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Abstract. We have developed a domain-specific modeling language named
CORAL that employs risk assessment to help security testers select and
design test cases based on the available risk picture. In this paper, we
present CORAL and then discuss why the language is designed the way
it is, and what we could have done differently.
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1 Introduction

Security testers face the problem of determining tests that are most likely to re-
veal severe security vulnerabilities. To address this challenge, we have developed
a domain-specific modeling language that employs risk assessment to help secu-
rity testers select and design test cases based on the available risk picture [5].
Our language (CORAL) supports a model-based approach to risk-driven security
testing as defined in [2]. The approach is model-based in the sense that graphical
models are actively used throughout the whole testing process to support the
various testing tasks and activities, and to document the test results.

The intended users of CORAL are security testers. In this paper, we first
present CORAL, and then we discuss why the language is designed the way it is,
and what we could have done differently. In particular, we motivate our design
decisions by discussing five main areas typically considered when developing
or evaluating a modeling language: domain appropriateness, comprehensibility
appropriateness, participant appropriateness, modeler appropriateness, and tool
appropriateness [15]. With respect to what we could have done differently, we
discuss alternative design decisions and their consequence in terms of graphical
versus textual representations, risk annotations versus tables, choice of modeling
notation, CORAL versus attack trees, and CORAL versus formal methods.

The reminder of this paper is organized as follows. In Sect. 2 we present
the CORAL language followed by a small example. In Sect. 3 we motivate our
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design decisions in context of the five areas mentioned above. In Sect. 4 we
discuss alternative design decisions and their consequence. Finally, in Sect. 5 we
conclude the paper.

2 The CORAL Language

As shown in Fig. 1, the graphical notation of CORAL is mainly based on the
graphical notation of UML sequence diagrams [21]. The graphical icons used to
represent risk-related information are based on corresponding graphical icons
in the CORAS risk analysis language [17]. With respect to testing concepts,
CORAL uses stereotypes from the UML Testing Profile [20]. The constructs
in CORAL are grouped into five categories: diagram frame, lifelines, messages,
risk-measure annotations, and interaction operators. In the following, we explain
each category.

Diagram Frame: The diagram frame is the frame in which a sequence
diagram is modeled. A sequence diagram in CORAL may represent the system
under test, its environment, as well as threat scenarios that the system under test
and its environment are exposed to. The diagram frame is graphically equivalent
to the diagram frame in UML used to represent sequence diagrams [21]. Similar
to UML, we use the keyword sd in a pentagon in the upper left corner of the
diagram frame to denote that the diagram is a sequence diagram.

Lifelines: According to UML, a lifeline represents an individual participant
in an interaction [21]. As illustrated in Fig. 1, we distinguish between five differ-
ent lifelines: general lifeline, deliberate threat lifeline, accidental threat lifeline,
non-human threat lifeline, and asset lifeline.

The general lifeline is graphically equivalent to a lifeline used in UML se-
quence diagrams. In CORAL, a general lifeline is used to model the system
under test, as well as the environment interacting with the system under test.
The name of the lifeline is placed inside the rectangle of the lifeline as illustrated
in Fig. 1, and the naming convention is equivalent to the naming convention of
lifelines in UML.

The lifelines representing threats are used to model threats that may initiate
threat scenarios, which in turn may cause security risks in the system under
test. Inspired by CORAS [17], we distinguish between three kinds of threats:
deliberate threat, accidental threat, and non-human threat. A deliberate threat
is a human threat that has malicious intents. An accidental threat is also a human
threat, but this threat is different in the sense that it does not have malicious
intents. The non-human threat is a threat that may be anything else except a
human. For example, a power failure in a server hall may cause problems with
respect to the availability of a system.

