
ASME Journal of Offshore Mechanics and Arctic Engineering 

 

1 

 

Marine Engine Centered Data Analytics for 
Ship Performance Monitoring  

 
Perera, Lokukaluge P.1 
Norwegian Marine Technology Research Institute (MARINTEK) 
Trondheim, Norway 
Prasad.Perera@marintek.sintef.no 
 
Mo, Brage 
Norwegian Marine Technology Research Institute (MARINTEK) 
Trondheim, Norway 
Brage.Mo@marintek.sintef.no 
 
 
ABSTRACT 
 

This study proposes marine engine centered data analytics as a part of the ship energy efficiency 

management plan (SEEMP). The SEEMP enforces various emission control measures to improve ship 

energy efficiency by considering vessel performance and navigation data. The proposed data analytics is 

developed in the engine-propeller combinator diagram (i.e. one propeller shaft with a direct drive main 

engine). Three operating regions from the initial data analysis are under the combinator diagram noted to 

capture the shape of these regions by the proposed data analytics. The data analytics consists of 

implementing Gaussian Mixture Models (GMMs) to classify the most frequent operating regions of the 

main engine. Furthermore, the Expectation Maximization (EM) algorithm calculates the parameters of 

GMMs. This approach also named as a data clustering algorithm facilitates an iterative process for 

capturing the operating regions of the main engine (i.e. in the combinatory diagram) with the respective 

mean and covariance matrices.  Hence, these data analytics can monitor ship performance and navigation 

conditions with respect to engine operating regions as a part of the SEEMP. Furthermore, development of 

advanced mathematical models for ship performance monitoring within the operational regions (i.e. data 

clusters) of marine engines is expected. 

                                                 
1 Corresponding author. 
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INTRODUCTION 
 
Energy Efficiency Management Plan 
 

Modern vessels are equipped with various onboard sensors and data acquisition 

(DAQ) systems to collect ship performance and navigation information. This information 

is data sets collected and analyzed to evaluate ship performance under various sea 

going conditions. These data analysis methods, so called "data analytics", and respective 

results should be a part of the ship energy efficiency management plan (SEEMP). The 

proposed analytics can develop under the SEEMP to draw conclusions on ship energy 

efficiency from the respective data sets. Such data analytics can play an important role 

in commercial ship operations in the future years as a part of the SEEMP ([1]-[2]). The 

SEEMP as a mandatory mechanism in shipping enforces vessels to improve operational 

conditions and implement technology advancements for more energy efficient shipping 

fleets. The energy efficiency operational indicator (EEOI) [3] is a benchmark level, a 

vessel performance monitoring mechanism, for the SEEMP. Therefore, vessel 

performance and navigation information under the proposed data analytics supports to 

achieve the objectives in ship energy efficiency assigned by the SEEMP.   

  The SEEMP has following phases: planning, implementation, monitoring, 

self-evaluation and improvements. The planning phase is the most important step in the 

SEEMP. Goal setting should be with the human resource development strategies of the 

shipping companies coordinated at this phase.  The implementation phase is an 

important step in the SEEMP that uses appropriate established procedures. The 
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monitoring phase consists of developing the required condition monitoring (CM) 

facilities (i.e. sensors, DAQ systems, data storage and communication) [4, 5].  The final 

step of the SEEMP is the self-evaluation phase conducting voluntary reporting and 

review processes. Furthermore, the documentation of lessons learned for further 

improvements should also be part of this phase. 

A goal for the SEEMP is to control medium term exhaust emissions by improving 

ship energy efficiency. To achieve this the ship crew should have proper knowledge and 

training on energy management approaches.  Such energy management approaches 

improve vessel performance that various data analytics should support. The proposed 

data analytics based on ship performance and navigation data increases the 

understanding of efficient ship operating conditions.  This study proposes to use marine 

engine centered data analytics in the SEEMP to observe vessel performance. 

Furthermore, the proposed data analytics at the ship operation phase can identify 

optimal engine-propulsion conditions of vessels [6].  

Appropriate engine-propulsion configurations (i.e. optimal operating conditions) 

in ships can reduce power/fuel consumption and exhaust emissions, significantly. This 

study proposes to use the combinator diagram (i.e. the relationship between main 

engine (ME) power and shaft speed) to identify appropriate engine-propulsion 

configurations, where the respective data analytics is implemented. This can also 

identify the most frequent operating regions (i.e. speed and power conditions) of 

marine engines.  A data set of vessel performance and navigation information of a 

selected ship (i.e. one propeller shaft with a direct drive main engine) is used to develop 
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these data analytics. An overview of the engine-propulsion combinator diagram is in the 

following section discussed. 

