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Abstract: Marine engine operating regions under principal component analysis (PCA) to evaluate ship 

performance and navigation behavior are presented in this study.  A data set with ship performance and 

navigation information (i.e. a selected vessel) is considered to identify its hidden structure with respect to 

a selected operating region of the marine engine. Firstly, the data set is classified with respect to the 

engine operating points (i.e. operating modes), identifying three operating regions for the main engine. 

Secondly, one engine operating region (i.e. a data cluster) is analyzed to calculate the respective principal 

components (PCs). These PCs represent various relationships among ship performance and navigation 

parameters of the vessel and those relationships with respect to the marine engine operating region are 

used to evaluate ship performance and navigation behavior. Furthermore, such knowledge (i.e. PCs and 

parameter behavior) can also be used for sensor fault identification and data compression/expansion types 

of applications as a big data solution in shipping.  

Keywords: Principal Component Analysis, Big Data, Marine Engine Operations, Ship Performance 
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1. INTRODUCTION 

Ship performance monitoring is with sensors and data 

acquisition systems facilitated to collect large data sets. These 

large data sets, often categorized as "big data", are analyzed 

in real-time to extract the information of ship performance 

and navigation behavior. Furthermore, the respective data 

handling process should consist of several improvement steps 

that include sensor fault identification, data compression and 

expansion to improve the quality of the process. These large 

scale data sets are often as unstructured formats considered 

due to various nonlinearities among ship performance and 

navigation parameters. Therefore, an appropriate structure 

should be investigated to implement the improvement steps 

in a real-time data handling process of these data sets.  That 

data structure can also be used to improve the quality of the 

data sets under the proposed improvement steps (i.e. sensor 

fault identification, data compression and expansion). Hence, 

the results of ship performance and navigation data can 

further be improved. 

Such unstructured data sets are associated with 

various conventions ship performance and navigation models  

to estimate their respective parameters. However, the 

respective parameter estimation processes may degrade due 

to the complexities in such empirical models and these 

conventions ship performance and navigation models may 

have difficulties in handling large data sets. Furthermore,   

the system-model uncertainties under ship performance and 

navigation parameters can further degrade the outcome of the 

respective estimation process. Therefore, a methodology to 

identify the respective structure in a selected data set of ship 

performance and navigation information is proposed and that 

may initiate the respective steps towards future ship 

performance and navigation models.  

This study proposes to learn the respective models 

from large data sets of ship performance and navigation 

information by considering Principal component analysis 

(PCA) (Shlens, 2014). PCA is a non-parametric method that 

extracts relevant information from chaotic type data sets and 

reduces the initial size of the data set to improve the content 

visibility.  In general, the respective variance values are 

among the parameters in a selected data set identified by 

PCA. These variance directions that are orthogonal represent 

the respective principal components (PCs) of the data set. 

The top and bottom PCs held the most and least important 

information of the data set. Therefore, the most important 

information of the data set accommodates to the top PCs and 

that is by projecting the same data set into the selected top 

PCs done. Therefore, the new data set is a representation and 

that consists of the most important information of the old data 

set. Therefore, the bottom PCs are often ignored during this 

process because that may not consist of any important 

information of the data set.  

The descending order of the PCs represents the 

order of significance (i.e. the order of variance) in the data 

set. When the same data set is into the least PCs projected, 

sensor faults and other erroneous data regions are often into 

these least PCs separated (Perera, 2016). Therefore, the new 

data set that is projected into the top principal components 

may have less sensor faults and other erroneous data regions.  

The same approach can also improve the data quality, where 

the least PCs can be used to identify sensor faults and other 



     

erroneous data regions in the same data set. Furthermore, that 

information can be used to improve the quality of the data set 

and identify the respective faulty sensors.  

The PC structure is as the basis for the respective 

models used and those models can be both for sensor fault 

identification used and data compression/expansion types of 

applications in shipping as a big data solution.  However, a 

proper structure of the data set in ship performance and 

navigation information should be used in both situations (i.e. 

sensor fault identification and data compression/expansion). 