In practice, the distinction between a human threat and a non-human threat
is sometimes not straight forward. For example, if a hacker exploits a security
bug in a source code in order to attack a system, then the threat is the hacker.
On the other hand, if the security bug lies dormant in the source code and is
triggered at some point during system execution, then the threat is the bug in the
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source code, that is, a non-human threat. In other words, the distinction between
a human threat and a nonhuman threat depends on the viewpoint from which
a threat is regarded. The name of a threat is placed below the icon representing
the threat as illustrated in Fig. 1.
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Fig. 1. CORAL graphical notation.

The name of a threat typically represents a threat profile which is described
by the tester. A threat may be named, for example, “hacker” (deliberate threat),
“database administrator” (accidental threat), or “computer virus” (non-human
threat).

In CORAL, risk assessment is carried out with respect to security assets we
want to protect. Security assets are represented by the asset lifeline shaped as a
moneybag, and the asset name is placed below the moneybag icon. Examples of
security assets are “availability of customer data” or “integrity of bank transac-
tions”. What is meant by “customer data” and “bank transactions” has to be
described by the tester.

Messages: According to UML, a message defines a particular communi-
cation between lifelines of an interaction [21]. UML distinguish between com-
plete, lost and found messages. Complete messages have both a sender and a
receiver lifeline. A lost message has a sender lifeline, but not a receiver lifeline.
A found message has a receiver lifeline, but not a sender lifeline. The graphi-
cal notation for these messages are different. However, lost and found messages
are often unnecessary and are used in rare situations [25]. Furthermore, UML
categorize complete messages into synchronous and asynchronous messages. The
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synchronous and asynchronous messages have different graphical notations. A
synchronous message is used to call an operation, and the lifeline transmitting
a synchronous message always expects a responding message. An asynchronous
message, on the other hand, is used to send a signal which may or may not be
responded. Synchronous messages are therefore syntactically more strict than
asynchronous messages because they require a corresponding response message
for each operation call. However, at a logical level, sending a signal and calling
an operation are similar. Both types of messages involve a communication from
a sender to a receiver [25].

In CORAL we are interested in expressing complete interactions between two
lifelines. Moreover, because synchronous and asynchronous messages are similar
at a logical level, it is not necessary to express both in CORAL. For this reason,
we choose to treat all messages as asynchronous messages. The graphical notation
for messages in CORAL are therefore based on the graphical notation for the
asynchronous message in UML. As illustrated in Fig. 1, we distinguish between
five messages in CORAL: general message, new message, altered message, deleted
message, and unwanted incident message.

The general message is graphically equivalent to the asynchronous message
in UML, and it is used to model the expected behavior between lifelines rep-
resenting the system under test and its environment, that is, the interaction
between general lifelines (recall that general lifelines are used to model the sys-
tem under test and its environment). The signature of a message, that is, the
content of a message, is placed above the arrow representing the message. Sig-
natures are written using the same convention as given for messages in UML.
In addition, we represent the risk related information, in the signatures, using a
red-colored, bold, and italic font to distinguish between the expected behavior
and the risk-related information.

New, altered, deleted and unwanted incident messages are used in combina-
tion to represent threat scenarios. A new message is a message initiated by a
threat. This may be a deliberate human threat, an accidental human threat, or
a non-human threat. A new message is represented by a red triangle which is
placed at the transmitting end of the message. An altered message is a message
in the system under test that has been altered by a threat to deviate from its ex-
pected behavior. Altered messages are represented by a triangle with red borders
and white fill. A deleted message is a message in the system under test that has
been deleted by a threat. Deleted messages are represented by a triangle with
red borders and a red cross in the middle of the triangle. Finally, an unwanted
incident message is a message modeling that an asset is harmed or its value is
reduced. Unwanted incidents are represented by a yellow explosion sign.

Risk-Measure Annotations: Risk-measure annotations are used to anno-
tate messages for the purpose of estimating and evaluating security risks. As
illustrated in Fig. 1, we distinguish between three kinds of risk-measure annota-
tions: frequency, conditional ratio, and consequence.

