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Abstract. In this paper hyperbolic partial differential equations with random coefficients are
discussed. Such random partial differential equations appear for instance in traffic flow problems
as well as in many physical processes in random media. Two types of models are presented:
The first has a time-dependent coefficient modeled by the Ornstein–Uhlenbeck process. The
second has a random field coefficient with a given covariance in space. For the former a formula
for the exact solution in terms of moments is derived. In both cases stable numerical schemes
are introduced to solve these random partial differential equations. Simulation results including
convergence studies conclude the theoretical findings.
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1. Introduction

Hyperbolic partial differential equations with random data have been an active research field
over the last decades. In ample situations measurements are not accurate enough to allow an
exact description of a physical phenomena by a deterministic model. Uncertainty may then be
introduced in the appropriate parameters and the distribution of the (now stochastic) solutions
is studied. As en example, hyperbolic partial differential equations with random coefficients
are applied in the modeling of underground water flow in porous media or, more general,
of transport processes in non-uniform media, in the modeling of pollution spread and heat
transfer and in traffic simulations. Those types of phenomena can be modeled by hyperbolic
conservation laws that have the general from

(1.1) ut + f(x, t, u)x = 0

in one spatial dimension, i.e., x ∈ D ⊂ R. As mentioned, in many realistic applications
it is often the case that there are uncertainties in the parameters of the function f , or that
uncertainty is even intrinsic to the problem. One way to model this is the following. Given a
probability space (Ω,F , P ) we can incorporate those uncertainties by considering the equation

ut(x, t, ω) + f(x, t, ω, u(x, t, ω))x = 0,

u(x, 0, ω) = g(x),
(1.2)

where f is a (in general nonlinear) function that now depends not only on space, time, and the
unknown function u, but also on a stochastic variable ω ∈ Ω that accounts for the uncertainties
in the parameters of the conservation law. A random function u : D× [0, T ]×Ω→ R for which
Equation (1.2) holds P-almost everywhere in Ω (that is almost surely) is called a (strong)
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solution. We are then interested in the distribution or in the evolution of certain moments of
the solution of this equation, typically of the expectation E(u) and the variance V(u).

We restrict our attention to linear advection equations with a random transport velocity
as a prototype problem. There are many results in literature for hyperoblic equations with
coefficients that are (real-valued) random variables, i.e. which do not depend on space or
time. For instance, the authors in [17, 5, 3] present both theoretical results and numerical
approximations. In [6] the authors present expressions for the distribution of the solution of
a linear advection equation with a time-dependent velocity, given in terms of the probability
density function of the underlying integral of the stochastic process. Concrete results are
presented in the case where the velocity field is deterministic, a random variable and Gaussian.
Further, the same authors introduce numerical schemes for the mean of the solution of the linear
transport equation with homogeneous random velocity and random initial conditions in [4] and
the authors in [7] extend the setting to Gaussian processes and telegraph processes. In [13] the
linear advection equation with space- and time-dependent coefficients are subject of research.
The authors develop numerical methods using polynomial chaos to solve the advection equation
with a transport velocity given by a Gaussian or a log-normal distribution. In [1] we applied
similar methods, like the ones developed here, to the magnetic induction equation and linear
acoustics, both with a time- and space-dependent random background velocity field.

In order to approximate the moments of equations of type (1.2) numerically, methods are
either based on a Monte Carlo approach or use a stochastic Galerkin or, more general, a
polynomial chaos approach (see [13, 10, 19] and references therein). The latter approach is not
suitable for any distribution. So far this approach is limited to uniform or Gaussian distributed
fields or processes. A Monte Carlo method, on the other hand may also be used when dealing
with jump processes or Lévy random fields. This comes, however, to the price of a lower
convergence rate of the Monte Carlo method. We point out that a more efficient multilevel
Monte Carlo approximation could be used in this article, but we refrain from doing so, since we
wish to focus on the numerical approximation in the temporal and spatial domain as well as the
approximation of the coefficient. For a result on the convergence and computational complexity
of the multilevel Monte Carlo approximation for general Hilbert-space-valued random variables
we refer to [2]. For a multilevel Monte Carlo finite volume method see for instance [16]. A
further advantage of a Monte Carlo method based approximation is that it is non-intrusive,
meaning that already implemented numerical solvers can be readily used. In addition, it does
not depend on the correlation length of the stochastic input, leading to a large number of
Karhunen–Loève terms for weakly correlated fields.

The article is structured as follows. In the first section we examine the linear transport equa-
tion with a time dependent coefficient a = (a(t), t ∈ [0, T ]) given by the Ornstein–Uhlenbeck
process. We derive a closed form expression for the moments of the distribution of the solution.
We thereby extend the result found in [17] and [6]. Furthermore, we introduce a second order
(in space and time) Monte Carlo method to approximate the solution. We present simulation
results and a convergence study. The last section presents the linear transport equation with
a space-dependent coefficient a = (a(x), x ∈ D), assumed to be a Gaussian/Lévy random field
over the domain D. Here, we also present a second order (in space and time) Monte Carlo
method for the approximation of the solutions. We show simulations and a self-convergence
study. Although, in both cases the random transport equation is scalar and linear, we see



UNCERTAINTY QUANTIFICATION FOR HYPERBOLIC PROBLEMS 3

interesting effects in the moments of the solution that differ from the deterministic variants.
Furthermore, the numerical methods/discretizations for the approximation of moments of the
solution to the equations become non-trivial.