An inadequate structure of the data set can further degrade 

the outcome of the respective models and sensor fault 

identification and data compression/expansion steps.  One 

should note that PCA has some limitations on finding 

accurate parameter relationships in some situations. This 

parameter inaccuracy may relate to the data point distribution 

and that may result in unusual parameter relationships within 

the data set. To overcome such challenges, a data clustering 

approach around main engine operating points is proposed in 

this study.   

There are several steps to implement before PCA. In 

general, the respective data set should have an approximate 

Gaussian type distribution (i.e. appropriate mean and 

variance) to get appropriate results from PCA. If the data set 

consists of various data clusters, then that can introduce 

erroneous conditions in PCA. Therefore, the respective data 

clusters should be identified, so that PCA can be 

implemented for each data cluster, separately to improve 

results. Since marine engines of vessels are operating around 

various operating points, operating points are appropriate 

mean values for such data clusters in ship performance and 

navigation information. The proposed data clustering 

approach consists of  Gaussian mixture models (GMMs) with 

an expectation maximization (EM) algorithm and uses to 

identify such marine engine operating regions  (Perera and 

Mo, 2016a). Then, the data set should equally be centered 

and scaled (i.e. standardized), where each parameter is 

subtracted and divided by the sample mean and standard 

deviation values. The parameter variance related erroneous 

conditions can be avoided by this step of PCA. If the same 

parameters represent unusual relationships, then the data set 

should be further investigated to capture additional clustering 

dimensions. Therefore, a methodology to identify the 

respective structure in a data set of ship performance and 

navigation information is presented in the following sections 

and that can handle large data sets and implement in real-time 

data handling process (Perera and Mo, 2016b, c & d). 

 

2. PRINCIPAL COMPONENT ANALYSIS 

An overview of PCA is in this section presented. A ship 

performance and navigation data set (i.e. m  number of 

parameters), denoted as: 
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parameters of ship performance and navigation information. 

The sample mean, x , and variance 
xS  of the same data set 
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This data set is into a new data set transformed by 

considering the following transformation steps under PCA, 

denoted as: 
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where y  is the mean of the new data set, and 
yS  is the 

respective variance of the transformed data set and u  is a unit 

variance vector that uses to project the old data set into the 

new data set. Hence, that also satisfies:  
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PCA maximizes the variance of each variance 

direction (i.e. principal component direction) of the new data 

set. Hence, the trace of 
yS  should be maximized and denoted 

as: 
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The Lagrange multiplier that satisfy (5) can be 

written as: 
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Fig. 1. Marine engine operating region classification. 

 

 



     

The derivatives of the Lagrange multiplier in (6) can 

be resulted in: 
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where  
i  is the eigenvalues and 

iu  is the respective 

eigenvectors of 
xS . One should note that the largest and 

smallest eigenvalues represent the top and bottom PCs, 

respectively.   

3. DATA ANALYSIS 

A data set of ship performance and navigation information is 

of a selected vessel considered. The respective parameter can 

be summarized as: average (avg.) draft (m), speed through 

water (STW)  (Knots), main engine (ME) power (kW), shaft 

speed (rpm), main engine (ME) fuel consumption (cons.) 

(Tons/day), speed over ground (SOG) (Knots), trim (m), 

relative (rel.) wind speed (m/s) and direction (deg) and 

auxiliary (aux.) fuel consumption (cons.) (Tons/day). The 

respective data set is from a bulk carrier collected with 

following particulars: ship length: 225 (m), beam: 32.29 (m), 

gross tonnage: 38.889 (tons), deadweight at max draft: 

72.562 (tons). The vessel is powered by 2 stroke ME with 

maximum continuous rating (MCR) of 7564 (kW) at the shaft 

rotational speed of 105 (rpm). Furthermore, the vessel has a 

fixed pitch propeller diameter 6.20 (m) with 4 blades. 

As the first step of this process, are the respective 

clusters of the data set of ship performance and navigation 

information investigated. An approach based on Gaussian 

mixture models and an expectation-maximization algorithm 

is in this step implemented to cluster the respective data set in 

ship performance and navigation information. Three specific 

operating points of the marine engine is identified in this data 

set and an overview of the approach is presented in Perera 

and Mo (2016a). The results (i.e. the respective data clusters) 

are in Figure 1 presented as an engine power (kW-log scale) 

and shaft speed (rpm) diagram. One should note that the 

respective data clusters are by Model 1, 2 and 3 denoted.   

