 8cm
x 1.5cm x 25cm cuboid was discretized into 35 x 110 x 6
equal cells and approximately 57000 1-mm spheres with ma-

D™ (r,1) = Dy (11)

terial values of glass and initial temperature Tp(o) =90°C

were inserted. Air with ambient temperature Tf(o) =20°C
fluidized them with a superficial inlet velocity of ujper =
1.2m/s and slowly cooled them.

Since unresolved CFD-DEM requires larger cells than par-
ticles, the above grid could not be used to resolve the flux
of heat through the domain walls happening over a very
thin layer. Instead, its thickness was introduced as model-
ing parameter within reasonable bounds to control heat loss
through the walls (Patil et al., 2015). Since the focus of
this work was rather the comparison of full CFD-DEM with
rCFD than with experiments, we chose its value (in roughly
the same range, but somewhat larger) such that our CFD-
DEM results were in agreement with the reference simula-
tion. We opted for this procedure because in contrast to the
reference simulation which was carried out for an ideal, com-
pressible gas, we approximated the system as incompressible
to enable a recurrence-based treatment. Future work will ad-
dress this shortcoming (Lichtenegger et al., 2017) and allow
for a meaningful comparison with measurements.

For the full CFD-DEM simulations, Egs. (1) — (3) were
solved under incompressible conditions employing the PISO
algorithm (Issa, 1986). On the DEM side, we used velocity-
Verlet integration (Verlet, 1967) for Eq. (4). The full CFD-
DEM simulations were carried out for 10s process time, the
first 5Ss were then used as basis for rCFD. We stress that this
duration was chosen quite generously and smaller recurrence
statistics would probably work equally well.

In this study, each particle was represented by exactly one
tracer. Of course, one could also employ a parcel approach
to combine clusters of particles into fewer tracers or con-
versely try to resolve coarse-grained CFD-DEM data with
higher numbers of tracers.
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(a)

(b)

Figure 2: Example of two equivalent states in the sense of dissim-
ilarity norm Fig. 1. Although the volume fraction fields
are not identical, they are close enough so that substitut-
ing one with the other does not lead to any significant
inaccuracies.
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Special care had to be taken with the choice of the fluctu-
ation control parameter Dy. We found empirically that with
dw distributed uniformly on the unit sphere, Dy = 10~*m? /s
was large enough to avoid too high particle concentrations
and sufficiently small not to increase particle diffusion and
consequently heat transfer and the mean cooling rate.

RESULTS

According to the rCFD strategy outlined above, the first
quantity to look at is the dissimilarity norm (or equally use-
ful the recurrence norm) displayed in Fig. 1. 200 snapshots
corresponding to 5s real time are compared with each other,
leading to a structure of local minima and maxima approx-
imately parallel to the main diagonal. These minima are
caused by very similar states that evolve in an analogous
fashion, which demonstrates local pseudo-periodicity.

The degree of similarity is indicated in Fig. 2. Two volume
fraction fields which give rise to a local minimum in the dis-
similarity norm are shown. While small quantitative differ-
ences can be found, their qualitative features clearly agree: a
large bubble was formed in the center of the bed with a few
particles moving downwards in the middle of the bubble.
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Figure 3: Particle mean temperature over time. Per construction,
the full CFD simulations closely resembled the reference
data (Patil er al., 2015). As a consequence, the cooling
rate was somewhat too low in comparison with measure-
ments. Most importantly, recurrence CFD led to almost
identical results as the full model.

If such semiquantitative agreement was sufficient to obtain
a meaningful extrapolation of the fluidized bed’s evolution
is finally answered by looking at the particle mean temper-
atures from full and recurrence-based simulations in Fig. 3.
As discussed above, the thickness of the boundary layer over
which temperature drops to its wall value allowed for some
“tuning” of the cooling rate. With a value to match the ref-
erence data (Patil et al., 2015), the agreement of the present
CFD-DEM results with them was of course to be expected.
More importantly, however, the curves from rCFD and CFD-
DEM agree very well. After 10s their deviation is much less
than 1°C at a speed-up of approximately two orders of mag-
nitude.

Furthermore, Fig. 3 demonstrates that particle cooling hap-
pened over much longer times than the bed’s fast dynamics.
Such a clear separation of scales is clearly vital for the rCFD
procedure because it minimizes the impact of switching be-
tween most similar but nevertheless different flow states on
the passive process under consideration.
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CONCLUSION AND OUTLOOK

In this paper, we have demonstrated how to decouple the fast
dynamics of a fluidized bed from the much slower heat trans-
fer between solid particles and surrounding gas to accelerate
the calculations. To facilitate the procedure, we assumed in-
compressible conditions in contrast to the treatment in the
reference simulation (Patil ez al., 2015) and used a tuning pa-
rameter for wall heat loss to match our full CFD-DEM sim-
ulations to them. Upon these results, we built the recurrence
statistics used for rCFD.

Future work (Lichtenegger et al., 2017) will deal with rCFD
for the compressible case, where we expect a superposed
transient behavior due to a slow decrease of the mean gas
temperature in the center of the bed. Besides more realis-
tic results from the CFD-DEM calculation for a meaningful
comparison with measurements, this will allow to study the
bed over much longer times. Furthermore, a detailed perfor-
mance analysis of the method’s implementation might reveal
optimization potential for even faster simulations.
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