2. Time-dependent uncertainty modeled by the Ornstein–Uhlenbeck process.

In this section we are concerned with the distribution of the solution to the random partial
differential equation

ut(x, t, ω) + (a(t, ω)u(x, t, ω))x = 0,

u(x, 0, ω) = g(x)
(2.1)

where we model uncertainty in a way that allows for changes over time. That means we want
to solve an advection equation with a time-dependent stochastic advection parameter. Let us
start by defining a = (a(t), t ∈ [0, T ]) as the solution of the Ornstein–Uhlenbeck process

da(t) = θ(µ− a(t))dt+ σdW (t),

a(0) = a0,
(2.2)

where W = (W (t), t ∈ [0, T ]) is a standard Brownian motion and µ ∈ R, θ > 0 and σ > 0
are parameters. In general the initial condition can be random as well. A standard Brownian
motion or Wiener process, defined on the probability space (Ω,F , P ), is a continuous stochastic
process which starts in zero P -a.s and has independent and normally distributed increments,
i.e., Wt−Ws ∼ N (0, t−s). The idea of equation (2.2) is that there are two competing features,
one is the introduction of noise via the process W , the other is the relaxation of the solution to
the mean (see Figure 1(c)) for some sample solutions). For every t ∈ [0, T ] the random variable
a(t) is normally distributed with mean and variance

E(a(t)) = µ+ (a0 − µ)e−θt,

V(a(t)) =
σ2

2θ
(1− e−2θt).

(2.3)

Remark 2.1. Mean and Variance of teh Ornstein–Uhlenbeck process can be easily calculated by
using Itô’s formula with the function f(t, x) = eθtx, and looking at the dynamics of f(t, a(t)).
This leads to the following solution of the Ornstein–Uhlenbeck process

(2.4) a(t) = µ+ e−θt(a0 − µ) + σ

∫ t

0

e−θ(t−s) dW (s).

From this form we can directly deduce the expectation of a(t) and the variance is derived by
using Itô’s isometry.

2.1. Theoretical results. In the specific case of a time-dependent coefficient we can calcu-
late a closed form of the distribution of the solution. For the moments of the solution of
equation (2.1) we have the following result (see Figure 1 for an example).

Theorem 2.2. The moments of the solution to Equation (2.1) with coefficient a given by the
Ornstein–Uhlenbeck process (2.2) exist and are given by

(2.5) E(u(x, t)) =

∫
g(x− y)fA(σ̂2,µ̂)(y) dy = (fA(σ̂2,0) ∗ g)(x− tµ̂),
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where g(x) = u(x, 0) and the probability density function fA is given by

fA(σ̂2,µ̂)(y) =
1√

2πσ̂2
e−

(y−µ̂)2

2σ̂2 ,

with diffusion coefficient σ̂2 = σ2

θ3

(
θt + 2e−θt − 1

2
e−2θt − 3

2

)
and transportation speed µ̂ = µ −

(a0 − µ) e−θt−1
θt

. As usual, f ∗ g denotes the convolution of the two functions.

Remark 2.3. Higher moments of the solution can be calculated by

Mm(u(x, t)) = E
(
(u(x, t)− E(u(x, t)))m

)
.(2.6)

Proof. The solution for a single realization (for a fix ω ∈ Ω) of Equation (2.1) is given by

g(x−
∫ t

0
a(s, ω) ds). We start by calculating the first moment of this expression, i.e.

E(g(x−
∫ t

0

a(s) ds)).

That means, we have to calculate the distribution of the time integral over a, i.e. the distribution
of the stochastic process

A(t) =

∫ t

0

a(t) dt.

The process A is again a Gaussian process, i.e. A(t) ∼ N (µ̂, σ̂2), and therefore completely
characterized by its mean and variance. Using Fubini’s theorem we have that

E(A(t)) =

∫ t

0

E(a(s)) ds =

∫ t

0

µ+ e−θs(a0 − µ) ds = µt− (a0 − µ)
e−θt − 1

θ
=: µ̂.(2.7)

We express the variance of A via the covariance of A with itself

V(A(t)) = Cov(A(t), A(t)) = E
(
(A(t)− E(A(t)))(A(t)− E(A(t)))

)
.

Using A(t)−E(A(t)) = σ
∫ t

0

∫ s
0

e−θ(s−u) dW (u) ds (combine Equations (2.4) and (2.7)) this yields

V(A(t)) = E
(
σ

∫ t

0

∫ s

0

e−θ(s−u) dW (u) ds σ

∫ t

0

∫ r

0

e−θ(r−v) dW (v) dr
)

= 2σ2

∫ t

0

e−θs
∫ t

0

e−θr E
( ∫ s

0

eθu dW (u)

∫ r

0

eθv dW (v)
)
dr ds,

using Fubini’s theorem. For a Brownian motion W , it is known that

E(

∫ s

0

eθu dW (u)

∫ r

0

eθv dW (v)) =
1

2θ
(e2θmin(s,r) − 1).

Therefore, we have

V(A(t)) = 2σ2

∫ t

0

e−θs
∫ s

0

e−θr
1

2θ
(e2θmin(s,r) − 1) dr ds

=
σ2

θ

∫ t

0

e−θs
∫ s

0

e−θr(e2θr − 1) dr ds =
σ2

θ3

(
θt+ 2e−θt − 1

2
e−2θt − 3

2

)
=: σ̂2.

