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Abstract: Sensor fault detection under marine engine centered localized models of an engine propeller 

combinator diagram is presented in this study.  The proposed approach consists of two detection levels to 

identify of sensor fault situations in an onboard data acquisition system of a vessel. Each parameter in 

ship performance and navigation data can have a realistic data range (i.e. a threshold relates to the 

variance), where the parameter can vary. If the sensor reads a value beyond this parameter range, then 

that data point is categorized as a sensor fault situation by the first fault detection level.  However, some 

sensor faults are located within this data range and that cannot identify by this detection level. Such 

complex sensor fault situations are detected by the second fault detection level by considering the 

proposed localized models. These localized models are derived with respect to the operating regions of 

an engine-propeller combinator diagram, where the respective data points are clustered by Gaussian 

mixture models with an expectation maximization algorithm. Each data cluster is examined through 

principal component analysis and projected into the bottom principal component to identify such 

complex sensor fault situations. A data set of ship performance and navigation information of a selected 

vessel is used through these sensor fault detection levels and the successful results on identifying such 

sensor fault situations are also presented in this study. 
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1. INTRODUCTION 

Modern integrated bridge systems (IBSs) are equipped with 

various sensors and data acquisition (DAQ) systems to 

monitor vessel performance and navigation information.  

Those systems collect large quantities of ship performance 

and navigation data and analyze to observe optimal vessel 

operation and navigation conditions. However, these large 

scale data sets consist of various sensor related erroneous 

intervals and that may degrade the results of the respective 

data analyses. If such erroneous data intervals are detected in 

an early stage of the data handling process, that can be 

removed to improve the quality of the data set. Furthermore, 

the respective faulty sensors can also be detected in such 

situations and the required maintenance actions can be taken.  

That step eventually improves the quality of the collected 

data sets and the final results of the data analyses. This study 

proposes a sensor fault detection structure in an onboard 

DAQ systems of a vessel consisting of several fault detection 

levels.  

 There are several sensor fault detection approaches 

with respect to ship performance and navigation information 

under various DAQ systems are presented in the recent 

literature (Lajic and Nielsen (2009) and Lajic et al. (2009)).  

These studies often depend on various mathematical models 

that relate to ship kinematics and dynamics.   However, the 

accuracy of such models can be challenged under various 

navigation situations and the respective model performance 

can also degrade under large scale data sets. A model 

learning methodology to detect sensor faults situations is 

considered in this study and that consists of identifying the 

respective mathematical models from the respective data set 

of ship performance and navigation information. Hence, this 

approach has the capability to handle large scale data sets and 

that is the main contribution of this study.  

An overview of the proposed sensor fault detection 

structure is presented in Figure 1. This structure is developed 

by considering the respective studies of ship performance and 

navigation monitoring (Perera  and Mo, 2016a, 2016b, 2016c, 

2016d) and that consist of various data analysis and 

visualization tools and techniques. The figure consists of two 

 
 
Fig. 1.  Sensor fault detection structure 

 



     

layers to identify of the respective sensor fault situations in 

an onboard DAQ system. The real-time data collected by the 

respective sensors transfer through these two layers. The first 

layer consists of a data variance filter (i.e. sensor faults level 

1) that is attached to the respective fault alarm. The second 

layer consists of a principal components (PCs) based filter. 

Principal component analysis (PCA) (Sperduti, 2013) is used 

with the respective data set to derive this filter.  

PCA is a non-parametric method for extracting 

relevant information from a chaotic type data set, where the 

respective structure of the data set can be identified. The 

same structure can be used to reduce the size of the data set 

and that also improves the content visibility. This structure is 

considered as the new basis of the same data set and that 

consists of a linear combination of the original basis (i.e. the 

initial parameters of the data set). This new basis has the 

same dimensions as the original data set and represents by the 

respective principal components (PCs).  Various parameter 

relationships (i.e. correlation, covariance, dependence etc.) 

can also be observed under PCA. The largest to smallest 

variance directions in a data set are represent from the top to 

bottom PCs. The top PCs consist of the most important 

information of the data set. Hence, the top PCs in a data set 

select to represents the entire data set in some situations, 

where the least important (i.e. the bottom) PCs are neglected 

(i.e. data compression).  

