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Abstract

Up to now, the performance-based concept has been very rarely extended from engineering phase to other phases within the 
building process. To achieve more sustainable and more intelligent constructions, the construction industry needs decision 
support systems that integrate a selection of processes, constraints, time span, and performance criteria that are relevant to all 
involved stakeholders. This paper intends to demonstrate a design methodology that solves these challenges, and provides several 
frameworks for decision support systems deemed relevant to the construction industry. Examples of current applications are 
provided, together with a discussion on future opportunities. The possible synergy with new technologies is emphasized.
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1. Introduction

1.1. Background

Until recently, the so-called prescriptive approach for building processes was in use, mostly for practical reasons: 
describing acceptable solutions makes the design easy to implement, its verification easy to perform, and regulations 
easy to enforce. However, Foliente [1] underlined that the prescriptive approach exhibited several serious problems: 
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it serves as a barrier to innovation, it makes it very difficult to cost-optimize building construction, and it makes it 
difficult to compare products from two trading countries that use their own sets of criteria.

A relevant alternative is the performance-based design, which became famously known as "the practice of 
thinking and working in terms of ends rather than means" [2]. With other words, buildings and building products are 
thought of what they are required to do, rather than being prescribed how to be constructed. Today, the structural 
EUROCODES are the most comprehensive example of implementing the performance concept in formal design 
documents [3].

1.2. State-of-the-art

Spence and Kareem [4] stated that "Performance-based design is fast becoming the benchmark approach for 
achieving designs that rationally meet society's need for a truly safe built environment". However, appropriate 
frameworks that allow the principles of performance-based design to be adopted have been mostly restricted to 
structural engineering of specific types of constructions: e.g. tall buildings [5], to specific construction materials: 
e.g. concrete [6], or to specific structural requirements: e.g. seismic analyses [7] or wind excitation [8]. Some few 
studies attempted to combine several engineering disciplines for performance-base design. Among others, Becker 
[3] considered fire safety, acoustics, moisture safety, indoor air quality and durability in order to formally map the 
user needs and performance requirements. More recently, Brown and Mueller [9] used simultaneously structural 
modeling and building energy simulations to generate optimized building shapes.

In general, most multi-disciplinary studies investigated the environmental performance of construction. Caldas 
and Norford [10] proposed a tool to optimize design solutions in terms of thermal and lighting performance. Later, 
Ochoa et al. [11] determined the suitability of combined optimization criteria on window sizing procedures for low 
energy consumption and high visual comfort. Wang et al.[12] presented a methodology to optimize building shapes 
in plan by considering both life-cycle cost and life-cycle environmental impact. Fabrizio et al. [13] customized their 
modelling approach to integrate different energy sources in order to cover the thermal and electrical loads of a 
building. Nguyen et al. [14] gave a complete review on "building design optimization", although the scope of their 
work was limited to the design of "greener" buildings, without taking into account other types of requirements. At 
the same time, there is a recognized lack of suitable tools for early design of for example environmental objectives 
[15, 16].

Up to now, the performance-based concept has been very rarely extended from engineering phase to other phases 
within the building process, particularly those occurring after the construction, although they may have a substantial 
effect on the required level of investment.  The whole building process is still following a very linear workflow 
despite studies that suggest to enhance interdisciplinary in order to reduce the investment in poor performing 
solutions [17].

Despite the strong need for highly efficient structures motivated by rapidly decreasing resources and high 
construction costs, structural optimization methods that prioritize efficiency have not taken hold in practice [18].
Bakens, Foliente and Jasuja [19] insisted on the fact that to engage stakeholders effectively, the performance 
approach should be presented as a business issue rather than primarily as a technical issue. Cost is maybe the most 
crucial business issue: e.g. Marks [20] determined the optimal dimensions of a building by minimizing the building 
and heating costs. However, environmental issues are increasingly studied at the design phase: e.g. Fesanghary et al. 
[21] attempted to satisfy the multiple objectives of energy consumption optimization, financial costs reduction and 
decrease of environmental impacts. Other important business issues, e.g. construction time, health and safety, and 
societal cost, have been very seldom investigated within such frameworks. In general, eliciting the needs and 
requirements of all stakeholders is necessary, as these may not be aligned [22].

1.3. Main motivation and objectives

Decision support systems should intend to integrate a selection of processes, constraints, time span, and 
performance criteria that are relevant to all involved stakeholders. The "design team", which is usually limited to 
architects and engineers, should instead encompass also manufacturers, entrepreneurs, future owners, users, etc and 
should make use of the "performance-based design" concept in a very broad sense.
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This paper intends to demonstrate a design methodology that solves these challenges. A   framework for a 
decision support system is provided; the novelty of this approach lies in the extended scope of processes that are 
taken into account and in the extended amount of performance indicators that are deemed relevant to contribute to a 
global definition of performance of a construction (see Fig. 1).

This paper has the following objectives:
to provide a short state-of-the-art on the development of performance-based design, and its current 
limitations,
to formally establish some frameworks for simulation tools and for decision support systems,
to provide examples of current and future applications within the construction industry of such frameworks,
to discuss the opportunities of such frameworks within the construction industry in light of some recent 
technological advances.