Engine Propeller Combination 
 
Optimal engine-propulsion configurations are at the design phase of vessels selected to 

meet ship operational and navigation requirements.  However, such configurations can 

be at the ship operation phase challenged due to various environmental factors. Engine-

propeller interactions should be in such navigation situations monitored and analyzed to 

evaluate ship performance. The engine-propulsion interactions are often studied using 

the combinator diagram. A general overview of the engine-propulsion combinator 

diagram is in Figure 1 presented and consists of a relationship between main engine 

power (in a log scale) and shaft/propeller speeds. This is from consideration of various 

engine-propeller combinator diagrams in marine engines derived. A direct drive 

situation, the main engine (ME) directly connects to a propeller shaft that drives the 

propeller (i.e. fixed-pitch-propeller). In general, such diagram represents engine-

propeller operational regions with respect to various ship navigation situations [7]. 

Therefore, modern integrated bridge systems are also equipped with such onboard 

combinator diagrams to evaluate vessel performance in various environmental 

conditions. Furthermore, the respective engine fuel consumption (i.e. specific fuel 

consumption (SFC)) can be into these combinator diagrams incorporated to monitor 

vessel performance and emissions, continuously.   

  The engine and propeller operating regions in a combinator diagram are limited 

by various ship navigation constrains and some selected features are presented in 
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Figure 1.  The closed area (i.e. marked by green color lines) represents the possible 

engine-propeller region with respective various vessel operating constrains (i.e. engine 

speed, power and operating limits). However, the engine-propeller operating regions 

also depend on engine manufacturer specifications, therefore various combinator 

diagrams are in the literature presented. The maximum engine power limit (C2) (that 

can be 100% of respective engine power) of the engine is presented in the same figure. 

One should note that the specified maximum continuous rating (MCR) point (P1) of the 

engine is located at the intersection of the 100 % of engine power and speed axes. 

Furthermore, this engine-propeller operating region can be further into several circular 

regions (D1) divided of specific fuel consumption (SFC). The smallest SFC region (i.e. the 

smallest radius) represents the optimal fuel consumption rate of the engine. Therefore, 

the propeller operating points in vessels should be close to the optimal SFC region to 

reduce the fuel consumption and improve vessel performance. 

  (E1) represents a light running fixed-pitch-propeller (FPP) curve under clean hull 

and propeller conditions in calm water. The propeller design point (P2) and alternative 

propeller design point (P3) are at the same line located. One should note that (P2) can 

move towards (P3) due to the sea margin (F1).  However, (P2) can shift towards the 

heavy FPP curve (E2) due to fouled hull and propeller conditions and/or rough weather 

situations. Therefore, a light running engine, (P2), can move towards a heavy running 

engine, (P4), due to such conditions. (P4) can shift toward (P5) due to the sea margin 

(F1) under heavy running conditions in the main engine. Furthermore, (P5) can move 

towards the specified MCR point for propulsion, (P6), due to the additional engine 
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margin (F2) (up to 20% of the engine power).  If the main engine has a shaft generator 

(i.e. power can be taken out of the system for electricity production), then (P6) can 

move towards (P1) under PTO (i.e. power take out) situations. Even though the ultimate 

heavy FPP curve (E3) can intercept (P1) as presented in the figure, the location of (P1) 

can vary due to main engine specifications. If the main engine has a shaft motor, then 

additional power can be injected into the propulsion system (i.e. power take in (PTI)), 

where (P6) can move away from (P1).  Therefore, engine-propeller combinator diagrams 

may have additional variations due to these reasons.   

The recommended optimal operating point (P7) represents the lowest SFC value 

(i.e. the optimal fuel consumption) for the respective engine. Therefore, propeller 

should be near this point operated to improve vessel performance, as mentioned 

before.  However, the engine operating point can move towards (P8), the continuous 

service rating of the engine, as per vessel operational requirements (i.e. heavy running 

situations).  Therefore, operating points of propeller (i.e. FPP) can vary along an 

approximately straight line with respect to main engine running conditions under similar 

weather conditions. A considerable ship speed reduction under engine heavy running 

conditions increases the SFC. One should note that engine operating regions and 

accepted limits discussed above vary due to requirements from their manufacturers and 

ship owners. Therefore, additional variations on combinator diagrams is in the shipping 

industry are as mentioned before noted. However, the selection of optimal engine-

propeller operating regions with respect to the most frequent operating regions can 

play an important role in ship performance monitoring as a part of the SEEMP.  
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The main objective in this study is to develop data analytics to capture the most 

frequent main engine operating regions (i.e. main engine power and shaft speed). 