It is also noted that erroneous data intervals can 

often be observed under the bottom PCs because such regions 

are projected far beyond the respective parameter variance 

values of the bottom PCs. Hence, a majority of sensor fault 

situations can often be detected by the bottom PCs as further 

described in the second level sensor faults (i.e. level 2). Then, 

the fault alarm executes the fault isolation procedure, where 

these erroneous data intervals should filter to improve the 

quality of the respective data set (Perera and Mo, 2016c). 

Finally, the cleaned data set will transfer for data analysis and 

storage facilities for further processing.  These sensor fault 

levels (i.e. level 1 and 2) are further discussed in the 

following sections.   

 2. SENSOR FAULT DETECTION  

Two sensor fault levels are introduced in this study: level 1 & 

2. Two types of sensor fault situations are detected under 

level 1: i) the repeated data points and ii) the data points 

beyond the selected thresholds that relate to the variance 

values of the respective parameters. It is noted that sensor and 

DAQ systems may crate data intervals with repeated values 

(i.e. frozen data intervals) in real-time data handling 

processes (Perera  and Mo, 2016a). These frozen data 

intervals are detected by observing the repeated data values 

and should remove from the respective data set. e.g. it is 

noted that wind sensors in vessels may repeat some data 

values due to high vibration conditions under rough weather 

navigation situations. In general, sensors should not repeat 

such values due to measurement noise and that often 

approximates to white Gaussian distributions. However, this 

type of faults (i.e. repeated data points) can occur either due 

to sensor or DAQ system faulty situations.    

 Each parameter in ship performance and navigation 

information has a realistic data range where the parameter 

can vary. This respective range can be derived either from 

maximum and minimum values or selected threshold values 

that relate to the variances of each parameter.  If the sensor 

reads values beyond this parameter range, then those data 

points are categorized as sensor fault situations. This simple 

concept is used in this level to identify another sensor fault 

situation and that is categorized as the data variance filter.  

The respective parameters of ship performance and 

navigation information of a selected vessel are presented in 

Table 1. The table consists of minimum and maximum values 

of each parameter and these parameter ranges are used to 

identify sensor fault situations under the same fault level. 

However, appropriate threshold values can also be introduced 

to identify the decision boundaries that relate to the variance 

values (i.e. minimum and maximum values) of fault level 1.  

 

Parameter Min. Max. 

1. Avg. draft (m) 0 15 
2. STW (Knots) 3 20 

3. ME power (kW) 1000 8000 

4. Shaft speed (rpm) 20 120 

5. ME fuel cons. (Tons/day) 1 40 

6. SOG (Knots) 0 20 

7. Trim (m) -2 6 

8. Rel. wind speed (m/s) 0 25 

9. Rel. wind direction (deg) 2 360 

10. Aux. fuel  cons. (Tons/day) 0 8 

Table 1: Ship performance and navigation parameters 

More complex sensor fault situations undetected by 

level 1 are captured by level 2. This step is named as a PCs 

based filter designed under PCA as mentioned before.  An 

overview of such filter design is presented in this section.  A 

two sensor situation, where two parameters are measured by 

sensors in a DAQ system, is presented in Figure 2 to explain 

such complex fault situations. Two parameters that are 

measured by two sensors with a selected sampling period are 

denoted as  
1Y  and 

2Y . The actual parameter values with 

sensor noise are presented by the respective shaded regions in 

the 
1Y -time and 

2Y -time plots. The measured values (i.e. 

sensor measurements) are denoted by “x” in this figure. The 

respective variance for each parameter is presented in  blue 

oval shapes (i.e. next to 
1Y  and 

2Y  axes) in each plot. Four 

sensor fault situations, beyond actual measurements, are 

introduced and denoted as 
1e , 

2e , 
3e  and 

4e . One should note 

that sensor faults 
1e  and 

3e  can be detected by fault level 1 

because those two values are beyond the thresholds (i.e. 

relate to the variance) of each parameter. However, sensor 

faults 
2e  and 

4e  cannot be detected by fault level 1, therefore 

fault level 2 is introduced to capture such events. The 

respective data set without timestamp is presented in the 
1Y -

2Y  plot and that is used for PCA.  