These data clusters relate to three operating points related of 

the marine engine (i.e. vessel operating points). It is expected 

that other parameters in ship performance and navigation 

information should also relate to the same engine operating 

points.  

The third data clusters (i.e. model 3) is considered 

for PCA. The calculated PCs are in Figure 2 and the i-th PC 

is denoted as: 
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where 
10,3,2,1, ,..,, iiii zzzz  represent the respective vector 

components of the i-th PC.  One should note that the top and 

bottom PCs are 
1Z  and 

10Z , respectively. Hence, the 

respective vector components of each PC are further in the 

next step investigated by appropriate data visualization and 

the results are presented in Figure 2. One should note that this 

figure represents a 10 dimensional vector space, where the 

respective PCs (i.e. eigenvectors) are in a polar coordinate 

system demonstrated. Each PC is by a dotted circle presented, 

where the top PC has the highest radius. Each axis that is 

intersecting these circles represents a parameter from the data 

set of ship performance and navigation information. The 

respective vector components of each PC are by colored 

circles presented and the same circle radius represents the 

significance of that component with respect to other 

components within the same PC. This figure also represents 

an overview of the correlations among the respective 

parameters of ship performance and navigation information. 

A summary of these correlations among the respective 

parameters in the selected region of the marine engine (i.e. 

Model 3) is presented in Table 1.  

 

Table 1: PCs with parameter relationships 

This table consists of the respective PCs and their 

vector components. Furthermore, the following notations are 

to capture the correlations among the respective parameters 

within each PC introduced: HP: high positive, MP: medium 

positive, LP: low positive, HN: high negative, MN: medium 

negative, LN: low negative and L: low. One should note that 

HP represented by yellow color large circles and HN 

represented by blue color large circles in Figure 2. Therefore, 

the same notation system is used to evaluate ship 

performance and navigation behavior with respective the 
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1Z  HP MN LP MN LP HN MN LP L LP 

2Z  LN LP MP MP HP L LP LP LN HP 

3Z  L LN L LP LP LP LN MN HP LP 

4Z  L L HN MN LP L LP L L LP 

5Z  LP LP L L L L MP HP HP L 

6Z  L HN LP L L L LP LN MN L 

7Z  MP LP LP L L MN HP MN L L 

8Z  HP L LN MP L LP L LP L L 

9Z  L L LP HN L HP L L L L 

10Z  L L L L HN L L L L HP 

 
Fig. 2.  PCs for Model 3. 

 
 

 
 

 



     

derived PCs. Furthermore, these results are also compared 

with respective parameters as a time series data set and the 

results are presented in Figures 3 and 4. One should note that 

the x-axis of these figures presents a number (no.) of the data 

points and the time duration between two consecutive data 

points is 15 (min). 

 The respective PCs with their vector components are 

in this section further investigated (see Figure 2 and Table 1). 

The 1st  PC represents: when avg. draft (high) increases (HP), 

STW (medium) decreases, shaft speed (medium) decreases, 

SOG (high) decreases, and trim (medium) decreases. The 1st 

PC shows that ship resistance has increased due to the draft 

increments, where STW and SOG of the vessel are also 

decreased. The same conditions have decreased shaft speeds 

due to high engine loading conditions.  Furthermore, the draft 

increments are compensated by the trim adjustments of the 

vessel and that is by this PC also noted.  These results can by 

the ship performance and navigation data be verified that are 

presented in Figure 3 and 4. In general, when vessel avg. 

draft increases, then trim increases, STW decreases, and SOG 

decreases.   

The 2nd  PC represents: when engine power and 

shaft speed (medium) increases,  ME fuel consumption (high) 

increases, and aux. fuel consumption (high) increases. The 

2nd  PC shows a moderate increment in engine shaft speed 

increases engine power levels, moderately and fuel 

consumption in both main and auxiliary engines, 

significantly. This results shows that shaft speed increments 

beyond the mean operating point  in this engine operating  

region may not increase engine power, considerably but that 

may increase the respective fuel consumption, significantly. 