Fig. 1. An extended scope for performance-based design as a framework for a decision support tool

2. Multi-process simulation framework

2.1. Scope: to provide data

The motivation for developing a multi-process simulation framework is to deliver the most complete 
performance picture of a given construction (see Fig. 2). All available knowledge needs to be incorporated into the 
tool, so that:

It enhances coordination inside the design team and facilitates the dialog between experts and non-experts.
The whole simulation platform can be re-used for other projects, either partly or completely.

Fig. 2. Framework for a multi-process simulation tool (input = design variables, output = performance data)

2.2. Building steps

Building a multi-process simulation framework requires the following steps (see Fig. 2):
Determine the relevant design variables. Design variables are defined as quantities describing the 
construction.
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Define the relevant performance indicators, which could be of two types (see Fig. 1):
o Technical performance indicators arise from the building process: e.g. U-value from thermal 

analyses, load-bearing capacity from structural analyses, or damping properties of building 
products.

o Operational performance indicators arise from stakeholders, and are mostly related to business 
issues:  e.g. life-cycle cost, carbon footprint, societal cost, or health and safety metrics. 

Map and digitize the available knowledge. Knowledge can be defined as a "rule" – i.e. a simplified equation 
or a complex model – that transforms a set of design variables into one or several performance indicators. 

3. Extensions to a decision support system framework

3.1. Scope: to provide knowledge

Simulation tools answer the need for accurate quantitative performance results, but they do not provide any 
evaluation of the provided data. Mueller and Ochsendorf [18] observed that to overcome this lack of knowledge, 
designers are tempted to use simulation tools in a time-consuming trial-and-error mode. By doing so, they limit the 
number of design alternatives and reduce the quality of the chosen solution. The complexity of real-world design 
problems requires decision support tools that also integrate optimization, analysis, and modeling [23] in order to 
give involved stakeholders an increased knowledge on the design space instead of data from a single construction.
At the same time, this should also make the process more attractive to architects searching for creative forms [9].

3.2. Sensitivity analyses

Sensitivity analyses may be performed to screen out insignificant variables (see Fig. 3). Several sensitivity 
analysis techniques can be used such as local sensitivity analysis methods, screening methods, Monte Carlo-based 
methods, variance-based methods or ‘‘design of experiment’’ methods [14].

Fig. 3. Framework for sensitivity analyses (output = distinction between governing and non-governing design variables)

3.3. Multi-criteria optimization

Building a multi-criteria optimization system (see Fig. 4) requires the following steps (most of the definitions are 
adapted from Marks [20]):

Determine decision variables. Decision variables are defined as the set of design variables that will be 
subjected to variations during the optimization process.
Determine design constraints. Design constraints describe certain conditions to be satisfied by a construction 
and usually occur in the form of equalities or inequalities. They are imposed on decision variables to 
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determine the boundary of the feasible region. They highly depend on the context and are construction-
specific.
Determine performance constraints. Performance constraints describe certain conditions to be satisfied by a 
construction and usually occur in the form of equalities or inequalities. They are imposed on performance 
indicators. Technical performance constraints generally consist in technical requirements originating from 
official standards, code, or internal specifications. Operational performance constraints can be related to the 
ambition level or definitive stakeholder requirements, for example cost or environmental performance.
Determine a set of objective functions. An objective function is a mathematical expression describing a 
wanted property of the construction, and usually consists in setting a target, e.g. maximize or minimize, to 
performance indicators. The set of objective functions is called the objective function vector.

Fig. 4. Framework for optimization methods (output = "best" solution and its corresponding set of decision variables)

Solving a multi-criteria optimization problem leads to different types of solutions:
The ideal solution of an optimization problem is the solution which makes every objective function reach its 
extremum independently of the remaining functions. The ideal solution does not exist in most cases as 
objective functions are usually in conflict.
The non-dominated solution set is defined as a compromise set, where none of the objective functions can be 
improved without simultaneous deterioration of at least one of the remaining objective functions.
The preferred solution is defined as one solution from the non-dominated solution set, selected on the basis 
of an additional criterion.

3.4. Multi-objective design space exploration

Optimization produces a single solution to a design problem [18]. However, an ideal decision support tool (see 
Fig. 5) should expose involved stakeholders to a diverse range of alternatives that may inspire new goals or spark 
new ideas. Among other design space exploration approaches, evolutionary algorithms aim at replicating biology: a 
child inherits good traits from both parents while exposed to the possibility for mutation for generating biodiversity. 
Evolutionary algorithms consists in two main parameters: 

The generation size is defined as the number of candidate designs evaluated after a step of evolutionary 
exploration. It reflects a tradeoff between high performance and limited computation time.
The mutation rate is introduced as a degree of randomness when a new population of designs is generated. A 
high mutation rate gives the ability to move around the design space quickly, whereas a low mutation rate 
ensures that positive traits inherited from parents are effectively passed on to children.
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Mueller and Ochsendorf [18] proposed a new computational approach for design space exploration that includes  
qualitative performance criteria – i.e. non-measurable goals – via a direct impact on the mutation rate. In other 
words, involved stakeholders decide which designs should become parents for the next generation. Hamacher and 
Kjølsrud [24] evaluated the benefits of similar tools in the early investigative design phase, and concluded on the 
need of helping involved stakeholders to "think out-of-the-box". Finally, Magnier and Haghighat [25] showed that 
revealing a multitude of design options provides stakeholders with better decision support

