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PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the
12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and
Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also
known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997.
So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim.
The conferences focuses on the application of CFD in the oil and gas industries, metal production,
mineral processing, power generation, chemicals and other process industries. In addition pragmatic
modelling concepts and bio-mechanical applications have become an important part of the
conference. The papers in this book demonstrate the current progress in applied CFD.

The conference papers undergo a review process involving two experts. Only papers accepted by the
reviewers are included in the proceedings. 108 contributions were presented at the conference
together with six keynote presentations. A majority of these contributions are presented by their
manuscript in this collection (a few were granted to present without an accompanying manuscript).

The organizing committee would like to thank everyone who has helped with review of manuscripts,
all those who helped to promote the conference and all authors who have submitted scientific
contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal

Production and NanoSim.
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ABSTRACT

Chemical looping combustion (CLC) is an attractive technology
that produces a pure CO; stream and therefore the CO, can be read-
ily recovered by condensing water vapour. In order to understand
the physical phenomena and to explore the chemical process perfor-
mance of the CLC process, a CFD model has been developed. The
model is implemented numerically in an in-house code including
the kinetic theory of granular flow and reaction models. Methane is
used as fuel and CuO is chosen as oxygen carrier. This process is
configured with an air reactor and a fuel reactor. The two reactors
are simulated by a sequential approach. The connection between
the two reactors is realized through time-dependent inlet and outlet
boundary conditions. The widely used drag models were selected
to examine their effects on the flow behaviour. The results indicat-
ing that the cluster effect in the FR is higher than in the AR. The
frequency factor in the reaction model was varied to fit with the ex-
perimental measurements. The predicted result with the frequency
factor of 1.35 x 103 gives a reasonable prediction in comparison
to the experimental data.

Keywords: CFD, Double loop circulating fluidized bed, Drag
model, Reactive flow .

NOMENCLATURE

Greek Symbols

o Volume fraction of phase k, [—]

B Inter-phase momentum transfer coefficient, [kg/m?s]
¥s  Collisional energy dissipation, [J/m?s|

I Interfacial mass transfer rate, [kg/m’s]

g,  Turbulent energy dissipation rate, [m?/s’]

®  Granular temperature, [m?/s?]

ks Conductivity of granular temperature, [kg/ms]
M Thermal conductivity of phase k, [m? /s]

Ux  Viscosity of phase k, [kg/ms]

v;  Stoichiometric coefficient, [—]

pr  Density of phase k, [kg/m?]

Py Molar density, [mol /m’]

T Time for complete solid conversion, [s]

T, Stress tensor of phase k, [N/m?]

T, Turbulent stress tensor, [N/m?]

®  Mass fraction, [—]

Latin Symbols
A Frequency factor, [mol' "m®"~2/s].

C  Gas concentration, [mol/m?].

C1,C,Cp,C,, Turbulence model parameter, [—]|.
C;  Drag coefficient, [—].

dy  Particle diameter, [m)].

Dj; Binary diffusion coefficient, [m?/s].

Dy ; Diffusion coefficient for component j in phase k,
[m?/s].

Particle restitution coefficient, [—].
Activation energy, [kJ/mol].

Gravity acceleration, [m/s?].

Radial distribution function, [—].

Unit tenser, [—].

Reaction rate coefficient, [mol' "m3"~2/s].
Gas turbulent kinetic energy, [m?/s].
Scale factor, [—].

Interfacial momentum transfer, [kg/m?s?].
Mole mass, [kg/kmol].

Reaction order, [—].

Pressure of phase k, [Pa.

Prandtl number, [—].

Reaction rate, [mol/m?s].

Radius of a grain, [m].

Gas constant, [J/mol 'K ~1].

Particle Reynolds number, [—].

Turbulent kinetic energy production, [kg/ms>].
Time, [s].

Temperature, [K].

«  Velocity of phase k, [m/s].

Vi Molar colume, [m*/mol].

X  Gas conversion, [—].

X Y :g;u 3 gSlN%?v»'—“'%o %img?