The frequency annotation represents either the frequency of the transmis-
sion or the frequency of the reception of a message. The graphical notation of
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a frequency annotation is equivalent to the graphical notation of a comment
generally used in UML [21]. The connector on the frequency annotation is at-
tached on either the transmission-end or the reception-end of a general, new, or
altered message. It may also be attached on the transmission-end of an unwanted
incident message to convey how often an unwanted incident harms a certain se-
curity asset. A frequency annotation may not be attached on a deleted message
because the message represents a complete deletion. That is, if a message is
deleted, then it is not transmitted and therefore not received. It therefore does
not make sense to estimate how often a message is not received, given that it is
not transmitted. A message is either deleted, or it is not. Also, in the context of
testing, we are interested in testing the messages that may cause the deletion of
other messages. The frequency is written inside the comment frame, in terms of
an interval followed by a time unit, as illustrated in Fig. 1.

The conditional ratio annotation represents the ratio by which a message is
received, given that it is transmitted. Conditional ratios may be attached on
general, new, or altered messages, and may not be attached on deleted messages
because they represent complete deletion. In addition, conditional ratios may
not be attached on unwanted incidents because their purpose is to model that
an asset is harmed or reduced in value.

The consequence annotation represents the impact an unwanted incident has
on an asset. Thus, consequences may therefore be attached only on unwanted
incident messages.

Interaction Operators: In sequence diagrams, messages may be combined
in rectangles containing special keywords in order to convey a particular relation-
ship between the combined messages. The rectangle encapsulating the messages
is referred to as a combined fragment, while the keyword is referred to as an
interaction operator. An interaction operator specifies the operation that de-
fines the semantics of the combination of messages [21]. As illustrated in Fig. 1,
CORAL makes use of four interaction operators inherited from UML: potential
alternatives (keyword alt), referred interaction (keyword ref ), parallel execution
(keyword par), and loop (keyword loop). All interactions in sequence diagrams
are by default encapsulated within an implicit combined fragment that makes
use of an interaction operator named weak sequencing (keyword seq). The seq
operator is the implicit composition mechanism of interactions. However, be-
cause the seq operator is always implicitly included in all sequence diagrams, it
is generally not modeled explicitly. The reader is referred to UML for further
information on interaction operators [21].

2.1 Example-Driven Explanation of the CORAL Approach

We carry out risk-driven security testing in three consecutive phases: test plan-
ning, security risk assessment, and security testing. The method takes as input
a description of the system to test, and provides a test report as output. The
description may be in the form of system diagrams and models, use case docu-
mentation, source code, executable versions of the system, and so on.
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In Phase 1 we prepare the system model, identify security assets to be pro-
tected, define frequency and consequence scales, and define the risk evaluation
matrix based on the frequency and consequence scales.

In Phase 2 we carry out risk modeling in three consecutive steps. First, we
identify security risks by analyzing the system model with respect to the security
assets, and then we identify threat scenarios that may cause the security risks.
Second, we estimate frequency and consequence of the identified risks by making
use of the predefined frequency and consequence scales, respectively. Third, we
evaluate the risks with respect to their frequency and consequence estimates and
select the most severe risks to test.

In Phase 3 we conduct security testing in three consecutive steps. First, for
each risk selected for testing we select its associated threat scenario and specify
a test objective for that threat scenario. To obtain a test case fulfilling the
test objective, we annotate the threat scenario with stereotypes from the UML
Testing Profile [20] according to the test objective. Second, we carry out security
testing with respect to the test cases. Finally, based on the test results, we write
a test report.

The example in Fig. 2 is a small fragment taken from an industrial case study,
which is thoroughly documented in [4]. The system under test is a feature in a
web-based e-business application designed to deliver streamlined administration
and reporting of all forms of equity-based compensation plans. The feature is
named Exercise Options and it is used for buying shares in a company.

Phase 1 (test planning): We modeled Exercise Options from a black-box
perspective by observing its behavior. That is, we executed Exercise Options
using a web browser, observed its behavior, and created the model based on
that (Fig. 2a). Together with the system owners we decided to focus on security
risks that may be introduced via the application layer. Thus, the threat profile is
someone who has access to Exercise Options, but who resides outside the network
boundaries of the service provider. We identified security assets by consulting the
system owners. The security asset identified for Exercise Options was integrity
of data.