Similarly, such engine-propeller operating regions can be part of the evaluation of ship 

performance under various mathematical models.  That can be done by monitoring ship 

performance and navigation information in real-time and evaluating those parameters 

with respect to main engine operational regions, where the respective SFC should be 

minimized.  In general, marine engines operate around selected RPM values (i.e. 

operating modes), where each main engine has several mean RPM values to use to 

achieve different ship speeds required.   

These operating modes also relate to engine loading conditions. Hence, each 

marine engine operates around several mean RPM values to achieve required ship 

speeds. The engine related operating conditions can by ship performance and 

navigation data that are collected by onboard sensors and data acquisition systems 

(DAQs) be captured in such situations. Data sets in ship performance and navigation 

parameters should be further along the engine operating regions classified to identify 

such vessel operating modes, experimentally. Hence, the proposed data analytics 

consist of these data classification and identification steps to visualize main engine 

modes.  

 Various data analytics are often possible to use to facilitate decision support 

tools in the maritime and offshore industries [8]. These decision support tools are on 

large data sets based and that may introduce additional challenges in the respective 

data analyses.  In general, such large data sets of ship performance and navigation 
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information consist of some erroneous data conditions due to sensors and DAQ noise. 

However, these erroneous conditions can also be identified, effectively by data 

classification (i.e. data clustering) approaches, where unusual data patterns (i.e. 

erroneous conditions) are more visible in smaller data sets. Hence, such erroneous 

conditions in ship performance and navigation parameters are possible to remove and 

create cleaner data sets [9]. Hence, the improved data sets (i.e. without erroneous data 

conditions) are developed by marine engine centered data analytics to evaluate ship 

performance under the SEEMP [10, 11]. 

Ship Performance Monitoring 
 
Ship performance and navigation data in a selected vessel are in this study considered 

and the vessel particulars are presented in Table 1. A  data set of three parameters from 

the above vessel categories: shaft speed, main engine (ME) Power and fuel 

consumption. The following parameter ranges are in this data analysis: ME Power from 

3000 (kW) to 8000 (kW) and Shaft Speed from 80 (RPM) to 120 (RPM). This is the most 

frequent engine-propeller operating region identified in the combinator diagram, 

initially.  The data points around the zero speed-power values that represent slow 

moving conditions (i.e. maneuvering/berthing conditions) of the vessel are removed 

from the data analysis, therefore considerable sensor and DAQ noise conditions (i.e. 

erroneous data intervals) are filtered by this step.  Approximately 50% of the data points 

are in this data set removed because that relate to maneuvering/berthing conditions of 

the vessel.  

 



ASME Journal of Offshore Mechanics and Arctic Engineering 

 

9 

 

An initial statistical analysis of the selected parameters that relates to general 

engine-propeller operating situations as presented in Figure 2.  The top, middle and 

bottom plots of the figure are histograms of shaft speed, ME power, and fuel 

consumption, respectively. Three frequent operating regions are in this statistical 

analysis observed. That shows the main engine operates around three mean RPM 

regions that create three mean ME power and fuel consumption regions. As the next 

step, these two parameters (i.e. ME power and shaft speed ) are combined to develop 

an engine-propeller combinator diagram in a high dimensional space and the results are 

presented in Figure 3.  The bottom plot of the same figure represents a histogram of the 

ME power and shaft speed combined values. One should note that the same engine 

operating regions (see Figure 2) are in this combinator diagram also noted. The top-left 

plot of the same figure represents the contours of the previous plot. The top-right plot 

of the same figure represents the same contours with the respective fuel computation 

values.  In general, high ME power-shaft speed regions consist of high fuel consumption 

values and vice versa. However, high fuel consumption values in low ME power-shaft 

speed regions can be in some situations due to rough ocean conditions also noted.   

The same contour plot with respect to relative (Rel.) wind speed is in the top left 

plot of Figure 4 presented. An assumption is that the relative wind conditions relate to 

encountered sea states in the respective ship route [4]. The same results show that the 

shaft speed of the ME reduces significantly for the same engine power because of high 

wind speeds (i.e. higher engine loading conditions). Furthermore, the propeller is 

rotating at relatively slow speeds in such situations, where ship speed is also degraded. 



ASME Journal of Offshore Mechanics and Arctic Engineering 

 

10 

 

The same contour plot with respect to speed through water (STW) of the vessel is in the 

top right plot of Figure 4 presented. These two plots show that ME power increments 

can improve STW and rough weather conditions (i.e. high wind speeds) can degrade the 

same STW, significantly. The same contour plots with respect to vessel trim and average 

(avg.) draft values are presented in the bottom left and right plots of Figure 4, 

respectively.  One should note that these avg. draft values relate to the loading 

conditions of the vessel, therefore appropriate trim values reduce ship resistance during 

vessel navigation.  