~ X
)
<

z Axial coordinate, [m].
Sub/superscripts

0 Initial.

B Bulk.

dilute Dilute.

e Effective.

g Gas.

i Reaction number.

k Gas (k = g) or solid (k = s) phase.
m Molecular.

max Maximum.

mf  Minimum fluidization.

s Solid.

t Turbulent.
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INTRODUCTION

Chemical-looping combustion (CLC) is an efficient and low
cost combustion process that can be explored to limit CO,
emissions. This new type of combustion is a two-step com-
bustion process. Typically, it consists of two interconnected
fluidized bed reactors, the fuel reactor and the air reactor.
A solid oxygen carrier (OC) gets oxidized and reduced in
a cyclic manner, carrying the oxygen from one reactor to
he other. First, the fuel is introduced to the FR and reacts
with the oxidized OC, to give CO; and steam. The oxidized
OC being reduced from MeOy, to MeOg_;. In a subsequent
step, this oxygen carrier is reoxidized to its initial state with
air in the AR, from MeQOg,_1 to MeOy,. The overall reaction
obtained summing the oxidation and reduction of the OC is
equivalent to the conventional combustion of the fuel and re-
lases exactly the same amount of energy. Since the mixing
of fuel and air is avoided, CO, will inherently not be diluted
with nitrogen (Ishida and Jin, 1996).

In order to get sufficiently high fuel conversion, enhance gas-
solid contact and realize flexible operation, SINTEF Energy
Research and the Norwegian University of Science and Tech-
nology have designed a double loop circulating fluidized bed
(DLCFB) reactor for the CLC process, as shown in Figure 1.
The design is sized to be used with gaseous fuel. It consists
of two circulating fluidized beds interconnected by means of
divided loop seals and a bottom extraction. The fluidizing
gas (methane in the FR and air in the AR) is fed from bottom
of the reactors. The solid outflow from one reactor will inject
into the bottom of the other reactor through the cyclones and
divided loop seals. The propose of the divided loop seal is
both to avoid the gas mixing between the two reactors and
to lead flow of solids entrained by one reactor into the other
one or recirculate it back to the reactor of origin. The air
reactor as well as the fuel reactor are operated in the turbu-
lent or fast fluidization regime for a better gas-solid contact.
This special design is meant to be flexible with respect to
OCs and to be extrapolated to other chemical looping appli-
cations. In addition, the arrangement is compact in order to
ease the up-scaling as well as for the prospective of pressur-
izing the reactor as a further step.

Computational fluid dynamics (CFD) is expected to play an
important role in studying the hydrodynamic and chemical
process performance of gas-solid system. In order to under-
stand the physical phenomena, explore the reactive perfor-
mance of the CLC process in the DLCFB system, it is ben-
eficial to develop a simulation model, which further can be
used to optimize the operating conditions, and for scale-up
and design of industrial scale reactors.

In this work, a reactive multiphase CFD model for an in-
terconnected DLCFB reactor has been developed and im-
plemented using an in-house Fortran code. Euler-Euler ap-
proach with the kinetic theory of granular flow (KTGF) has
been selected. Methane is used as the gaseous fuel and CuO
is chosen as OC. The main objective of this investigation is
to validate the model based on the real experimental data and
make preparation for the further research.

MODEL DESCRIPTION

A two-fluid reactive flow model based on the KTGF imple-
mented in an in-house code is used to describe the hydrody-
namics and the reacting system in the fluidized reactors. In
the two-fluid model, each phase is described by a set of gov-
erning equations and closures. For the gas phase, the trans-
port equations can be derived by adopting suitable averaging
process for local instantaneous equations, while the transport

Depleted CO, and Steam

Air A

!
|
—.

