
Noname manuscript No.
(will be inserted by the editor)

GPU Computing in Discrete Optimization

Part II: Survey Focused on Routing Problems

Christian Schulz · Geir Hasle ·
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Abstract In many cases there is still a large gap between the performance of
current optimization technology and the requirements of real world applications.
As in the past, performance will improve through a combination of more powerful
solution methods and a general performance increase of computers. These factors
are not independent. Due to physical limits, hardware development no longer re-
sults in higher speed for sequential algorithms, but rather in increased parallelism.
Modern commodity PCs include a multi-core CPU and at least one GPU, provid-
ing a low cost, easily accessible heterogeneous environment for high performance
computing. New solution methods that combine task parallelization and stream
processing are needed to fully exploit modern computer architectures and profit
from future hardware developments. This paper is the second in a series of two.
Part I gives a tutorial style introduction to modern PC architectures and GPU
programming. Part II gives a broad survey of the literature on parallel computing
in discrete optimization targeted at modern PCs, with special focus on routing
problems. We assume that the reader is familiar with GPU programming, and
refer the interested reader to Part I. We conclude with lessons learnt, directions
for future research, and prospects.
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1 Introduction

In Part I of this paper [9], we give a brief introduction to parallel computing in
general and describe modern computer architectures with multi-core processors for
task parallelism and accelerators for data parallelism (stream processing). A simple
prototype of a GPU based local search procedure is presented to illustrate the
execution model of GPUs. Strategies and guidelines for software development and
performance optimization are given. On this background, we here, in Part II, give
a survey of the existing literature on parallel computing in discrete optimization
targeted at modern PC platforms. With few exceptions, the work reported focuses
on GPU parallelization.

Section 2 contains the bulk of Part II. It starts with an overall description of
our literature search before we refer to early work on non-GPU accelerators in 2.1.
The rest of the section is structured according to type of optimization method.
As a reflection of the number of publications, the first and most comprehensive
part concerns metaheuristics. We give accounts of the literature on swarm intel-
ligence, population based metaheuristics, and trajectory based metaheuristics in
subsections 2.2, 2.3, and 2.4, respectively. For all optimization methods, we briefly
describe the method in question, present a survey of papers, often also in tabu-
lar form, and synthesize the insights gained. An in-depth discussion of important
papers on routing is given, if any. Subsection 2.5 discusses GPU-based implemen-
tations of shortest path algorithms. In Section 3 we give an overview over GPU
implementations of metaheuristics applied to problems that are not related to rout-
ing, using the structure from Section 2. In 3.4, we discuss hybrid metaheuristics.
As Linear Programming and Branch & Bound are important bases for methods in
discrete optimization, we give a brief account of GPU implementations in 3.5. We
conclude Part II with lessons learnt and directions for future research in Section
4, followed by summary and conclusions in Section 5.

2 Literature Survey with Focus on Routing Problems

Parallel methods to alleviate the computational hardness of discrete optimization
problems (DOPs) are certainly older than the modern PC architecture. Parallelized
heuristics, metaheuristics, and exact methods for DOP have been investigated
since the 1980s and there is a voluminous literature, see for instance [87] and [4]
for general surveys, and [21] for a survey focused on the VRP. Most of the work is
based on task parallelism, but the idea of using massive data parallelism to speed
up genetic algorithms dates back to the early 1990s, see for instance [85].

It should be clear that population based metaheuristics and methods from
swarm intelligence such as Ant Colony Optimization lend themselves to differ-
ent types of parallelization at several levels of granularity. Both task and data
parallelization are possible, and within both types there are many alternative par-
allelization schemes. Also, the neighborhood exploration in local search that is
the basis and the bottleneck of many trajectory based metaheuristics is inherently
parallel. At a fine-grained level, the evaluation of objective components and con-
straints for a given neighbor may be executed in parallel. A more coarse-grained
parallelization results from neighborhood splitting. What may be regarded as the
simplest metaheuristic — multi-start local search — is embarrassingly parallel.
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Again, both data and task parallelization may be envisaged, and there are many
non-trivial design decisions to make including the parallelization scheme.