This gives us the variance of A(t) depending on the variables θ and σ.
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Therefore, the expectation of the solution of equation (2.1) is given by

E(g(x−
∫ t

0

a(s) ds)) = E(g(x− A(t)))

=

∫ ∞
−∞

g(x− y)fA(y) dy

where fA is the normal density function with parameters µ̂ and σ̂2 given by

fA(y) =
1√

2πσ̂2
e−

(y−µ̂)2

2σ̂2 .

�

Remark 2.4. For the limit θ → 0, we recover the corresponding result for a pure Brownian
motion process (i.e. a(t) = σW (t)), where µ̂ = µ and σ̂2 = σ2 t3

3
. This can be shown by a

Taylor expansion as

V(A(t)) =
σ2

θ3

(
θt+ 2e−θt − 1

2
e−2θt − 3

2

)
=
σ2

θ2

(
θt+ 2

(
1− θt+ θ2t2/2− θ3t3/3! +O(θ4)

)
− 1

2

(
1− 2θt+ 4θ2t2/2− 23θ3t3/3! +O(θ4)

)
− 3

2

)
= σ2t3/3 +O(θ).

A similar Taylor expansion shows the result for E(A(t)).

Although we have a formula for the moments of the solutions to the linear advection equation
with a velocity field given by the Ornstein-Uhlenbeck proccess, it will not be possible to obtain
analytical solutions for a general hyperbolic equation and/or a general stochastic process. As
this is a prototype problem, we therefore introduce a Monte Carlo based approximation of the
solutions to Equation (2.1) in the following.

2.2. First order discretizations. For the approximation of the (moments of the) solution to
partial differential equations with random coefficient we have to discretize in space and time,
as well as in the “stochastic domain”. Here we use a Monte Carlo method with underlying
first and higher order schemes (in space and time). That means, that for each realization ω
of Equation (2.1) we have to approximate the (deterministic) solution of a hyperbolic partial
differential equation. Our base method for each realization is, therefore, a finite volume scheme,
see e.g. [15] and references therein.

Before we continue with a technical description of the schemes used, we introduce some useful
notation. As usual, ∆x denotes the equidistant spatial step size. For i = 1, ..., I, I ∈ N, the cell
centers are given by xi = (i− 1

2
)∆x together with the according cell interfaces xi−1/2 = (i−1)∆x

for i = 1, ..., I+ 1. Similarly, ∆tn is the varying temporal step size leading to the discrete times
tn =

∑n
i=1 ∆ti for n ∈ N. For a function b(x, t), we set bni = b (xi, t

n).
A finite volume scheme is obtained by integrating Equation (2.1) over some time interval

T n = [tn−1, tn], tn = tn−1 + ∆tn, (where ∆tn is still to be determined) and a control volume



6 A. BARTH AND F. G. FUCHS

Xi = [xi−1/2, xi+1/2], leading to

0 =

∫
Tn

1

|Xi|

∫
Xi

ut + (a(t)u)x dx dt =
1

|Xi|

∫
Xi

u dx|tnt=tn−1 +
1

|Xi|

∫
Tn

(a(t)u) dt|xi+1/2
x=xi−1/2 .

Denoting the cell averages by ui(t) = 1
|Xi|

∫
Xi
u dx, we may write

(2.8) ui(t
n) = ui(t

n−1)− (F n
i+1/2 − F n

i−1/2)/|Xi|,

where the flux F n
i+1/2 approximates the following integral

F n
i+1/2 ≈

∫
Tn

(a(t)u) dt|x=xi+1/2
=

∫
Tn

(a(t)) dt u|x=xi+1/2
.

One possibility for this approximation is the standard upwind stencil, see [15]

(2.9) F n
i+1/2 − F n

i−1/2 = max(an, 0)(un−1
i − un−1

i−1 ) + min(an, 0)(un−1
i+1 − un−1

i ),

where an ≈
∫
Tn
a(t) dt. We approximate this integral by choosing a point t∗ ∈ [tn−1, tn], usually

t∗ = tn−1, and setting

(2.10) an = ∆tna(t∗).

In order to obtain the values an we have to approximate the Ornstein–Uhlenbeck process,
that is we need a discretization of the solution to Equation (2.2). We use an implicit Euler–
Maruyama method (which is in this case equal to the Milstein method, since σ is a constant)
for the potentially stiff ODE

a(sl+1)− a(sl) = ∆sθ
(
µ− a(sl+1)

)
+ σ
√

∆sY l, l ∈ N

. This is equivalent to

(2.11)

a0 = µ,

al+1 =
al + ∆sθµ+ σ

√
∆sY l

1 + ∆sθ

where (Y l, l ∈ N) is a sequence of independent N (0, 1)-distributed random variables. For a
good approximation of the Ornstein–Uhlenbeck process used in the Monte Carlo simulation of
Equation (2.1), i.e. in Equation (2.8), the constant step size ∆s should be chosen small enough,
such that ∆s ≤ ∆tn, for all n, at least roughly. In the simulations we choose

(2.12) ∆s =
T

d3Tλ/∆xe
, where λ = µ+ σ.