I

Loop
seal

Air Reactor
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Figure 1: Sketch of the DLCFB reactor.
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Figure 2: Sketch of the DLCFB reactor.
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equations for solid phase originate from the ensemble aver-
age of a single-particle quantity over the Boltzmann integral-
differential equation. Detailed descriptions of the model can
be found in (Jakobsen, 2014). The governing equations are
summarised in Table 1. The standard x — € turbulence model
is chosen for characterizing the gas phase turbulence phe-
nomena, the corresponding closure models are shown in Ta-
bles 2 and 3. The KTGF is adopted to derive the physical
properties of solid phase by introducing the granular temper-
ature, ®. The two phases are coupled through the interfacial
momentum transfer, which is dominated by the drag force.
In this study, the most commonly used drag coefficient mod-
els proposed by Gidaspow(Gidaspow, 1994), Syamlal and
O’Brien(Syamlal and O’Brien, 1988) and Gibilaro(Gibilaro
et al., 1985) are selected to examine their influence on the
simulated results. In addition, McKeen and Pugsley(McKeen
and Pugsley, 2003) model was used for accounting the clus-
ter effect. The description of the drag models are given in the
Appendix A. The internal phases constitutive equations are
listed in Tables 4 and 5.

The oxygen carrier material used in the simulation is a coper
oxide based material with a CuO content of 14.7 %. The
particle density and diameter are 1700 Kg/m? and 149 um
respectively. One step reactions are assumed both for the
fuel and air reactors and given as follows:

4Cu0 + CHy — CO, 4 2H,0 +4Cu (1

@)

The particle was assumed to be composed by spherical grains
of CuO. The shrinking core model (SCM) with the reac-
tion controlled by the chemical reaction in the grain was ap-
plied. The equations that describe the reaction model are
follows(Abad et al., 2007):

2Cu+ 0Oy — 2Cu0O

X=-
T

3

where X is the degree of conversion, T is the time for com-
plete conversion of the carrier and is calculated from:

_ I'g,CuO
VVM_’CuokC”

“

C,n,v,rg and V), represent the concentration of the gas reac-
tant, reaction order, stoichiometric factor, mean radius of the
grains, and molar volume, respectively. The reaction con-
stant k follows:

k=Aexp(—E/RT) )

where A is the pre-exponential factor of the rate con-
stant, also known as the frequency factor. E is the acti-
vation energy, and R is the constant of the ideal gas (R =
8.314J /mol 'K~ 1).

The reaction rate of equation 1 and 2 is expressed as follows:

(6

(—r)i= (PMCOSWCO ax )
i

where i and pj, represent the ith reaction and molar density.

The detailed kinetic parameters are listed in table 6(Abad

et al., 2007).

The source term in the species mass balance equation for the

Jj th species in the gas can be modelled by:
r 2)7 i= v jM ir

(N
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The mass transfer between the gas phase and the solid phase
is calculated as following the relation proposed by Jung and
Gamwo (Jung and Gamwo, 2008):

I'y =vo,Mo,r = —T}

®)

Numerical implementation of the coupling between
reactors

The chemical looping combustion process is simulated by
utilizing the DLCFB system as described above. A 2D plane
geometry is chosen for the simulation of the fuel and air re-
actors, which is shown in Figure 2, having the same dimen-
sions as the experimental setup. The computational domain
is meshed by using uniform grids in each direction.

Two different sets of coordinates and parameters are adopted
to solve the governing equations for the AR and the FR re-
spectively. The solid flowing out of the AR is fed into the
bottom of the FR, and in a similar way all the solids that ex-
ited at the outlet of FR will be injected into the bottom of
the AR. The exchange of the solid flow between the reactor
units is realized through the time-dependent inlet and out-
let boundary conditions. At each simulation time step, the
processes in the two risers are simulated by a sequential ap-
proach, the solid flux of the inlet of one riser is calculated
from the solid flowing out of the outlet of the other riser
with the same OC condition. In the experiment, this kind
of continuous solid exchange is achieved by means of cy-
clones, divided loop-seals and the bottom lift. The cyclones
are neglected in the simulation by assuming the efficiency of
the cyclones are equal to one. The bottom extraction/lift is
replaced by an internal recirculation mechanism in order to
keep the mass balance inside each reactor. In this way, a full
loop is fulfilled for one time step. Then, another computation
loop for next time step will run repeatedly.