Branch & Bound and Branch & Cut are basic tree search algorithms in exact
methods for DOP. At least conceptually, they are easy to parallelize, but load
balancing and scaling are difficult issues. We refer to [22] and [72] for in-depth
treatments. Commercial MILP solvers typically have task parallel versions that are
well suited for multi-core processors. As far as we know there exists no commercial
MILP solver that exploits stream processing accelerators. More sophisticated exact
MILP methods such as Branch & Cut & Price are harder to parallelize [73].

In a literature search (2012), we found some 100 publications on GPU com-
puting in discrete optimization. They span the decade 2002-2012. With only a
few exceptions they discuss GPU implementation of well-known metaheuristics,
or problem specific special algorithms. Very few address the combined utilization
of the CPU and the GPU. Below, we give some overall characterizations of the
publications found, before we structure and discuss the literature in some detail.

As for applications and DOPs studied, 28 papers describe research on routing
problems, of which 9 focus on the Shortest Path Problem (SPP), 16 discuss the
TSP, and only 3 study the VRP. As GPU computing for the SPP is peripheral
to the goals of this paper, we only give a brief survey of the literature in Section
2.5. Also relevant to transportation there is a paper on route selection for car
navigation [11], and one on route planning in aerial surveillance [79]. Bleiweiss
[8] describes an efficient GPU implementation of parallel global pathfinding using
the CUDA programming environment. The application is real time games where a
major challenge is autonomous navigation and planning of thousands of agents in
a scene with both static and dynamic moving obstacles. Rostrup et al. [78] describe
a GPU implementation of Kruskal’s algorithm for the Minimum Spanning Tree
problem.

Among other DOPs and applications studied are:

– Allocation of tasks to heterogeneous processing units
– Task matching
– Flowshop scheduling
– Option pricing
– FPGA placement
– VLSI circuit optimization
– Protein sequence alignment in bioinformatics
– Sorting
– Learning
– Data mining
– Permutation perceptron problem
– Knapsack problem
– Quadratic Assignment Problem
– 3-SAT and Max-SAT
– Graph coloring

Not surprisingly, the bulk of the literature with some 80 papers discusses imple-
mentations of swarm intelligence methods and population based metaheuristics.
Of the 41 swarm intelligence papers found, there are 23 on Ant Colony Opti-
mization (ACO) and 18 on Particle Swarm Optimization (PSO). Most of the PSO
publications focus on continuous optimization. The identified literature on popula-
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tion based metaheuristics (Evolutionary Algorithms, Genetic Algorithms, Genetic
Programming, Memetic Algorithms, and Differential Evolution) also consists of 41
publications. The remaining publications cover (number of publications):

– Metaheuristics in general (1)
– Immune Systems (2)
– Local Search (8)
– Simulated Annealing (3)
– Tabu Search (3)
– Special purpose algorithms (2)
– Linear Programming (4)

The most commonly used basis for justifying a GPU implementation is speed
comparison with a CPU implementation. This is useful as a first indication, but
it is not sufficient by itself. Important aspects such as the utilization of the GPU
hardware, are typically not taken into consideration. Moreover, the CPU code
used for comparison is normally unspecified, and thus unknown to the reader.
We refer to Section 4 for a detailed discussion on speedup comparison. Often, an
algorithm can be organized in different ways, which in turn can have a variety of
GPU implementations, each using different GPU specifics such as shared memory.
Only a few papers discuss and compare different algorithmic approaches on the
GPU. A thorough investigation of hardware utilization, e.g., through profiling of
the implemented kernels, is missing in nearly all of the papers. For these, we will
simply quote the reported speedups. If a paper provides more information on the
CPU implementation used, different approaches, or profiling, we will mention this
explicitly.