  Another view of the engine-propeller combinator diagram is in Figure 5 

presented.  The respective operating patterns of the propeller are as straight lines 

identified in this figure and those are as gray lines marked. These straight lines are 

during a real-time simulation of the same data set observed.  The ME power axis (i.e. y-

axis) is presented in a log scale to improve the visibility of the respective engine-

propeller data. The vertical gray lines represent various ME power values with constant 

shaft speed situations.  However, the inclined gray lines represent continuous ME 

operating situations in each voyage segment under varying sea conditions. One should 

note that these inclined lines are approximately similar to the fixed-pitch-propeller (FPP) 

lines in Figure 1 (i.e. E1, E2, and E3). These results confirm that the FPP operating points 

can vary along approximately straight lines with respect to ME running conditions. The 

same combinator diagram with the vessel STW values is in Figure 6 presented. The 

results show that vessel STW is degrading along the FPP lines (i.e. for the same engine 

power, the shaft speed is degrading) from right to left. Therefore, an overview of 



ASME Journal of Offshore Mechanics and Arctic Engineering 

 

11 

 

various interactions among main engine, propeller, ship resistance, and environmental 

conditions are in such combinator diagrams observed. As the final step in this study, the 

three operating regions observed in Figure 3 are identified by the proposed data 

analytics. 

DATA ANALYTICS 
 

The proposed marine engine centered data analytics is under the engine-propeller 

combinator diagram derived. That consists of implementing Gaussian Mixture Models 

(GMMs) with the Expectation-Maximization (EM) algorithm for clustering the respective 

data points that relate to the engine operating regions. 

Gaussian Mixture Models 
 
Gaussian Mixture Models (GMMs) are extensively for transportation systems used to 

develop multiple statistical models with large data sets [12]. This study proposes to use 

the same approach to identify the most frequent operating regions of the engine-

propeller combinator diagram.  The respective advantages by using GMMs with the EM 

algorithm are in this section discussed. In general, marine engines operate around 

several mean RPM values that are often as engine modes categorized. GMMs with the 

EM algorithm can capture those modes effectively, since the respective engine 

operation data consist of Gaussian type distributions. One should note that such data 

sets might distribute in a high dimensional space with respect to other ship performance 

and navigation parameters. Furthermore, GMMs with the EM algorithm identify not 

only mean values but also covariance values (i.e. the shape of the engine-operating 

region) of such engine operating modes (i.e. data distribution) with less supervision. 
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When the same data set should also under additional ship performance and navigation 

parameters be classified, the same GMMs can be expanded for a high dimensional 

space, as required.  

The respective parameters of the GMMs (i.e. data clustering) are calculated by 

an iterative process (i.e. EM algorithm). Each frequent operating region of the engine-

propeller combinator diagram is by a GMM represented and the respective parameters 

are by the EM algorithm calculated.  Therefore, each GMM of the combinator diagram 

has its own mean and covariance values that are at the initial step approximated. Each 

GMM (i.e. each data set) calculates the respective mean and covariance values under 

the EM algorithm during the data clustering process. Several independent multivariate 

Gaussian distributions (i.e. GMM) in the engine-propeller combinatory diagram are 

during this process introduced.   

Level-Two Heads 
 
The respective data points for each GMM are by the EM algorithm [13] assigned, which 

consists of two iterative levels:  expectation and maximization. The EM algorithm is as 

an effective iterative procedure used for maximum likelihood estimation (MLE). 

Therefore, it is also to calculate the respective model parameters of the GMMs, as 

mentioned before used.  In the expectation step (i.e. E-step), the probability that each 

data point belongs to the respective data cluster (i.e. GMM) is evaluated. In the 

maximization step (i.e. M-step), that data point is in the respective data cluster (i.e. 

GMM) accommodated with respect to the highest probability by updating its mean and 

covariance values.  This method assigns each data point exactly to one operational 



ASME Journal of Offshore Mechanics and Arctic Engineering 

 

13 

 

region (i.e. engine mode) of the engine-propeller combinatory diagram. Therefore, the 

boundaries of the most frequent operating region of the engine-propeller combinator 

diagram can be determined.  

The E-step is by considering a multivariate GMM initiated and denoted as [14]:  
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where x  is a n -dimensional input data vector  and  ),;( jjj xp   is the probability density 

function (PDF) of the j-th multivariate Gaussian distribution (i.e. GMM) with, 
j  and 
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the mean and covariance matrices, respectively. The probability of the i-th data point 
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where  ;)( jzp i   is the prior probability of the j-th GMM and k  is the number of GMMs. 