Initial and boundary condition

Initially, there is no gas flow in the reactor and the bed is at
rest with a particle volume fraction of 0.4. A uniform plug
gas flow is applied at the inlets of the reactors, the inlet solid
flux of one of the reactors is kept consistent with the outlet
solid flux of the other one with a prescribed solid volume
fraction at the inlet. The normal velocities at all boundaries
are set to zero. No-slip wall boundary condition is set for the
gas phase while the solids are allowed to slip along the wall,
following the equation (9) from (Jakobsen, 2014).

—
oot = dy 0V,
szlwall = —173

(XS/ ar

&)

where V' is the axial velocity of the particles. r denotes the
direction normal to the wall.

For all the scalar variables but pressure, Dirichlet boundary
conditions are used at the inlets, while Neumann conditions
are used at the other boundaries. For the pressure correction
equations, all the boundaries except outlet, Neumann condi-
tions are adopted. At the outlet a fixed pressure (101325 Pa)
is specified.

Numerical Procedure

The two-fluid model equations are discretized by finite vol-
ume method and implemented in a Fortran program. The al-
gorithm is based on the work by Lindborg (Lindborg, 2008)
and Jakobsen(Jakobsen, 2014). The second order central dif-
ferential scheme is used to discretize the diffusion terms. In
order to reduce the oscillation and keep higher-order accu-
racy of the numerical solution, a total variation diminishing
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(TVD) scheme is employed for discretizing the convention
term (van Leer, 1974). In this scheme, cell face values are
calculated from the combination of upwind scheme part and
a suitable anti-diffusive part, which controlled by a smooth-
ness function. In this way, a higher-order discretization
scheme is used in smooth regions and reduce to the first order
at local extrema of the solution. The upwind part is treated
fully implicitly while the anti-diffusive part is treated explic-
itly. The SIMPLE algorithm for multiphase flow is selected
for the pressure-velocity coupling (Jakobsen, 2014). Due to
the strong coupling of the two phases, the coupling terms are
handled specially in the discretized transport equations, and
then the coupled equations are solved simultaneously by us-
ing a coupled solver. The species mass balance equations are
solved by applying a fractional step scheme which decouples
the chemistry (i.e., kinetics) and the transport (i.e., convec-
tion and diffusion) terms. All the linear equation systems are
solved by the preconditioned Bi-conjugate gradient (BCG)
algorithm (Lindborg, 2008).

RESULTS

The chemical looping combustion experiments have been
conducted in the DLCFB system at SINTEF Energy Re-
search in Trondheim. Pressure transducers were placed along
the reactor bodies to measure the local pressure distribution.
CHy, CO; and O, concentration were measured in the ex-
haust from the FR and the AR. The operating and initial con-
ditions of the simulation are adopted the same as the actual
experiment, summarized in Table 8. The first part of this sec-
tion presents the validation of the hydrodynamics and reac-
tive model by using different drag models. Then the chemical
process performances were analysed. The simulations were
conducted for 20 seconds of real time. To ensure the initial
transient effects are not included in the analysis, the last 10
seconds of the simulations are used for extracting the mean
results.

Verification of the hydrodynamic model

For the simulation procedure, grid sensitivity study was car-
ried out in advance in previous work by Zhang et al (Zhang
et al.,2017). The drag model plays a critical role for the suc-
cessful simulation of the hydrodynamics in a gas-solid sys-
tem. Three widely used drag models were selected to exam-
ine their effects on the flow behaviour.

Figure 3 shows the predicted axial profiles of the pressure
in the FR. The corresponding axial solid concentration dis-
tribution can be found in Figure 5. It can be seen that the
Gidaspow(Gidaspow, 1994), Syamlal and O’Brien(Syamlal
and O’Brien, 1988) models give nearly identical results,
which are overestimate the inter-phase momentum transfer
in the FR, and hence predict a more uniform distribution of
solids across the riser. That is why the predicted pressure
was far away from the experimental data, especially in the
upper part of the reactor. The discrepancy was ameliorated a
little by using the Gibilaro(Gibilaro et al., 1985) model, but
still overestimate the interphase drag force. This could be ex-
plained by the cluster effect inside the FR. The existence of
cohesive interparticle forces would lead to grouping of par-
ticles, resulting in larger effective particle sizes, and hence
reduced fluid-particle drag forces.