We would like to summarize the above steps in the following algorithm.
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Algorithm 1 Time-dependent uncertainty (for python script see [9])

Require: M ∈ N
for each sample j = 0 to M − 1 do

Create al defined in equations (2.11) and (2.12) as approximation of a(t)
Define the piecewise constant function â(t) = al, for t ∈ [l∆s, (l + 1)∆s)
t← 0, n← 0
Initialize cell averages u0

i for each cell [xi−1/2, xi+1/2]
while t < T do

Find ∆tn such that Φ(t+ ∆tn; t,∆x) = |
∫ t+∆tn

t
â(t)dt| − C0∆x = 0 (and t+ ∆tn ≤ T )

Set An =
∫ t+∆tn

t
â(t)dt

With (periodic) boundary conditions for uni apply time step
un+1
i = uni − 1/∆x

(
max (An, 0)(uni − uni−1) + min (An, 0)(uni+1 − uni )

)
t← t+ ∆tn

n← n+ 1
end while

end for

We would like to emphasize that the calculation of ∆tn in Algorithm 1 is an important part
of the algorithm. We implemented bisection for root-finding in the following way. Given a
time t we first increase l (from the previous value, initially 0) until we have (l + 1)∆s > t
and Φ((l + 1)∆s; t,∆x) ≥ 0. Then we use bisection to find the root of Φ in the interval
[l∆s, (l + 1)∆s].

This algorithm for finding ∆tn allows for a large stepsize where possible, while still approx-
imating the time interval accurately. The advantage of a larger step size in the finite volume
method is less numerical diffusion. In order to further reduce numerical diffusion of the base
scheme, Algorithm 1 can easily be extended to be second order in space and time as follows.

2.3. Second order base scheme. For the second order scheme in space and time two further
ingredients are needed in each time step: using a non-oscillatory second order reconstruction
by limiters (see [15, 20, 12, 18]) and the second order time stepping (see equation (2.13)).

To achieve second order accuracy in space it is standard (see, e.g., [15]) to replace the
piecewise constant approximation ui of u with a non-oscillatory piecewise linear reconstruction
in-order to obtain second-order spatial accuracy. There are a variety of reconstructions including
the popular TVD-MUSCL limiters (see, e.g., [20]), ENO reconstruction (see, e.g., [12]) and
WENO reconstruction (see, e.g., [18]). In this article we present results for the minmod and
the superbee limiter, see for instance [15]. We choose those two from a wide range of possible
limiters, because both are TVD (total variation diminishing), but the minmod is the most
”pessimistic” and the superbee is the most ”optimistic” limiter in the TVD regime.
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To present a scheme that is second-order in time, we use the second-order strong-stability
preserving Runge–Kutta (SSP) time stepping given by

u∗i = uni + ∆tnFn
i ,

u∗∗i = u∗i + ∆tnF∗i ,

un+1
i =

1

2
(uni + u∗∗i ),

(2.13)

where Fn
i and F∗i are the numerical approximation of the fluxes, see e.g. [11]. The time step

is determined by a standard CFL condition. For both first and second order schemes we use
a Courant number of C0 = 0.45, see Algorithm 1. Although we have superconvergence, i.e.
in some cases the upwind scheme reproduces the exact solution for C0 = 1, we use a lower
Courant number since ”superconvergence” is not representative for typical schemes or more
involved problems.

2.4. Measurement of errors. We are interested in measuring the error of the Monte Carlo
estimator.

Let E(u) be the expectation of the exact solution u and ui,m the numerical approximation
to the solution of the partial differential equation for the m-th realization. Then, the relative
approximation error of the expectation in the L1 norm is given by

(2.14) εappr(t) =
∆x
∑

i |(
1
M

∑
m ui,m(xi, t))− E(u(xi, t

n))|
∆x
∑

i |E(u(xi, t))|
.

Remark 2.5. It is interesting to observe that the approximation error εappr is bounded by the
sum of the numerical error εnum of the base method and the pure Monte Carlo error εMCM, that
is

(2.15) εappr(t) ≤ εnum(t) + εMCM(t).

Here, the relative L1-error of the Monte Carlo approximation is given by

(2.16) εMCM(t) =
∆x(

∑
i |

1
M

∑M
m=1 um(xi, t)− E(u(xi, t))|)

∆x
∑

i |E(u(xi, t))|
,

where um denotes the exact solution of the partial differential equation for the m-th realization.
The relative approximation error in the L1-norm of the deterministic numerical method is

(2.17) εnum(t) =
∆x
∑

i |
1
M

∑
m(ui,m(xi, t)− um(xi, t))|

∆x
∑

i |E(u(xi, t))|
,

Using the triangle inequality, it is trivial to show the relationship (2.15). If one uses the
(squared) mean-squared errors (i.e. L2-errors) then one may even show equality.

Relation (2.15) shows that the approximation error is bounded by the dominating part of the
sum of the numerical error and the pure Monte Carlo error. The Monte Carlo method converges
with the rate 1/2 in the number of samples in mean square and is independent of the resolution
of the grid, i.e. the size of ∆x. On the other hand, the numerical method, being first order,
converges with O(∆x) for each single realization, independent of the number of Monte Carlo
samples. Therefore, equation (2.15) suggests that our Monte Carlo method is most efficient if
εnum ' εMCM
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Similarly, let V(u) be the variance of the exact solution u and ui,m the numerical approxi-
mation to the solution of the partial differential equation for the m-th realization. Then the
absolute approximation error of the variance in the L1 norm is given by

(2.18) δappr(t) = ∆x
∑
i

|( 1

M

∑
m

(ui,m(xi, t)− µi,m(xi, t))
2)− V(u(xi, t))|,

with µi,m denoting the (empirical) expectation of ui,m.