Similarly, these results can be by the results that presented in 

Figure 3 and 4 verified. In general, when engine power and 

shaft speed increases, ME fuel consumption increases, and 

aux. fuel consumption increases. However, unusual data 

regions (i.e. high data values) in both ME and AE fuel 

consumption plots. These data regions are also influenced on 

the respective PCs. It is believed that these regions are 

accumulated due to sensor erroneous conditions, therefore 

that (i.e. the erroneous data regions) should be removed from 

the data set to improve the validity of the respective PCs.     

The 3rd PC represents: when rel. wind speed 

(medium) decreases, then rel. wind angle (high) increases.  

Therefore, the 3rd PC shows that when the vessel increases its 

speed, then rel. wind speed increases and rel. wind angle 

decreases (i.e. the vessel encounters high head wind 

conditions with the speed increments). Similarly, these 

results can be by the data presented in Figure 3 and 4 

verified.  The fourth PC represents: when ME power  (high) 

increases, then shaft speed (medium) increases.  Therefore, 

the forth PC shows, the shaft speed increments increase 

engine power and the results can be verified by the data that 

are presented in Figure 3 and 4. The 5th PC represents: when 

vessel trim (medium) increases, then relative wind speed 

(high) and direction (high) increase. The 5th PC shows that 

the trim values are used under calm water conditions, where 

relative wind speed is slower and angle is higher. A larger 

wind angle represents the vessel is moving in moderate or 

slow speeds, therefore the vessel does not encounter any high 

head winds.     

The 6th PC represents: when STW (high) decreases, 

then relative wind angle (medium) decreases. The 6th PC 

shows, a positive correlation between STW and relative wind 

direction of the vessel and that relationship is similar to the 

previous PC. The same results can be verified by the data that 

are presented in Figure 3 and 4. The 7th PC represents: when  

avg. draft (medium) increases, then SOG  (medium) decrease, 

trim (high) increases, and rel. wind speed (medium)  

decreases.  Similarly, the 7th PC shows that ship resistance 

has increased due to the draft increments, therefore SOG is 

also decreased. The same conditions have reduced rel. wind 

speed, as discussed previously.  Furthermore, the draft 

 
 

Fig. 4. Ship performance and navigation data. 

 

 
 

Fig. 3. Ship performance and navigation data. 

 



     

increments are compensated by the trim variations under 

slow maneuvering conditions of the vessel.  

The 8th PC represents: when avg. draft (high) 

increases, then shaft speed (medium) increases. The 8th PC 

shows that ship resistance has increased due to the draft 

increments, therefore shaft speed is increased to compensate 

the speed losses in the vessel. Similarly, these results can be 

by the data presented in Figure 3 and 4,  verified. The 9th PC 

represents: when shaft speed (high) decreases, then SOG 

(high) decreases. The 10th PC represents: when ME fuel 

consumption (high) decreases, then aux. fuel consumption 

(high) increases. The bottom PCs may not represent any 

useful information about the respective parameter 

relationships as mentioned before. Therefore, a proper 

interpretation for the bottom PCs should not be expected. 

Furthermore, that can accumulate data erroneous conditions 

of ship performance and navigation information, therefore 

such parameter relationships should be ignored.  

The low positive and negative correlations among 

the respective parameters are from the above discussion 

ignored. However, those effects (i.e. low positive and 

negative correlations) should also be incorporated in the 

respective parameter relationship to see an overall picture of 

ship performance and navigation information. However, that 

can complicate the outcome of the respective PCs. A majority 

of these PCs can be with the data plots in Figures 3 and 4 

verified. However, some erroneous data regions have also 

influenced in these results and should, as mentioned before 

be removed. Therefore, the respective tools to identify and 

remove such data erroneous situations to be developed, to 

that improve the accuracy of the respective PCs.  

As the next step of this process, the time series data 

presented in Figures 3 and 4 are as statistical distributions 

grouped, and the results are in Figure 5 presented. A majority 

of the parameters in ship performance and navigation 

information shows single statistical distributions. However, 

the average draft and trim values of the vessel consist of two 

separate distributions. These trim and draft configurations are 

further studied and the combined statistical distribution for 

the same parameters is in the top plot of Figure 6 presented. 