We also defined a frequency scale and a consequence scale together with the
system owner. The frequency scale consisted of five values (Certain, Likely, Pos-
sible, Unlikely, and Rare), where each value was defined as a frequency interval.
For example, the frequency interval for likelihood Possible was [5,20⟩:1y, which
means “from and including 5 to less than 20 times per year”. The consequence
scale also consisted of five values (Catastrophic, Major, Moderate, Minor, and
Insignificant), where each value described the impact by which the security asset
is harmed. For example, consequence Major with respect to security asset in-
tegrity of data was defined as “the integrity of customer shares is compromised”.
The scales were also used to construct a 5×5 risk evaluation matrix used to
evaluate risks in Phase 2.

Phase 2 (security risk assessment): We identified security risks by ana-
lyzing the model in Fig. 2a with respect to security asset integrity of data. We
did this by first identifying unwanted incidents. Then we identified alterations
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Fig. 2. (a) Black-box model of Exercise Options. (b) Threat scenario.

that have to take place in the messages in order to cause the unwanted incidents.
Finally we identified messages initiated by the threat which in turn could cause
the alterations.

Let us consider a threat scenario for the black-box model of Exercise Options.
Assume that a malicious user attempts to access an administrative feature by
altering certain parameters in the HTTP request sent to Exercise Options. The
malicious user could achieve this, for example, by first intercepting the request
containing the message continue(exerciseMethod) using a network proxy tool
such as OWASP ZAP [22], and then altering the parameter exerciseMethod in
the message as an attempt to access other features in the system. This alteration,
could in turn give the malicious user access to an administrative feature. This
unwanted incident occurs if the alteration is successfully carried out, and Exercise
Options responds with an administrative feature instead of the expected message
exerciseRequestConfirmation. Thus, the unwanted incident may occur after the
reception of message exerciseRequestConfirmation (Fig. 2a). The resulting threat
scenario is shown in Fig. 2b.

In order to estimate how often threat scenarios may occur, in terms of fre-
quency, we based ourselves on knowledge data bases such as OWASP [22], re-
ports and papers published within the software security community, as well as
expert knowledge within security testing. We see from Fig. 2b that the malicious
user successfully alters the parameter exerciseMethod with frequency [20,50⟩:1y.
Given that parameter exerciseMethod is successfully altered and transmitted,
it will be received by Exercise Options with conditional ratio 0.8. The condi-
tional ratio causes the new frequency [16,40⟩:1y for the reception of message
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continue(adminSysFeat). This is calculated by multiplying [20,50⟩:1y with 0.8.
Given that message continue(adminSysFeat) is processed by Exercise Options, it
will respond with an administrative feature. This, in turn, causes the unwanted
incident (security risk) to occur with frequency [16,40⟩:1y. The unwanted inci-
dent has an impact on security asset integrity of data with consequenceModerate.
Having identified and estimated a set of risks, we evaluated the risks by plotting
them into the predefined risk evaluation matrix with respect to their frequency
and consequence.

Phase 3 (security testing): Based on the risk evaluation we chose to test
the risk in Fig. 2b. The test objective for this threat scenario was defined as:
“Verify whether the malicious user is able to access an administrative feature by
changing parameter exerciseMethod into a valid system parameter”. Based on
this test objective, we annotated the threat scenario with the stereotypes SUT,
TestComponent, ValidationAction, and Verdict as defined in the UML Testing
Profile [20]. The resulting test is illustrated in Fig. 3. The security tester takes
the role as “malicious user” in the test case. We carried out the test manually
by following the interaction in Fig. 3, and used the OWASP Zed Attack Proxy
tool [22] to intercept the HTTP requests and responses.

exercise(options)

«SUT» 

:Exercise Options

sd Test Case Malicious user accesses an administrative feature by changing parameter exerciseMethod : Verdict

respAdminSysFeat

continue(adminSysFeat)

selectExerciseMethod

interceptHTTPRequest

continue(exerciseMethod)

«ValidationAction»

fail

«TestComponent» 

:Client web browser

«TestComponent» 

:Network tool

Malicious user

«TestComponent» 

Fig. 3. Security test w.r.t. the threat scenario in Fig. 2b.