(a) Exact expectation and 3 sample solutions (b) Exact variance

(c) Corresponding 3 approximations of the Ornstein–
Uhlenbeck process

Figure 1. The time-
dependent problem given
in Equation (2.1) with
a(0) = −1/4, for the parameter
set (µ, θ, σ) = (1/4, 4, 1/

√
10).

In (a) three sample solutions
for the second order scheme
with minmod limiter using 1600
mesh points and in (c) the cor-
responding approximations of
the Ornstein–Uhlenbeck process
are shown. We see the exact
variance in (b) and the exact
expectation in (a) at time t = 1.

2.5. Simulation results of time-dependent uncertainty. In the following, we test the
Monte Carlo method described in Algorithm 1. In order to avoid numerical effects from bound-
ary conditions we define the partial differential equation in expression (2.1) on a spacial domain
[xL, xR] = [0, 1] with periodic boundary conditions for both u and the initial condition g, i.e.

(2.19) u(xL, t, ω) = u(xR, t, ω), for all t ≥ 0, ω ∈ Ω.
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In general initial conditions for hyperbolic problems consist of both smooth and discontinuous
parts. In order to test our numerical schemes properly we therefore choose the initial condition
to contain a sine wave and a jump-discontinuity, as shown in Figure 1(a). We choose the
deterministic initial condition for the Ornstein–Uhlenbeck process to be

a(0) = −µ.
Three typical sample paths of Equation (2.2) are plotted in Figure 1(c) for the parameter
set (µ, θ, σ) = (1/4, 4, 1/

√
10) with t ∈ [0, 1]. As expected the Ornstein–Uhlenbeck process

starts at a0 = −µ and (since θ > 0) fairly quickly relaxes to values around +µ. Figure 1(a)
shows the according three approximations to the (sample) solutions u to the partial differential
Equation (2.1) for the different realizations of the Gaussian process a shown in (c). They are
obtained from Algorithm 1 with a second order scheme using the minmod-limiter and with 1600
mesh points. Since the samples a start at a negative value, the initial profile u gets advected
to the left at first. But as time progresses, those sample paths eventually have positive values
a and therefore the solution u of the PDE starts moving to the right again.

We can see in Figure 1(a) that the expectation E(u) at time t consists of the initial function g
transported with speed µ̂ and smeared with the rate σ̂, according to Theorem 2.2. The variance,
shown in (b), is highest at the transported initial (now smoothed out) jump discontinuity.

(a) Error expectation (b) Error variance

Figure 2. The L1-errors for the time-dependent problem (see Equation (2.1)).
Dependence of the errors defined in Equations (2.14) and (2.18) on the number of
grid points at time t = 1 with a(0) = −1/4 and for the parameter set (µ, θ, σ) =
(1/4, 4, 1/

√
10) using M = 106 Monte Carlo simulations.

Next, we test the convergence of the schemes described in Algorithm 1 with respect to
mesh refinement. Therefore, we choose a high number of samples M in the Monte Carlo
simulation, such that the dominating error of εappr is the one of the numerical base method, see
Inequality (2.15). We compare first and second order base schemes with a Courant number of
0.45. We present plots for the approximation errors of the first two moments εappr and δappr. As
expected, Figure 2 shows that overall the second order schemes have a smaller error than the
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first order scheme. Among the two second order schemes, the one using the superbee limiter
has the smaller error, especially the error for the variance.

The results indicate that the approximation of the distribution of the solution to Equa-
tion (2.1) given by the Monte Carlo method presented in Algorithm 1 converges to the exact
solution as M →∞ and ∆x→ 0 simultaneously. This concludes the time dependent case and
we continue with space dependent coefficients.

3. Space dependent uncertainty.

In this section we investigate the case where the uncertainty depends on the space variable,
i.e. the advection parameter is a random field with a given covariance. More specifically, we
look at the following equation

ut(x, t, ω) + a(x, ω)ux(x, t, ω) = 0,

u(x, 0, ω) = g(x).
(3.1)

The coefficient a is then modeled as a random field, which takes values in a function spaceH over
the domain D ⊂ R, here H := L2(D). We assume that the random field a is characterized by
its mean and its covariance operator. More precisely, we assume that there exists a covariance
operator Q ∈ L+

1 (H), where L+
1 (H) denotes the space of all nonnegative, symmetric and

nuclear operators in H. For every such operator the Hilbert–Schmidt theorem on the spectral
representation holds: there exists an orthonormal basis (ei, i ∈ N) of H such that Qei = λiei,
where all λi ≥ 0 in the sequence (λi, i ∈ N) and 0 is its only accumulation point. Such a random
field is characterized by its Karhunen–Loève expansion

(3.2) a(x, ω) = µ+
∑
i∈N

√
λiβi(ω)ei(x).

Here, (βi, i ∈ N) is a sequence of independent normally distributed random variables and µ is
finite. A similar expression holds if a is a Lévy field. Then we have

(3.3) a(x, ω) = µ+
∑
i∈N

√
λiLi(ω)ei(x).

In this case, (Li, i ∈ N) is a sequence of real-valued, orthogonal Poisson-distributed random
variables.