It is assumed that both parameters have a positive 

correlation as presented in Figure 2 and this relationship is 

visible in the 
1Y -

2Y  plot. Such parameter relationships among 



     

ship performance and navigation information should be 

derived to identify second level sensor faults. However, these 

parameter relationships should be localized to improve the 

accuracy of the sensor fault detection structure. In the next 

sept, the PCs of the two parameter data set should be 

calculated to identify the respective data structure. The results 

are presented as 
1Z  and 

2Z  in the same figure. One should 

note that 
1Z  (i.e. the top PC) represents the largest covariance 

direction and 
2Z (i.e. the bottom PC) represents the second 

largest covariance direction that is normal to 
1Z .  

Since 
2Z  is the bottom PC, it is expected that the 

respective sensor fault situations can often be observed under 

this axis. This can be done by rotating the same data set into 

the respective PC directions and the results are presented in 

Figure 3.  

Each principal component has its variance value that 

uses to derive the respective threshold value (i.e. an 

appropriate decision boundary) for sensor fault detection. The 

variance related threshold values are presented as blue oval 

shapes (i.e. next to 
1Z  and 

2Z  axes). It is expected that the 

respective sensor faults should be projected beyond these 

thresholds and the results are also presented in Figure 3. As 

presented in the figure, all sensor fault situations are 

projected beyond the threshold value of 
2Z (i.e. the bottom 

PCs). Sensor fault situations undetected by level 1 are 

detected by this level. Hence, this study proposes to use the 

bottom PC to identify an appropriate set of sensor fault 

situations from a data set of ship performance and navigation 

information by fault level 2. One should note that this 

example presents a two parameter situation, however a multi-

parameter situation with various sensor faults may need 

additional tools to identify such situations.  However, the 

success of this approach relates to the mathematical models 

that represent the relationships among the respective ship 

performance and navigation parameters. 

These parameter relationships are categorized as 

mathematical models and the accuracy of such models in ship 

performance and navigation information influences on the 

proposed fault detection process (i.e. fault level 2). It is 

believed that a single mathematical model (i.e. ship 

performance and navigation information) is inadequate to   

capture realistic ship navigation under various seakeeping 

conditions. Hence, a multiple model approach with ship 

performance and navigation data is considered and the 

 
Fig. 4. Marine engine combinator diagram with localized models 

 

 
Fig. 2.  Two parameter data set under PCA 

 
Fig. 3.  Two parameters projected into PC axes 

 

 
 



     

respective models are derived with respect to an engine 

propeller combinator diagram of a selected vessel. Various 

data clusters in the engine propeller combinator diagram 

represent such models and called as "localized models." 

3. LOCALIZED MODELS 

The model development steps under a ship 

performance and navigation data set are presented in this 

section. Marine engine centered localized models are derived, 

where an engine-propeller combinator diagram of a selected 

vessel is considered as the basis for such model development. 

The respective combinator diagram with engine propeller 

operating data is presented in Figure 4. Both main engine 

(ME) power (kW – log scale)  and  propeller shaft speed 

(rpm) values are presented in this diagram. It is noted that 

three operating regions are frequently used by this vessel, 

therefore Gaussian mixture models (GMMs) with an 

expectation maximization (EM) algorithm is used to identify 

such regions (Perera and Mo, 2016d). These operating 

regions are classified as localized models and that  use to 

create the respective data clusters. An overview of GMMs 

with an EM algorithm is presented in the following section. 

The data point assignment for each GMM that represents a 

frequent operating region of the engine-propeller combinator 

diagram is done by an EM algorithm. The EM algorithm is 

used to calculate the respective model parameters of  GMMs 

and consists of two iterative levels:  expectation and 

maximization.  In the expectation step (i.e. E-step), the 

probability that each data point belongs to the respective data 

cluster is evaluated. In the maximization step (i.e. M-step), 

that data point is accommodated in the respective data cluster 

that has the highest probability by updating its mean and 

covariance values.  This method assigns each data point 

exactly to one operational region (i.e. a GMM) of the engine 

propeller combinator diagram. Therefore, the boundaries of 

each operating region of the engine-propeller combinator 

diagram are determined and these regions classify localized 

models.  The E-step is initiated by considering a multivariate 

GMM and denoted as (Perera and Mo, 2016d):  
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where x   is the input data set and ),;( jjj xp     is the PDF 