3 Why we designed CORAL as we did?

There are five main areas to consider when developing or evaluating a modeling
language: domain appropriateness, comprehensibility appropriateness, partici-
pant appropriateness, modeler appropriateness, and tool appropriateness [15].
Organizational appropriateness may also be considered [15], but this is outside
the scope of this paper because CORAL is not developed for a specific organi-
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zation. Thus, in the following, we elaborate on why we designed CORAL as we
did with respect to the first five aforementioned areas.

3.1 Domain Appropriateness

Domain appropriateness relates the modeling language to the domain it tar-
gets [15]. The purpose is to evaluate expressiveness of the language in relation to
the domain. This also includes considering whether the language miss any con-
structs (construct incompleteness), and whether the language expresses anything
that is not in the domain (construct excess).

CORAL employs constructs that are well known within the domain of testing,
security, and risk assessment. The conceptual foundation of CORAL is leading
international standards. Concepts related to testing are based on the software
testing standard ISO 29119 [12] and the UML Testing Profile [20]. Concepts re-
lated to security are based on the information security standard ISO 27000 [10].
Concepts related to security risk assessment are based on the information secu-
rity risk management standard ISO 27005 [11]. Moreover, the graphical notation
of CORAL is based on UML sequence diagrams, which are among the top three
modeling languages within the model-based testing community [19], and often
used for testing purposes [27]. In addition, constructs inherited from UML se-
quence diagrams are annotated with risk-related information such as threat,
unwanted incident, and security asset, which in turn brings security risk assess-
ment to the work bench of testers without the burden of a separate risk analysis
language. The CORAL process of risk assessment involves security risk model-
ing. The resulting risk models are used as a basis for designing and subsequently
executing security tests.

The above standards and guidelines consist of a large number of concepts
relevant for their respective domains. When developing CORAL we selected
and related concepts which we found necessary for security testers to carry out
risk-driven security testing. Security testers may carry out a complete run of
risk-driven security testing using constructs provided in CORAL. This is backed
up by an empirical evaluation in which we discovered that CORAL is effective
in terms of producing valid risk models and identifying security tests [4].

3.2 Comprehensibility Appropriateness

Comprehensibility appropriateness relates the language to the social actor inter-
pretation [15]. This is often evaluated with respect to design principles referred
to as semiotic clarity, perceptual discriminability, complexity management, cog-
nitive integration, visual expressiveness, dual coding, and graphic economy [18].

Each graphical symbol in CORAL is designed to represents only one semantic
construct in the language. For example, the graphical icon shaped as a human
with “devil horns” represents a deliberate threat, and may not be used to repre-
sent accidental threats or non-human threats, and so on. Moreover, each semantic
construct in CORAL is represented by only one graphical symbol. For example,
an unwanted incident is only represented by the unwanted incident message, and
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may not be represented by other messages. This means that CORAL fulfills the
principle of semiotic clarity [18].

The principle of perceptual discriminability states that different symbols
should be clearly distinguishable from each other. To achieve this we employ
distinct shapes and colors. Although the conditional ratio symbol and the con-
sequence symbol are rectangular, they are easily distinguishable because con-
ditional ratios may be assigned to general, new, and altered messages, while
consequences are assigned only to unwanted incident messages. In addition, con-
ditional ratios are always represented as nonnegative real numbers, while conse-
quences are always represented textually. However, the new, altered, and deleted
messages are similar in the sense that they all have a triangular shape at the
transmission end, but they are distinguishable with respect to the coloring inside
the triangles. In our experience, CORAL risk models typically contain a greater
number of new messages compared to the number of altered and deleted mes-
sages. In some cases, particularly in large risk models, this makes it somewhat
difficult to spot the altered/deleted messages. We may mitigate this by using
different shapes at the transmission end on new, altered and deleted messages.
However, the reason why we use triangles (in combination with the color red) is
to support semantic transparency, which is discussed in Sect. 3.3.