Remark 3.1. We would like to point out that Equation (3.1) is not a conservative equa-
tion. Solutions of the conservative advection equation with space-dependent variables, i.e.
ut + (a(x)u)x = 0 consist in general of delta functions (see [15] Chapter 16.4).

It is challenging to derive a closed form for the distribution of the solutions to Equation (3.1).
We would like, however, to present a possible way in that direction, by showing a bound on the
characteristic curves of that equation.

3.1. Theoretical results. We could not find any hint in the literature to a closed form solution
to Equation (3.1). However, one could find the distribution of the solution by looking at the
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characteristic curves. The characteristic curves are the solutions of the autonomous ordinary
(in this case stochastic) differential equation

(3.4)
dX(t)

dt
= a(X(t), ω) ⇔ dX(t) = a(X(t), ω) dt.

Equation (3.1) is linear and therefore the solution along the characteristic curves is constant.
Furthermore, for a linear advection equation, even one with variable coefficients, the charac-
teristics will never cross, see [15, p. 208]. Using the Karhunen-Loève expansion (3.2) one can
write the equation of the characteristics (3.4) as

(3.5) X(t) = X(0) + µt+

∫ t

0

∑
i∈N

βi(ω)fi(X(s)) ds,

where we set fi(·) =
√
λiei(·) for all i ∈ N. We want to proof the existence of a solution

to Equation (3.4) in the space L2(Ω;C([0, T ];R)) of square integrable functions with values
in C([0, T ];R). One important example of a Covariance operator is given by the Gaussian
covariance kernel. For instance in the overview article [8] one can find expressions for the
eigenvalues (λi, i ∈ N) and eigenfunctions (ei, i ∈ N) of the Gaussian covariance operator with

integral kernel q(x, y) = e
(x−y)2

2 . They are given by

λi =
1

(1 +
√

3/2)1/2

1

(2 +
√

3)i

and

ei(x) =
31/8

√
2ii!

e−(
√

3−1)x
2

2 Hi(3
1/4x),

where Hi denotes the i-th Hermite polynomial. Then, for each i ∈ N, fi is bounded since

|fi(X(s))| ≤ 31/8

(1 +
√

3/2)1/4

(
3

(2 +
√

3)

)i/2
1√
2ii!

e−
(
√
3−1)
2

X(s)2|X(s)i|.

And further
1√
2ii!

e−
(
√
3−1)
2

X(s)2|X(s)i| ≤ 1

since for any y ∈ R we have

y ≤ e(b/i)y2e1/2(ln(2)+ln(i!)/i),

where b = (
√

3−1)
2

. Overall it follows that, for all s ∈ [0, T ], |fi(X(s))| ≤ C < +∞ and, therefore,
|ei(X(s))| < C. This result can be generalized for all Q ∈ L+

1 (H). With this in hand we show
that the solution to the stochastic differential Equation (3.5) X ∈ L2(Ω;C([0, T ];R)).

Lemma 3.2. If
∑

i∈N
√
λi < +∞ and X(0) ∈ L2(Ω;R), then the solution to Equation (3.5) X

belongs to L2(Ω;C([0, T ];R)).

Proof. We have by the definition of the norm of L2(Ω;C([0, T ];R))

‖X‖2
L2(Ω;C([0,T ];R)) := E( sup

t∈[0,T ]

|X(t)|2)
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≤ C
(
E|X(0)|2 + E( sup

t∈[0,T ]

|
∫ t

0

a(X(s)) ds|2)
)

≤ C
(
E|X(0)|2 + µ2T + E( sup

t∈[0,T ]

∫ t

0

|
∑
i∈N

√
λiβiei(X(s))|2 ds)

)
.

The last term is further bounded by

E( sup
t∈[0,T ]

∫ t

0

|
∑
i∈N

√
λiβiei(X(s))|2 ds)

≤ E( sup
t∈[0,T ]

∫ t

0

∑
i∈N

√
λiβ

2
i

∑
i∈N

√
λi|ei(X(s))|2 ds)

≤ E(
∑
i∈N

√
λiβ

2
i

∑
i∈N

√
λi sup

t∈[0,T ]

∫ t

0

|ei(X(s))|2 ds)

≤
∑
i∈N

√
λiE(β2

i )
∑
i∈N

√
λiC(T )

≤ C(T )(
∑
i∈N

√
λi)

2,

where we used the Cauchy–Schwarz inequality, the bound on the eigenfunctions and that the
inpendent random variables βi are standard normally distributed, for i ∈ N. So overall we have
the bound

‖X‖2
L2(Ω;C([0,T ];R)) ≤ C(T )

(
E|X(0)|2 + µ2 + (

∑
i∈N

√
λi)

2
)
.

�

However, this is not a constructive approach to a solution, albeit it justifies the use of a
Monte Carlo method. Since we are not aware of any results on closed form solutions we consider
numerical approximations in the next section. The (additional) assumption that the sequence
(
√
λi, i ∈ N) is summable is for many common covariance kernels fulfilled. In particular, the

example of the Gaussian covariance kernel has exponentially decaying eigenvalues. We remark
further that this also holds for a Lévy random field as defined in Equation (3.3).