The figure shows that these two distributions relate to each 

other, when the draft values are approximately 11-12 (m) and 

4-5 (m), then the trim values are approximately 0-1.5 (m) and 

3.5-4 (m), respectively. Therefore, the vessel is operating 

around specific avg. draft-trim combinations and that is as 

several data clusters observed. The respective contour plot 

(i.e. a top view) of the same plot with vessel STW is in the 

bottom of Figure 6 presented.  

One should note that the vessel is having high STW 

under low draft conditions and low STW under high draft 

conditions due to ship resistance effects. However, additional 

less frequent avg. draft-trim regions of the vessel can be in 

the same plot noted. One should note that these regions may 

consider as transition regions, where the vessel operation 

conditions shift from one operating point (i.e. the avg. draft 

or trim value) to another. It is believed that these transition 

regions may not influence significantly on overall ship 

performance and navigation behavior. It is concluded that the 

same data set should be further clustered with respect to 

vessel avg. draft-trim conditions to further improve the 

respective PCs. Hence, the data clustering approach that is 

under marine engine-operating regions presented should also 

be with vessel avg. draft-trim configurations incorporated. 

One should note that this combination creates 6 data clusters 

that relate to vessel operation conditions. Such data clusters 

may create different set of PCs and that can further improve 

the knowledge of ship performance and navigation behavior. 

That (i.e. PCs and parameter behavior) further improves 

 
 

Fig. 6. Avg. draft and trim configuration of the vessel.  

 

 
 

Fig. 5. Statistical distribution of the respective parameters. 

 



     

onboard sensor fault identification and data 

compression/expansion types of applications in vessels and 

that is as the future work of this study considered. 

5. CONCLUSION 

Marine engine operating regions under principal component 

analysis (PCA) are by considering a data set of a selected 

vessel to evaluate ship performance and navigation behavior 

studied. The data set with ship performance and navigation 

information is in this analysis to identify its hidden structure 

with respect to a selected operating region of the marine 

engine used. That consists of several steps.  Firstly, the data 

set is with respect to the engine operating points classified, 

that identifies three engine operating regions. The proposed 

data clustering approach consists of Gaussian mixture models 

(GMMs) with an expectation maximization (EM) algorithm. 

Then, one engine operating region is selected (i.e. a data 

cluster) to calculate the respective principal components 

(PCs).  

These PCs represent various parameter relationships 

among ship performance and navigation information, 

therefore ship performance and navigation behavior within a 

selected marine engine operating region is in this study 

discussed. However, it is also noted that the selected region 

of marine engine operations can be further divided by 

considering vessel avg. draft and trim conditions. Therefore, 

the clustered data set can be further clustered by considering 

the respective avg. draft and trim conditions. The vessel is 

operating around specific avg. draft and trim values within 

this engine-operating region and that is the main reason of 

this hidden data structure.  Therefore, identifying such hidden 

structures within ship performance and navigation data sets is 

also play an important role in the proposed approach.  

 The main advantage in this approach is that ship 

performance and navigation behavior can be observed from 

with respect to engine/propeller operating regions and then 

avg. draft/trim regions. Therefore, this approach can also be 

considered as the required development steps towards data 

driven ship performance and navigation models by 

considering the respective vessel operating points (i.e. engine 

operating points and trim-draft operating points). Hence, the 

respective models are linearized around each of these vessel 

operating regions (i.e. engine/propeller operating regions and 

the avg. draft/trim regions) by this approach. One should note  

the parameter relationships in ship performance and 

navigation data can vary due to these vessel operating regions 

and that are represented by  various vectors (i.e. PCs).  

However, that can facilitate a piecewise linear 

function capture the nonlinear behavior of ship speed power 

performance and navigation capabilities. PCA with ship 

performance and navigation data can be an important part of 

such nonlinear functions and that is proposed as the future 

work of this study. This extended knowledge (i.e. PCs and 

parameter behavior) of the respective data set of ship 

performance and navigation information can be for sensor 

fault identification and data compression/expansion types of 

applications as a big data solution (Rodseth et al., 2016) in 

the shipping industry used.  
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