of a multivariate Gaussian distribution with, 
j   and  

j , the 

mean and covariance values and n  is the number of data 

points of the j-th data cluster, respectively. The probability of 

i-th data point belongs to j-th cluster can be written as: 
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One should note that (2) calculates the "soft guess 

value" for the parameter, )(iz . Considering the Bayes rule and 

(1), the posterior probability of the parameter,  )(iz   given the 

parameter, )(ix , can be written as: 
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where   ;)( jzp i   is the prior probability of the j-th data 

cluster and  k  is the number of data clusters. The equal prior 

probability of each data cluster is assumed, initially. One 

should note that (3) represents a multivariate Gaussian 

distribution with 
j   and  

j  are the mean and covariance 

values, respectively. The M-step can be written as: 
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This step updates the respective data cluster (i.e. a 

GMM) by calculating the new mean and covariance values 

with respect to each data point. This iterative process should 

stop either at the end of the training data set or the 

approximately stable prior and posterior mean and covariance 

values. 

The results (i.e. the GMMs) that relate to each 

operating region are presented as contours in Figure 4 and the 

respective data clusters that belong to each model are also 

presented in the same. Three models (i.e. Model 1, 2 and 3) 

are presented in three different colors and categorized as 

localized models in the engine propeller combinator diagram. 

Model 3 is selected for  PCA. One should note that PCA is 

used in this step to identify the respective structure of the 

clustered data set (i.e. model 3). Even though model 3 is 

derived by considering two parameters, the actual data set of 

ship performance and navigation information consists of 10 

parameters and that are presented in Table 1.  The rel. wind 

direction is adjusted during this model development, 

therefore relative wind from starboard and port sides 

represent by 0 to 180 (deg) and  0 to -180 (deg), respectively. 

 

 4. PRINCIPAL COMPONENT ANALYSIS 

In PCA, the most important feature in a data set is 

considered as the variance values among the respective 

parameters.  These data variance directions (i.e. coordinate 

system) represent the respective PCs. The same data set often 

projects into the new coordinate system (i.e. change the basis 

of the data set) to observe the most important feature (i.e. the 

variance) in some situations.  One should note that the change 

of basis will not change the data quality, but the 

representation of the data set. Therefore, the same data set 

can represent under a difference coordinate system (i.e. PCs) 

in this approach. However, this study proposes to use this 

new representation of the data set to identify the respective 

sensor fault situations. Furthermore, sensor noise and 

parameter redundancy situations in the old data set can be 

observed by this coordinate transformation.  

The descending order of the PCs represents the 

order of significance (i.e. the order of variance) in the data 

set. Hence, the top PCs are used in various industrial and 

research applications, since that consist of the most important 

information of the respective data set. In general, the bottom 

PCs are ignored by such applications, since that consist of the 



     

least important information of the respective data set. The 

importance in the bottom PCs is illustrated in this study and 

that consists of identifying various sensor fault situations.  

Model 3 (i.e. the clustered data set) in the engine 

propeller combinator diagram (see Figure 3) is considered for 

PCA as the next step.  The clustered data set is equally 

centered and scaled (i.e. standardized), where each parameter 

is subtracted and divided by the respective sample mean and 

standard deviation values. Hence, each parameter can 

influence equally because of this step and the standardized 

data set is used to derive the respective PCs. The bottom PC 

is considered in the next step to identify the respective sensor 

fault situations. The respective histogram of the data set that 

is projected into the bottom PC (i.e. 
10Z ) is presented in the 

top plot Figure 5. One should note that this data distribution 

has the lowest variance value with compared to other PCs. 

Furthermore, the respective standard deviation values of  , 

2  and 3  are also marked in the same figure. The 

threshold value of 3  is considered as the respective limit for 

sensors fault situations.  

Therefore, the data points that are projected beyond 

this threshold value are considered as sensor fault situations 

and presented in the same figure. The zoomed view of the 

same data points is presented in the bottom plot and sensor 

fault situations are denoted as discrete pulses. Finally, these 

sensor faults are compared with the respective parameters of 

ship performance and navigation information as a time series 

to evaluate the success of the proposed approach. The results 

are presented in Figure 6, where the respective parameters 

(i.e. 10 parameters) are presented in the top 10 plots and the 

detected faults situations (i.e. fault alarm) are presented in the 

bottom plot.  One should note that these plots are presented 

with respect to the number (No.) of data points (i.e. another 

representation of the time series) and the time interval 

between two consecutive data points is 15 (min).  Two sensor 

faults situations are detected in this data set and that are 

framed by two windows.  