The equal prior probability is of each GMM initially assumed. One should note that (3) 

represents a multivariate Gaussian distribution with 
j  and 

j  are the mean and 
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Hence, the equation for M-step is: 






m

i

i

jj w
m

1

)(1
  



ASME Journal of Offshore Mechanics and Arctic Engineering 

 

14 

 

   











m

i

i

j

m

i

T

j

i

j

ii

jj

m

i

i

j

i

m

i

i

jj

wxxw

wxw

1

)(

1

)()()(

1

)()(

1

)(




     (4) 

 
This step is to update the respective GMM (i.e. data cluster) used by calculating the new 

mean and covariance values with respect to each data point. This iterative process 

should stop either at the end of the training data set or approximately equal prior to or 

posterior to mean and covariance values.  

Mean and Covariance Values 
 
The EM algorithm may converge to a local minima or saddle point in some situations 

during its iterative process. Therefore, the initial mean and covariance values selection 

should be appropriately; the initial mean and covariance values are from the previous 

statistical distributions approximated (see Figure 2). The estimated mean and variance 

values for each Gaussian distribution in Figure 2 are: 
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These values are in the initial GMMs and presented in left plot of Figure 7 

introduced (i.e. the combinator diagram). These initial GMMs are near the local maxima 

points to improve the performance of the EM algorithm estimated. The respective 

GMMs are as multivariate Gaussian distributions with the mean and covariance values 

in (5) represented. The respective contours of the multivariate Gaussian distributions 
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(i.e. GMMs) are by ellipse in this figure denoted.  Then, the EM algorithm is to update 

these GMMs executed with the respective data points and the results are in right plot of 

Figure 7 presented. The results show that the GMMs are converged to appropriate 

mean and covariance values under the EM algorithm. Therefore, these three regions are 

as the most frequent operating regions of the engine-propeller combinator diagram 

identified by considering the respective ship performance and navigation data. 

However, an overlay situation within two GMMs is also in these results observed. It is 

believed that such data overlay situations is possible to avoid by classifying the same 

data set in a higher dimensional space under additional ship performance and 

navigation parameters. The updated equation of mean and covariance values of the 

GMMs under the EM algorithm are: 
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One should note that slight variations among the initial and final means values 

and considerable variations among the initial and final covariance values are in these 

results observed. These same observations are also under the results in Figure 7 noted. 

CONCLUSIONS & FUTURE WORK 
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A selected data set of ship performance and navigation parameters is in this study used 

to capture the most frequent operating regions of main engine analyzed. This 

development approach categorizes as the data analytics under the engine-propeller 

combinator diagram for ship performance monitoring. The results show that the main 

engine is operated around three frequent regions in the combinator diagram that are 

identified by GMMs with the EM algorithm with the respective engine parameters: shaft 

speed, fuel consumption and ME power. These operating regions are considered as the 

basis for the SEEMP (i.e. the engine modes), where the respective vessel performance 

should be evaluated. The proposed data analytics can in the ship operation phase 

identify the optimal engine-propulsion operating conditions. Hence, engine and 

propeller operating regions are possible to select appropriately to reduce fuel 

consumption of vessels. Furthermore, development of advanced mathematical models 

of ship performance and navigation under these operating regions of marine engines 

will be the future work of this study. It is believed that such approach can overcome the 

current shipping industrial challenges under emission control based energy efficiency 

measures [15]. 
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Fig. 5 Engine propeller combinator diagram 

Fig. 6 Engine propeller combinator diagram with STW 
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Figure 1.  Simplified engine-propeller combinator diagram 
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Figure 2.  Statistical distributions of marine engine parameters 
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Figure 3.  Engine operation regions: ME power vs. shaft speed 
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Figure 4.  Engine operation region vs. rel. wind speed, STW, avg. draft and trim 
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Figure 5.  Engine propeller combinator diagram 
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Figure 6.  Engine propeller combinator diagram with STW 
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Figure 7.  GMMs in the engine propeller combinator diagram 
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Parameter Description 

Ship Type Bulk carrier 

Ship length 225 (m) 

Ship beam 32.29 (m) 

Gross tonnage 38.889 (tons) 

Deadweight  
(at max draft) 

72.562 (tons). 

Engine type 2 stroke main engine 
MCR of 7564 (kW) at 105 (rpm) 

Propeller type A fixed pitch propeller with diameter 6.20 
(m) and 4 blades. 

 
Table 1: Vessel particulars. 