With respect to the principle of complexity management, our experience
shows that the ref construct is sufficient to manage the complexity of CORAL
risk models [3–5]. Because of its modular property, the ref construct may also be
used to support cognitive integration, i.e., to support integration of information
from different diagrams. Although the information in a ref construct is limited to
abstract descriptions of the referred interaction, it is sufficient for constructing
high-level risk models, which are useful to obtain an overview of the various
threat scenarios and their relationships. Thus, in CORAL we may divide complex
risk models into simpler risk models, as well as compose high-level risk models,
by making use of the ref construct.

The principles of visual expressiveness and dual coding refer to the usage
of the full range and capacities of visual variables, and the usage of text to
complement graphics, respectively. To achieve this we use a red colored, bold,
and italic font to highlight the risk-related information (text) on messages. This
comes in addition to symbols that are distinguishable with respect to shape and
color. Based on our experience, this convention is useful for new and altered
messages, as well as unwanted incidents. The text on new messages is always
formatted as risk-related information because these messages are initiated by
threats. The text on altered messages is formatted as risk-related information
when highlighting the alteration in the message. This could be part of the text
or the complete text on the altered message. The text on unwanted incidents
are always formatted as risk-related information because they represent that
assets are harmed or reduced in value. This formatting strengthens the visual
expressiveness and helps security testers keep track of and distinguish between
risk-related and non risk-related information on the messages.
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The principle of graphic economy states that the number of different graphi-
cal symbols should not exceed 6 in order to be cognitively manageable. However,
if a language consists of more than 6 symbols, which is the case in CORAL, then
one can deal with graphic complexity by increasing visual expressiveness. As
explained above, to achieve this we format text to complement the graphics,
which in turn strengthens the visual expressiveness. In particular, we position
the symbols representing new, altered, deleted, and unwanted incident messages
so that they are horizontally aligned with the message, as well as correctly ori-
ented with respect to the message direction. These two visual variables give an
additional increase to the visual expressiveness [18].

3.3 Participant Appropriateness

Participant appropriateness relates the participant knowledge to the language [15].
This is often evaluated with respect to the design principle referred to as seman-
tic transparency [18].

The principle of semantic transparency states that symbols should use visual
representations whose appearance suggests their meaning. To achieve this, we
base the risk-related symbols used in CORAL on corresponding symbols used in
the CORAS risk analysis language [17]. The graphical symbols in CORAS have
been empirically shown to be cognitively effective [8], and these concepts are
also commonly used in security testing [23], which is why we use similar symbols
in CORAL.

3.4 Modeler Appropriateness

Modeler appropriateness relates the language to the knowledge of the one doing
the modeling [15]. This is often evaluated with respect to the design principle
referred to as cognitive fit [18].

The principle of cognitive fit states that the language should use different
visual dialects for different tasks and audiences. CORAL is mainly to be used
by security testers, for the purpose of risk-driven security testing. This implies
that CORAL must provide concepts and a corresponding graphical notation
necessary to carry out security risk assessment, as well as security testing. As
discussed above, we provide this by basing CORAL on state of the art standards
and guidelines. However, this also means that CORAL requires testers to be fa-
miliar with security risk assessment. Security testers usually have this required
background, because they often have to carry out activities related to security
risk assessment, such as creating security abuse/misuse cases, performing archi-
tectural risk analysis, and building risk-driven security test plans [23].