In the first sensor fault situation, several parameters 

(ME power, ME fuel consumption, STW, shaft speed, and 

auxiliary engine fuel consumption) represent some unusual 

behavior (i.e. a sudden drop in the parameter value) and that 

situation is detected by the PCs based filter (i.e. fault level 2). 

One should also note that these types of multiple sensor 

failure situations may relate to DAQ system faults rather than 

sensor faults. In a future version of this study, the 

classification of such sensor and DAQ system faults will be 

investigated. In the second sensor fault situation (i.e. a data 

interval), several parameters (i.e. average draft, trim) 

represent some unusual behavior and the auxiliary engine 

fuel consumption represents considerably higher values, 

therefore that situation is detected as a sensor fault situation. 

One should note that the trim and draft values are derived by 

the same draft measurement sensors, therefore a considerable 

relationship between these two parameters are expected.  

Therefore, this specific situation also relates to multiple 

sensor fault situations. However, this method should be 

further developed to identify the respect multiple sensor 

faults situations, where the respective faulty sensors should 

 

 
Fig. 6. Ship performance and navigation parameters with sensor faults. 

 

 
Fig. 5. The data set projected into the bottom PC. 

 



     

be recognized by considering other PCs. One should also 

note that the relative (rel.) wind direction (dir.) of the vessel 

consists of large frequent variations. However, those 

variations are not detected as sensor fault situations because 

that represents common behavior for the respective 

parameter. Hence, this results show that the PCs based filter 

is smart enough to distinguish the respective parameter 

behavior from the sensor faults and that is also a considerable 

contribution in this method.  

5. CONCLUSION 

Sensor fault detection under localized models in the 

combinator diagram of a selected vessel is presented in this 

study. The proposed approach consists of two detection levels 

to identify various sensor fault situations in an onboard data 

acquisition system. Each parameter of ship performance and 

navigation data has a realistic data range (i.e. variance), 

where the parameter can vary. This range also relates to the 

respective parameter variance and that is used as the 

threshold value for sensor fault detection. If the sensor reads 

a value beyond this parameter range, then that data point is 

categorized as a sensor fault situation by the first detection 

level.  However, more complicated sensor fault situations are 

detected by the second detection level by considering the 

localized models.  The localized models (i.e. data clustering) 

are developed under the engine propeller combinator diagram 

by considering GMMs with an EM algorithm. The internal 

structure of the clustered data points is examined through 

PCA.  

The engine and propeller can have unique operating 

regions under the combinator diagram.  This method can be 

seen as a piecewise linearization approach, where linearized 

models along the engine propeller combinator diagram are 

derived. Finally, the data set is projected into the bottom PC 

to identify the sensor fault situations in the data set of ship 

performance and navigation information. A data set of ship 

performance and navigation information in a selected vessel 

is analyzed through proposed sensor fault detection levels 

and the successful results on identifying several fault 

situations (i.e. fault level 2) are also reported in this study. 

Hence, the proposed approach has shown successful results 

with respect to a large data set of ship performance and 

navigation information collected by an onboard DAQ system 

(Perera et. al., 2015a, b). 

The proposed localized models satisfy the required 

sensor fault levels as presented in this study. However, a 

considerable model development steps should be taken in the 

future work to improve the proposed approach under the 

engine propeller combinator diagram. One should note that 

these localized models in the engine propeller combinator 

diagram are developed under a two dimensional space.  

Higher dimensional localized models should be derived to 

identify complex sensor fault situations as required. Even 

though various sensor faults situations are detected by the 

proposed detection levels, this methodology should further be 

developed to identify the receptive faulty sensors. It is 

believed that higher dimensional localized models can be 

used to identify not only sensor faults but also related 

sensors. Hence, that approach can also be used to overcome 

multiple sensor failure situations, where several faulty 

sensors can be identified.  Such situations can also relate to 

DAQ system failures, where higher dimensional localized 

models should be able to capture such variations. Even 

though these situations are detected as sensor fault situations, 

such situations can also relate to system or component 

failures. Appropriate mathematical models that relate to 

various system and component failures should be derived to 

overcome such situations, where sensor faults from system 

and component failures can be separated.   
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