2.1 Early works on non-GPU related accelerators

Early papers utilize hardware such as Field-Programmable Gate Arrays (FPGAs).
Guntsch et al. [34] is the earliest paper in our survey. It appears in 2002 and pro-
poses a design for an Ant Colony Optimization (ACO) variant, called Population-
based ACO (P-ACO), that allows efficient FPGA implementation. In [81], an
overlapping set of authors report from the actual implementation of the P-ACO
design. They conduct experiments on random instances of the Single Machine To-
tal Tardiness Problem (SMTTP) with number of jobs ranging from 40 to 320 and
report moderate speedups between 1.6 and 10 relative to a software implementa-
tion. Scheuermann et al. continue their work on ACO for FGPAs in [80], where
they propose a new ACO variant called Counter-based ACO. The algorithm is
designed such that it can easily be mapped to FPGAs. In simulations they apply
this new method to the TSP.

2.2 Swarm Intelligence Metaheuristics

The emergent collective behavior in nature, in particular the behavior of ants,
birds, and fish is the inspiration behind Swarm intelligence metaheuristics. For
an introduction to Swarm intelligence, see for instance [42]. Swarm intelligence
metaheuristics are based on communication between many, but relatively simple,
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agents. Hence, parallel implementation is a natural idea that has been investigated
since the birth of these methods. However, there are non-trivial design issues re-
garding parallelization granularity and scheme. A major challenge is to avoid com-
munication bottlenecks.

The methods of this category that we have found in the literature of GPU
computing in discrete optimization are Ant Colony Optimization (ACO), Particle
Swarm Optimization (PSO) and Flocking Birds (FB). ACO is the most widely
studied Swarm intelligence metaheuristic (23 publications), followed by PSO (18)
and FB (3). ACO is also the only swarm intelligence method applied to routing
problems in our survey, which is why we will discuss it here. For an overview of
GPU implementations of the other swarm intelligence methods, we refer to Section
3.1.

In ACO, there is a collection of ants where each ant builds a solution ac-
cording to a combination of cost, randomness and a global memory, the so-called
pheromone matrix. Applied to the TSP this means that each ant constructs its
own solution. Afterwards, the pheromone matrix is updated by one or more ants
placing pheromone on the edges of its tour according to solution quality. To avoid
stagnation and infinite growth, there is a pheromone evaporation step added be-
fore the update, where all existing pheromone levels are reduced by some factor.
There exist variants of ACO in addition to the basic Ant System (AS). In the
Max-Min Ant System (MMAS), only the ant with the best solution is allowed to
deposit pheromone and the pheromone levels for each edge are limited to a given
range. Proposed by Stützle, the MMAS has proven to be one of the most efficient
ACO metaheuristics. The most studied problem with ACO is the TSP. There are
also several ACO papers on the Shortest Path Problem and variants of the VRP.

Parallel versions of ACO have been studied extensively in the literature, and
several concepts have been developed. The two predominant, basic parallelization
schemes are parallel ants, where one process/thread is allocated to each ant, and
the multiple colonies approach. In [71], Pedemonte et al. introduce a new taxonomy
for classifying parallel ACO algorithms and also present a systematic survey of
the current state-of-the-art on parallel ACO implementations. As part of the new
taxonomy they describe the master-slave category, where a master process manages
global information and slave processes perform subordinate tasks. This concept
can again be split into coarse-grained and fine-grained. In the former, the slaves
compute whole solutions, as done in parallel ants. In the latter, the slaves only
perform parts of the computation for one solution. Pedemonte et al. consider a
wide variety of parallel computing platforms. However, out of the 69 publications
surveyed, only 13 discuss multi-core CPU (9) and GPU platforms (4). Table 1
presents an overview of the routing related GPU papers implementing ACO that
we found in the literature, showing which steps of ACO are performed on the GPU
in what fashion by which paper.