3.5 Tool Appropriateness

Tool appropriateness relates the language to the interpretation from the technical
audience (tools) [15]. A prerequisite for tool interpretation is that the language
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must have a syntax and semantics that are formally defined. CORAL is accom-
panied by an abstract syntax as well as a schematically defined natural-language
semantics [3]. Testers may use the abstract syntax in order to create risk models
that are syntactically correct, and the natural-language semantics in order to
clearly and consistently document, communicate and analyze risks.

4 What we could have done differently?

This section discusses what we could have done differently with respect to the
design of CORAL.

4.1 Graphical Versus Textual

A model may be either two-dimensional or one-dimensional3. A graph is two-
dimensional while text is one-dimensional. CORAL is obviously two-dimensional.
A one-dimensional alternative would be to replace the UML diagrams by actual
code and the specific graphical annotations of CORAL by textual annotations.
One argument in favor of such an approach is that it would be sufficient for the
tester to know the source-code language. However, the price to pay would be no
abstraction. The tester would have to create a mental model of how security risks
are caused including the chain of events and how they may affect the system to
test, and based on that describe the risk picture. Moreover, the tester would have
to read through code from top to bottom to capture details such as unwanted
incidents, frequencies, conditional probabilities, consequences and so on.

Using UML sequence diagrams we cover a scenario that occurs multiple times
in the source code by a single diagram. Moreover, UML sequence diagrams cap-
ture the interaction between independent actors and processes in a manner not
possible using source code. Finally, UML sequence diagrams allow us to describe
the behavior of human actors including working procedures as well as threat
behavior.

Finding the right balance between text and graphics in annotations is non-
trivial. As argued in [6], text labels are often preferred over graphical means.
Hence, finding the right balance is essential. The recently completed EMFASE
project arrived at similar conclusions [1].

4.2 Risk Annotations Versus Tables

An alternative to the CORAL approach of representing risk-related informa-
tion on top of sequence diagrams is to document the risk-related information
separately using tables. The most commonly used table-based risk assessment
approach is Hazard and Operability (HazOp) analysis [9]. Many risk-driven test-
ing approaches use table-representations inspired from HazOp analysis [2]. Ha-
zOp makes use of guide words to identify risks, their causes, as well as possible

3 A model may of course also be three-dimensional, but that is not relevant in this
paper.
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treatments. Figure 4 illustrates a typical HazOp table in which we represent the
threat scenario in Fig. 2b.

Element Characteristics Guide 

word

Deviation Possible 

causes

Consequences Safeguards Comments Action 

required

Exercise 

Options 

form

Selling or 

buying shares 

in a company

No 

(not)

HTTP 

requests 

not 

sanitized

Web-

application 

form has no 

input 

validation

An admin-

feature is 

accessed

No HTTP requests 

may have been 

tampered to 

access restricted 

features

Implement 

input 

validation 

mechanizm

Fig. 4. HazOp table representing the threat scenario in Fig. 2b.

Tables may also be regarded as two-dimensional because a cell in the table
can be identified by pairs of row and column headings. Moreover, tables present
all information consistently with respect to the headings. This guides the reader
to the relevant information in a structured manner. Finally, information in tables
are generally presented as text. This removes the need to interpret semantics of
graphical symbols when looking for certain information.

CORAL is based on the hypothesis that it is advantageous to annotate risk
information on the locations where it belongs in a style corresponding to the
underlying modeling language. For example, the transmission frequency of mes-
sage continue(adminSysFeat) in Fig. 2b is attached to the transmission-end
of the message, while the reception frequency is attached to the reception-
end. Moreover, a particular location in the diagram may convey more than
one kind of information. For example, the transmission-end of message con-
tinue(adminSysFeat) in Fig. 2b simultaneously conveys that the message is a
new message, that the transmission occurs with frequency [20, 50>:1y, and that
it is transmitted by Network tool. This information would normally be found in
separate columns in a table.

On the other hand, whether tables are better than graphs or the other way
around is far from obvious [16]. The answer depends probably on the context of
use and the complexity of the information to be presented.