3.2. Discretizations of space-dependent uncertainty. As in the time-dependent case, we
employ a Monte Carlo based method for the approximation of the (moments of the) solution
to Equation (3.1). Using the same notation as in Section 2.2, we start by describing a first
order base scheme for each realization of the random field in Equation (3.1). Again, to avoid
numerical artifacts from the boundary, we use periodic boundary conditions for the random
field

(3.6) a(xL, ω) = a(xR, ω), ω ∈ Ω.

and the functions u and g, see Equation (2.19). Using periodicity we define the Gaussian
random field a in the following manner. Let W be a Gaussian white noise random field on R
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Figure 3. Comparison of correlated random fields for q = 1 and q = 5, gener-
ated using algorithm 2 with 8192 points in [0, 1]. The larger q the stronger the
correlation and therefore the less oscillatory the random field.

and γ(ξ), for γ : R → R+ an even and positive function. Then, we set for any µ, σ ∈ R with
σ ≥ 0,

(3.7) a(x) = µ+
√
σ(F−1√γFW )(x),

where F denotes the Fourier transform and F−1 its inverse. Then, since W is centered Gaussian,
so is a− µ and the covariance of a− µ is given by

(3.8) E
(
(a(x)− µ)(a(y)− µ)

)
=

∫
R
e−2πip(x−y)σγ(p)dp, x, y ∈ R,

where i is the imaginary unit. This approach leads to a fast simulation of Gaussian random
fields. A typical family of functions for the Lebesgue density γ is given by

(3.9) γ(ξ) = (1 + ξ2)−q, q ∈ N, q ≥ 1.

The larger the parameter q the higher the spacial correlation of the Gaussian random field a,
see Figure 3. In order to approximate the solution to Equation (3.1) we propose the following
Monte Carlo based approach. It uses a fast approximation of the Gaussian random field a as
provided in [14]. For each realization of the random field the discretization of Equation (3.1) is
standard, see for instance [15, Chapter 9]. For a first order scheme we introduce Algorithm 2.
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Algorithm 2 Space-dependent uncertainty (for python script see [9])

Require: M ∈ N
for each sample j = 0 to M − 1 do

Set Ω = 50

Set ξi−1/2 =

{
(i− 1)/Ω, if i ≤ I/2 + 1

(I − (i− 1))/Ω, else.

Set γi−1/2 = (1 + ξ2
i−1/2)−q/Ω, for i = 1, ..., I

Calculate a1/2,...,I−1/2 = µ + F−1
(√

γ1/2,...,I−1/2F
(
Z1/2,...,I−1/2

))
, where Zi−1/2 =√

σ/δYi−1/2, δ = Ω/I, with Yi−1/2 ∼ N (0, 1)
Use periodic boundary conditions aI+1/2 = a1/2

t← 0, n← 0
Initialize cell averages u0

i for each cell [xi−1/2, xi+1/2]
Set ∆tn = ∆t = c∆x/maxi(|ai+1/2|), where c is the Courant number
while t < T do
if t+ ∆t > T then

∆t = T − t
end if
With (periodic) boundary conditions for uni apply time step
un+1
i = uni −∆tn/∆x

(
max(ai−1/2, 0)(uni − uni−1) + min(ai+1/2, 0)(uni+1 − uni )

)
t← t+ ∆tn

n← n+ 1
end while

end for

As before, the second order (in space and time) accurate scheme requires two further ingre-
dients in each time step: using a non-oscillatory second order reconstruction using limiters and
the second order time stepping (see Section 2.3).

3.3. Simulation results of space-dependent uncertainty. Figure 3 shows two realizations
of the Gaussian random fields generated by Algorithm 2. As expected the random field is less
oscillatory for q = 5 compared to q = 1, since the correlation of the random field is much
stronger.

We start by pointing out that the variance of a in Equation (3.7) is independent of x. Thus,
it makes sense in the simulations to choose µ to be ζ standard deviations of a− µ, that is

(3.10) µ ≈ ζ
√

V[
√
σ(F−1

√
γFW )(x)].

Since the generated Gaussian random field a is normally distributed this means that the prob-

ability that a < 0 is (1−erf(ζ/
√

2))
2

.
Figure 4 presents examples for ζ = 0, 1, 2, 4, leading to the probability of ≈ 50%, 16%, 2.3%

and 0.003% negative values, respectively. This implies that the possibility for zero-crossings of
a varies with ζ. Speaking in terms of the characteristic curves (see Equation (3.4)), such points
will ”trap” the solution at that point, and reduce the average propagation speed.
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(a) Expectation, q = 1 (b) Variance, q = 1

(c) Expectation, q = 5 (d) Variance, q = 5

Figure 4. Results using the second order minmod scheme for µ = 0, σ = 10, q =
5. If not noted otherwise, the expectation and variance are calculated with 104

Monte Carlo samples and 215 = 32768 mesh points.

The solutions shown in Figure 4 were obtained using the second order minmod-based scheme
described in Algorithm 2, using 215 = 32768 grid cells and 104 Monte Carlo samples. In order
to be able to compare the dependence of ζ on the solution, we compute the solution up to time
t = c/µ (for µ > 0) such that x− tµ = x− c is independent of µ. For µ = 0 we choose t = 2.

As can be seen in Figure 4 the expectation of the solution to Equation (3.1) depends heavily
on ζ. The larger ζ the more unlikely we get a zero-crossing of a and therefore the average prop-
agation speed is closer to the deterministic case. As expected, this effect is more pronounced
for the less correlated Gaussian random field with q = 1. For ζ = 1 the average propagation
speed is almost reduced to zero.