ACO exhibits apparent parallelism in the tour construction phase, as each ant
generates its tour independently. The inherent parallelism has led to early imple-
mentations of this phase on the GPU using the graphics pipeline. In Catala et al.
[13] and Wang et al. [90] fragment shaders are used to compute the next city selec-
tion. In both papers, the necessary data is stored in textures and computational
results are made available by render-to-texture, enabling later iterations to use
earlier results. In [90], Wang et al. assign to each ant-city combination a unique
(x, y) pixel coordinate and only generate one fragment per pixel. This leads to a
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Author Year Problem Algorithm GPU(s)
Catala et al. [13] 2007 OP ACO GeForce 6600 GT
Bai et al. [5] 2009 TSP multi colony MMAS GeForce 8800 GTX
Li et al. [51] 2009 TSP MMAS GeForce 8600 GT
Wang et al. [90] 2009 TSP MMAS Quadro Fx 4500
You [96] 2009 TSP ACO Tesla C1060
Cecilia et al. [14] 2011 TSP ACO Tesla C2050
Delévacq et al. [25] 2012 TSP MMAS & multi-colony 2 x Tesla C2050
Diego et al. [27] 2012 VRP ACO GeForce 460 GTX
Uchida et al. [89] 2012 TSP AS GeForce 580 GTX

Author Tour construction Ph. update Max. CPU
GP CUDA: one-ant-per GP CUDA Speedup code

thread block
Catala et al. [13] x [67]
Bai et al. [5] x x 2.3 ?
Li et al. [51] x x 11 ?
Wang et al. [90] x 1.1 ?
You [96] x 21 ?
Cecilia et al. [14] x x x 29 [28]
Delévacq et al. [25] x x -/x 23.6 ?
Diego et al. [27] x x 12 ?
Uchida et al. [89] x x 43.5 own

Table 1: ACO implementations on the GPU related to routing. Legend: OP –
orienteering problem; Ph. – pheromone; GP – graphics pipeline; -/x – in some
settings; ? – unknown CPU code.

conceptually simple setup that needs multiple passes to compute the result. In
[13] Catala et al. relate one pixel to an ant at a certain iteration and generate one
fragment per city related to this pixel. The authors utilize depth testing to select
the next city, and also provide an alternative implementation of tour construction
using a vertex shader.

With the arrival of CUDA and OpenCL, programming the GPU became eas-
ier and consequently more papers studied ACO implementations on the GPU. In
CUDA and OpenCL there is the basic concept of having a thread/workitem as
basic computational element. Several of them are grouped together into block-
s/workgroups. For convenience we will use the CUDA language of threads and
blocks. From the parallel master-slave idea, one can derive two general approaches
for the tour construction on the GPU. Either a thread is assigned to comput-
ing the full tour of one ant, or one thread computes only part of the tour and a
whole thread block is assigned per ant. Thus we have the one-ant-per-thread and
the one-ant-per-block schemes. Many papers implement either the former (Bai et
al. [5], You [96], Diego et al. [27]) or the latter (Li et al. [51], Uchida et al. [89]).
Only a few publications (Cecilia et al. [14], Delévacq et al. [25]) compare the two.
Cecilia et al. argue that the one-thread-per-ant approach is a kind of task paral-
lelization, and that the number of ants for the studied problem size is not enough
to fully exploit the GPU hardware. Moreover, they argue that there is divergence
within a warp and that each ant has an unpredictable memory access pattern.
This motivated them to study the one-block-per-ant approach as well.

Most papers provide a single implementation of their selected approach, often
reporting how they use certain GPU specifics such as shared and constant memory.
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In contrast, the papers by Cecilia et al. [14], Delévacq et al. [25], and Uchida et
al. [89] study different implementations of at least one of the approaches. For the
one-ant-per-thread scheme, Cecilia et al. [14] examine the effects of separating the
computation of the probability for each city from the tour construction. They also
introduce a list of nearest neighbors that have to be visited first, in order to reduce
the amount of random numbers. The effects of shared memory and texture memory
usage are studied. Delévacq et al. also examine the effects of using shared memory
or not. Moreover, they study the addition of a local search step to improve each
ants solution. Uchida et al. [89] examine different approaches of city selection in the
tour construction step in order to reduce the amount of probability summations.

As the pheromone update step is often less time consuming than the tour
construction step, not all papers put it on the GPU. Most of the ones that do,
investigate only a single pheromone update approach. In contrast, Cecilia et al.
[14] propose different pheromone update schemes, and investigate different imple-
mentations of those schemes.