In order to account for the aggregation of particles, some
modifications have been proposed. McKeen and Pugsley
et al.(McKeen and Pugsley, 2003) proposed an empirical
method to reduce the Gibilaro(Gibilaro et al., 1985) drag cor-
rection using a constant scale factor, K. This scale factor
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Figure 4: Axial pressure distribution.

could be adjusted to take in to account the effect of interpar-
ticle cohesive forces on particle agglomeration. In this study,
the scale factor is set to 0.6.

The predicted axial pressure and solid distribution with Mc-
Keen and Pugsley model(McKeen and Pugsley, 2003) shown
in the Figure 4 and Figure 5 respectively. It can be seen
that the predicted results calculated by McKeen and Pugsley
model (McKeen and Pugsley, 2003) are in good agreement
with the experimental data, except for the reasonable devia-
tion occurring in the dense bottom zone, which can be mostly
attributed to the incomplete 2-D description of a real 3-D ge-
ometry according to our numerical experiences. From Figure
5, the basic feature of the turbulent fluidization regime was
achieve with coexisting the dilute and dense phase.

Figure 6 displays the predicted axial profiles of the pressure
in the AR with aforementioned drag models. For the AR,
the predicted result calculated by the Gibilaro(Gibilaro et al.,
1985) model shows the best agreement with the experimen-
tal data. However, the McKeen and Pugsley model(McKeen
and Pugsley, 2003) underestimated the drag force. It should
be pointed out that the inlet gas velocity in the AR is higher
compared with FR due to the air to fuel ratio, which could
result in the different fluidization regimes of the two reactors
and hence lead to the different degrees of cluster effect. Be-
sides, as the reactions go on, the particle density increases in
the AR and decreases in the FR, which could be another fac-
tor to the difference of fluidization regimes of the FR and the
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AR. Since the Gibilaro (Gibilaro et al., 1985) model gives
reasonable prediction in the AR whereas overpredictes the
drag force in the FR, it could be concluded that the degree
of clustering in the FR is higher than in the AR. The corre-
sponding solid distribution is shown in 7.

Verification of the chemical reaction model

In this section, the chemical reaction model was validated
based on the experimental results of the CH4 concentration
in the fuel reactor exhaust as well as the O, concentration out
from the air reactor.

Figure 8 displays the CH4 and O, concentration calculated
from the simulation and the measurements from the experi-
ments. For both reactors, relatively stable outlet concentra-
tions of the gas species are achieved in just a few seconds
of simulation time, hence the reactive flow can be said to be
at a quasi-steady-state. It can be observed that the predicted
O, concentration agrees reasonably with the experiment data
although the result is slight under-predicted. However, the
predicted CH4 concentration is far away from the experimen-
tal data. This can be explained as the CuO used in the cur-
rent study is slight different from the literature (Abad et al.,
2007), which would lead to a certain amount of error of the
kinetic parameters. So in order to match the experimental
result, three more frequency factors (A, in equation 5) for re-
duction reaction were evaluated, as shown in Figure 9. The
best agreement between the simulation result and the experi-
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Figure 8: Concentration of CHy in the FR exhaust and O, concen-
tration out from the AR.

mental data was found when the frequency factor was equal
to 1.35x 1073,

With a frequency factor of 1.35 x 1073, McKeen and Pugs-
ley(McKeen and Pugsley, 2003) model in the FR and Gibi-
laro(Gibilaro et al., 1985) model in the AR, the vertical
profiles of gas concentration in both reactors are examined.
As illustrated in Figure 10, the reactants, CH4 and O, are
rapidly consumed at a very short entrance length, where there
is a larger concentration gradient. At the upper part of the
reactors, the concentration gradient is much smaller. The re-
verse trend is observed for gas products CO».

CONCLUSION

The conclusions are:

1. The degree of clustering is higher in the FR than in the
AR, which needs different drag models for each reac-
tor. The predicted results given by McKeen and Pugs-
ley(McKeen and Pugsley, 2003) model in the FR and
Gibilaro(Gibilaro et al., 1985) model in the AR show
good agreement with the experimental data.