Fig. 5. Framework for design space exploration methods (output = set of "close-to-optimal" interesting solutions)

3.5. Selection of current applications

Tall Timber facades [26] is a European research project that aims at facilitating confident design of durable and
cost-effective solutions for tall timber facades. The project consortium is developing a risk-based design tool taking 
into account exposure and vulnerability of façade components and systems [27]. The tool will enable planners and 
producers to make substantiated decisions for specific constructions. WoodSols [28] is a Norwegian research project 
that aims at increasing the use of wood in urban areas. Solutions should then be suitable for industrial scale 
production and should be able to be used in large and flexible buildings. Skaar et al. [29] are currently evaluating the 
potential of low-carbon timber-concrete composite floors with the challenge of meeting structural, safety and 
acoustic requirements. Moelven Orkdal bridges is a Norwegian innovation project that intends to build a framework 
for linking architects, engineers, timber element producers, steel connection producers, and final owners. The 
construction typology is the one of truss timber pedestrian bridges of short span [30].

4. Challenges, opportunities and future applications in the light of recent advances in new technologies

The building research community has demonstrated a great interest in building optimization studies for the last 
two decades [14]. Although Jato-Espino et al. [31] provided an overview of a number of multi-criteria decision 
making methods in the construction industry, the applications of decision support systems for real-world design 
challenges are still in the early stage of development. One of the main challenges is their actual adoption by end-
users. This limited use in practice has often been observed [32], and the identified reasons include:

the development of highly specialized software products tailored to handle particular profession-specific 
needs [33] induces complicated communication within an unified framework,
the linear building process results in that members of the design team are only given small latitude to 
"optimize" for their own performance goals without reference to other disciplines [32] or system levels [34],
non-quantitative preferences and design goals are difficult to include in optimization frameworks [18, 32],
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several technical obstacles in coupling strategies, usability, flexibility and efficiency (i.e. in term of both 
time and performance improvement) partly inhibit the propagation of optimization techniques in building 
design practice [14],
the difficulty of targeting the actual needs of the end-users makes it challenging to find a trade-off between 
abstraction of the technical complexity while maintaining a sufficient level of flexibility [23],
the challenge that requirements vary under different conditions, e.g. regulatory conditions [35] makes it 
difficult to develop suitable tools, and
the absence of validated models that address the performance of the construction over its whole life cycle, 
for example durability of building materials [36].

The development of decision support tools for the construction industry will likely benefit from recent advances 
in "intelligent" [37] technologies, as more usable data and more useful knowledge will be produced. The 
construction industry already deals with large volumes [38, 39] of heterogeneous data; this is expected to increase 
exponentially as technologies such as sensor networks and the Internet of Things are developed [40]. Big Data is the 
ability to process such large amounts of data and to extract useful insights from it, and it has applications for a wide 
assortment of industries, including the construction industry [40]. Finally, Artificial Intelligence is demonstrating
new possibilities in the way computers can inform and actively interact with the design process [10].

When it comes to future applications, the development of robotics and additive manufacturing technologies have 
been recognized to have the potential to revolutionize the construction industry [41]. Within the described 
frameworks, these technologies act as a source for digital technical knowledge related to production processes and 
to material selection processes. However, verified and comprehensive studies on the profitability or on the real 
environmental impact of additive manufacturing for the construction sector are missing [42]. Decision support 
frameworks with extended scope are necessary for such evaluations, and they would help to develop further 
innovative constructions.

Skaar and Norby [43] claimed that circular economy could address the need for reducing the carbon footprint by 
70-100% in the building and construction industry without significantly increasing other environmental or social 
impacts in a life cycle perspective, and they presented a framework for analyzing business models for reuse and 
recycling of building components and building materials. In general, the implementation of circular economy 
knowledge into decision support systems would benefit the construction industry as a means for boosting global 
competitiveness, for fostering sustainable economic growth and for generating new jobs.

5. Summary and conclusions

There is a substantial demand for more sustainable and more intelligent construction, but the linearity of the 
building process is a strong inhibitor of design innovations. The construction industry needs to take better-informed 
decisions for developing more performant and more innovative designs and processes. Increased knowledge can be 
provided by the use of decision support tools that encompass a wide range of performance criteria. Frameworks for 
such decision support tools, suitable for the construction industry, are formally defined in this paper. Definitions are 
generic enough to be applied to any construction project and any building process. The necessity of such tools is 
likely to increase substantially when it comes to evaluate the benefits of new technologies for the construction 
industry in a systematic – and objective – way. This paper is intended to foster and support innovation within the 
design and building processes, and to provide the necessary frameworks for a more systematic definition and 
evaluation of "sustainable" and "intelligent" constructions.
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