In the extreme case when µ = 0, our numerical simulations suggest that the expectation
of the solution E(u) is obtained by a convolution of the initial function g with a Gaussian
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function. Figure (5) (a) presents g and E(u) along with two sample solutions, obtained by a
second order minmod-based scheme described in Algorithm 2, using 213 = 8192 grid cells and
105 Monte Carlo samples. In Figure 5(b) we can see that the bulk of the variance is located
around the initial discontinuity. Unfortunately, even in this simple case we were not able to
derive a closed-form solution. Based on our experiments we claim that the parameters of the
aforementioned Gaussian function depend intricately on the first and second moment of the
Gaussian random field a.

(a) Expectation and 2 sample solutions (b) Variance

Figure 5. Results using the second order minmod scheme for µ = 0, σ = 10, q =
5. If not noted otherwise, the expectation and variance are calculated with 105

Monte Carlo samples and 213 = 8192 mesh points.

Finally, we present a convergence study for the second order minmod scheme described in
Algorithm 2. Figure 6 shows the first two moments for ζ = 2. As we quadruple the number of
points several times starting with 1024 points we can see that both expectation and variance
of the solution converge. Compared to q = 5 we need more points for q = 1 in order to have a
good approximation to the underlying random field, since it is less correlated. But even in this
case the moments of the solution converge. We would like to comment, that the simulation
with 65536 points with 10000 Monte Carlo samples took two weeks running simultaneously on
10 cores, so it would have taken roughly 5 months on a single CPU.

As pointed out, there seem to be no closed-form solutions for the space-dependent uncertainty
case. However, our numerical simulations indicate that uncertainty has a diffusive effect on E[u],
similar to Problem 2.1. Furthermore, simulations suggest that the average propagation speed
is affected by the stochastic term, that is the advection speed differs from the mean µ of the
random field, given in Equation (3.7).

4. Conclusion

We have investigated numerical schemes for the approximation of the first and second moment
of the solution of a hyperbolic problem with stochastic coefficients. We investigated the cases
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(a) Expectation, q = 5 (b) Variance, q = 5

(c) Expectation, q = 1 (d) Variance, q = 1

Figure 6. Self-convergence study for second order minmod scheme with M =
104 Monte Carlo samples for equation (3.10) with ζ = 2.

where the coefficient is given by a Gaussian process and a Gaussian/Lévy random field. We
introduced an adaptive scheme for the time-dependent problem which takes into account the
special features of the Ornstein–Uhlenbeck process. Further, we gave closed form solutions for
the (moments of the) distribution of the solution in the time-dependent case. We investigated
the characteristic curves of the space-dependent problem where the stochastic coefficient is
modeled by a Gaussian or Lévy random field. We showed that the characteristic curves have
finite variance. In the simulations, we put emphasize on the dependency of the correlation,
mean and variance.

We presented Monte Carlo based approximations for the distribution of the solutions to the
stochastic partial differential equations for both the time- and the space-dependent case. We
presented error plots showing convergence when applicable or showed self-convergence. Natu-
rally, the Monte Carlo approach could be extended to computationally advantageous multilevel
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methods, see for instance [2, 16]. For the space-dependent case, the numerical experiments
suggest that the average speed of propagation intricately depends on the underlying Gaussian
random field.

Finally, since we believe in reproducible science, the python scripts used to create the results
in this paper are available at [9].
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[16] S. Mishra, C. Schwab, and J. Šukys, Multi-level monte carlo finite volume methods for uncertainty
quantification in nonlinear systems of balance laws, in Uncertainty Quantification in Computational Fluid
Dynamics, Springer, 2013, pp. 225–294.

[17] H. Osnes and H. P. Langtangen, A study of some finite difference schemes for a unidirectional sto-
chastic transport equation, SIAM J. Sci. Comput., 19 (1998), pp. 799–812 (electronic).



20 A. BARTH AND F. G. FUCHS

[18] C.-W. Shu and S. Osher, Efficient implementation of essentially nonoscillatory shock-capturing schemes.
II, J. Comput. Phys., 83 (1989), pp. 32–78.

[19] T. Tang and T. Zhou, Convergence analysis for stochastic collocation methods to scalar hyperbolic
equations with a random wave speed, Commun. Comput. Phys., 8 (2010), p. 226248.

[20] B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s
method, J. Comput. Phys., 135 (1997), pp. 227–248. With an introduction by Ch. Hirsch, Commemoration
of the 30th anniversary.

(Andrea Barth)
SimTech, University of Stuttgart
Pfaffenwaldring 5a
70569 Stuttgart

E-mail address: andrea.barth@mathematik.uni-stuttgart.de

(Franz Georg Fuchs)
Sintef ICT
Forskningsveien 1
N–0314 Oslo, Norway

E-mail address: franzgeorgfuchs@gmail.com


	1. Introduction
	2. Time-dependent uncertainty modeled by the Ornstein–Uhlenbeck process.
	2.1. Theoretical results.
	2.2. First order discretizations.
	2.3. Second order base scheme.
	2.4. Measurement of errors
	2.5. Simulation results of time-dependent uncertainty.

	3. Space dependent uncertainty.
	3.1. Theoretical results.
	3.2. Discretizations of space-dependent uncertainty.
	3.3. Simulation results of space-dependent uncertainty.

	4. Conclusion
	Acknowledgement
	References