2. Due to the difference between the OC used in this study
and the one for deriving the kinetic parameters, the fre-
quency factor need to be modified according to the ex-
perimental measurements, andThe best agreement be-
tween the simulation result. The frequency factor of
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Table 4: Closure for internal momentum transfer

(Lun et al., 1984; Gidaspow, 1994)
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Table 6: Main geometric and operating parameters

(Abad et al., 2007)

CH,4 0,
Physical parameters

pr,cuo(mol/m?) 80402 80402
re.coo(m) 14x107%  1.4x107°
v 4 2

Kinetic parameters

A(mol' "m3—2s=1)  45%x107*  47x107°
E(kJ /mol) 60 15

n 0.4 1

Table 7: Main geometric and operating parameters

Description Unit Value
Reactor geometry

AR height m 6

AR diameter m 0.23
FR height m 6

FR diameter m 0.154
Particle properties

Mean particle size um 149
Particle density kg/m*> 1700
Active NiO content % 14.7
Operational condition

Operating pressure atm 1.0
Fuel power kW 100
Lower heating value of fuel ~MJ/kg 50
Inlet composition of FR — 27 % CHy
Temperature in FR K 1100
Temperature in AR K 1100
Global air-fuel ratio - 1.1

Table 8: Main geometric and operating parameters

Description Unit Value

No. of control volume — 22800

Gas viscosity kg/ms  1.82x 1073
Sphericity of particle - 1
Restitution coefficient of particles  — 0.99

Initial bed height of FR m 0.9

Initial bed height of AR m 1.2

Time step s 1.0x 107

45

1.35 x 1073 gives a reasonable prediction in compari-
son to the experimental data.
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APPENDIX A

The drag force acting on a particle in gas-solid system can be
presented by the product of a momentum transfer coefficient
(B) and slip velocity between the two phases

Oty — — — —
P8 flotg) g — Tl = BT~ o) (AD)

M = %Cd
The correlations of f are usually obtained from pressure drop
measurements.

Gidaspow et al.(Gidaspow, 1994) employed the Ergun (Er-
gun, 1952) equation for the dense phase and the Wen-Yu
(Wen and Yu, 1966) equation for the dilute phase.

150“g((11;d‘;°“>’)2 + 17501 — 0) 2 Wy — | 0 < 0.8
l?): 8%s
o.75cd%pg|a’g oy 265 o > 0.8
(A2)

where the drag coefficient Cp was expressed by

24 0.687
c, =1 7 [1+0.15Re,*']  Re, <1000 (A3)
0.44 Rej, > 1000
The particle Reynolds number is:
Re, = w (A.4)

Hg

Syamlal and O’Brien(Syamlal and O’Brien, 1988) proposed
a new drag coefficient based on the measurements of the ter-
minal velocities of particles in the form

3 OPg Oy
B:ZCd 4 F|ug7us| (A.5)
Cp = (0.63+4.8/\/f/Re,)* (A.6)

where f is the ratio of the failing velocity of a suspension to
the terminal velocity of a single particle.

i
f=5(4—0.06Re,+ \/((0.06Re, > +0.12Re, (2B~ A) +42))

(A7)
with
A=agh (A.8)
2.65
o o < 0.15
= 8 S
B { 0.804%% 0, >0.15 (A9)

Gibilaro et al.(Gibilaro et al., 1985) considered an effective
buoyancy force to produce drag coefficient correlation for in-
dividual particles in a fluidized suspension as follows:

17.3 I
[ﬁ+0.336]%| V- Velowag 'S (A10)
2 s

B

McKeen and Pugsley et al.(McKeen and Pugsley, 2003) pro-
posed an empirical method to reduce the Gibilaro(Gibilaro
et al., 1985) drag correction using a constant scale factor K.
This scale factor could be adjusted to take in to account the
effect of interparticle cohesive forces on particle agglomera-
tion.

17.3 I
B:K[ﬁ+0.336]%| V- Velowo '8 (A
P s
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