4.3 Sequence Diagrams Versus Other UML Representations

The graphical notation of CORAL could have been based on modeling languages
other than UML sequence diagrams. According to Dias-Neto et al. [19], the
three most common modeling notations (not including UML sequence diagrams)
used in model-based testing are UML state machines/finite state machines, class
diagrams, and use-case diagrams.

State machines are specifications of sequences of states that an object or an
interaction goes through in response to events during its life, together with its
responsive effects [21]. These sequence of states correspond to events that occur
chronologically on a particular lifeline in CORAL. In principle, it is possible to
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represent the same risk-related information as in CORAL using state machines.
The advantage of sequence diagrams when compared to state machines is that we
may easily isolate particular scenarios without having to consider the behavior
for other scenarios. This is very much in the spirit of testing and an important
reason for the development of sequence diagram notation.

Class diagrams capture the static view of a system as a collection of declar-
ative (static) model elements with contents and relationships [21]. To this end,
class diagrams are useful to describe the structure of the system to test. How-
ever, the kind of dynamic behavior that CORAL address cannot be specified
using class diagrams.

Use-case diagrams show the relationships among actors and use cases within
a system [21]. Their high-level nature is useful for capturing high-level threat
scenarios a system may be exposed to. A threat can be modeled as an actor,
while a high-level scenario corresponds to use-case. Misuse cases [26] is a well-
known notation based on use-case diagrams used to capture high-level threat
scenarios. However, in the context of testing, high-level threat scenarios are only
useful as a starting point to design detailed security tests. CORAL addresses the
latter, that is, designing detailed security tests.

4.4 CORAL Versus Attack Trees

The annotation of sequence diagrams may be thought of as augmenting the
sequence diagrams with an attack tree on which there is a huge literature [14].
CORAL allows the representation of sequential conjunction [13] and disjunction,
but not ordinary conjunction, for which we have not seen any real need. Instead
of embedding the CORAL annotations within the sequence diagrams we could
of course used attack trees in addition to sequence diagrams in the same way
as some approaches to risk-driven testing use tables in addition to the system
documentation. However, as for tables, we think intended users benefit from an
integrated approach.

4.5 CORAL Versus Formal Methods

CORAL is supported by an abstract textual syntax formalized in EBNF [3]. The
semantics of CORAL is defined by a schematic translation of any syntactically
correct CORAL expression into English sentences. The target audience of the
natural-language semantics is security testers, and the purpose is to help testers
clearly and consistently document, communicate and analyze security risks.

Although formal in the sense described above, CORAL is not formal in the
classical meaning of formal methods. This would require a mathematical se-
mantics as well as a formalization of the natural-language expressions used to
annotate CORAL diagrams. A mathematical semantics would indeed be useful,
not to replace the natural-language semantics which targets the users of CORAL,
but to allow tool and method developers building on CORAL prove soundness
of the rules and heuristics.
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Formalizing the natural-language expressions would on the other hand be
counter-productive. We believe it is a strength of CORAL that security testers
freely can augment their diagrams without being constrained by formal concerns.

To summarize, a formal semantics would be beneficial and we hope to provide
this in the future, for example, based on STAIRS [7] or probabilistic STAIRS [24]
for sequence diagrams. Formalizing the natural-language expressions would prob-
ably alienate the CORAL approach from its intended users, namely security
testers.

5 Conclusion

In this paper we have presented the CORAL language for risk-driven security
testing, motivated some of the major design decisions on which it builds, and
discussed what we could have done differently with respect to the design of the
language.

The target audience of CORAL is security testers. We have tried to explain
why we think CORAL is comprehensible to security testers and why it is appro-
priate to use for risk-driven security testing.

With respect to what we could have done differently we considered various
alternatives and their impact on CORAL. In particular, we discussed why we
decided to develop CORAL as a graphical language instead of augmenting code,
why we embed risk-related annotations in sequence diagrams instead of using
separate tables or attack trees, why we do not build on other UML notations
instead of sequence diagrams, and why formalizing the natural-language expres-
sions in CORAL diagrams is counter-productive.
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