An additional parallelization concept developed already in the pre-GPU litera-
ture is multi-colony ACO. Here, several colonies independently explore the search
space using their own pheromone matrices. The colonies can cooperate by period-
ically exchanging information [71]. On a single GPU this approach can be realized
by assigning one colony per block, as done by Bai et al. in [5] and by Delévacq
et al. in [25]. If several GPUs are available, one can of course use one GPU per
colony as studied by Delévacq et al. in [25].

Both Catala et al. [13] and Cecilia et al. [14] provide information about the CPU
implementation used for computing the achieved speedups, see Table 1. Catala
et al. compare their implementations against the GRID-ACO-OP algorithm [67]
running on a grid of up to 32 Pentium IV.

From the above description, we observe that for the ACO, the task most com-
monly executed on the GPU is tour construction. The papers of Cecilia et al. [14]
and Delévacq et al. [25] indicate that the one-ant-per-block scheme seems to be
superior to the one-ant-per-thread scheme.

2.3 Population Based Metaheuristics

By population based metaheuristics we understand methods that maintain and
evolve a population of solutions, in contrast with trajectory (or single solution)
based metaheuristics that are typically based on local search. In this subsection
we will focus on evolutionary algorithms. For a discussion of swarm intelligence
methods on the GPU we refer to the Section 2.2 above.

In Evolutionary Algorithms, a population of solutions evolves over time, yield-
ing a sequence of generations. A new population is created from the old one by
using a process of reproduction and selection, where the former is often done by
crossover and/or mutation and the latter decides which individuals form the next
generation. A crossover operator combines the features of two parent solutions
in order to create children. Mutation operators simply change (mutate) one solu-
tion. The idea is that, analogous to natural evolution, the quality of the solutions
in the population will increase over time. Evolutionary algorithms provide clear
parallelism. The computation of offspring can be performed with at most two



8 Christian Schulz et al.

Author Year Problem Algorithm Operators
Li et al. [53] 2009 TSP IEA PMX, mutation
Chen et al. [17] 2011 TSP GA crossover, 2-opt mutation
Fujimoto and Tsutsui [32] 2011 TSP GA OX, 2-opt local search

gene string move,
Zhao et al. [98] 2011 TSP IEA

multi bit exchange

Author Selection
Immune next Population

Li et al. [53] Better Tournament
Chen et al. [17] Best
Fujimoto and Tsutsui [32] Best
Zhao et al. [98] Best position Tournament

Author GPU(s) Max. Speedup CPU code
Li et al. [53] GeForce 9600 GT 11.5 ?
Chen et al. [17] Tesla C2050 1.7 ?
Fujimoto and Tsutsui [32] GeForce GTX 285 24.2 ?
Zhao et al. [98] GeForce GTS 250 7.5 ?

Table 2: Overview of EA GPU implementations on the GPU for routing. Legend:
IEA – immune EA; GA – genetic algorithm; PMX – partially mapped crossover;
OX – order crossover; Better – best of vaccinated and not vaccinated tour; Best
position – vaccine creates set of solutions, best is chosen; Best – best of parent
and child; ? – unknown CPU code.

individuals (the parents). Moreover, the crossover operators might be paralleliz-
able. Either way, enough individuals are needed to fully saturate the GPU, but at
the same time all of them have to make a contribution to increasing the solution
quality (see e.g. Fujimoto and Tsutsui [32]).

In our literature search, we found publications on Evolutionary Algorithms
(EA) and Genetic Algorithms (GA) (25), Genetic Programming (12), and Differ-
ential Evolution (3) within this category. For combinations of EA/GA with LS,
and memetic algorithms, see Section 3.4 below.

Although the literature is rich on GPU implementations of population based
metaheuristics, only a few publications discuss routing problems. The ones we
found are all presented in Table 2. They use either a genetic algorithm, or an
immune evolutionary algorithm which combines concepts from immune systems1

with evolutionary algorithms. All the papers we have found in this category use
CUDA.

In some of the GPU implementations, the crossover operator is completely
removed to avoid binary operations and yield totally independent individuals. In
the routing related GPU literature the apparent parallelism has lead to the two
parallelization schemes of assigning one individual to one thread (coarse grained
parallelism) (Chen et al. [17]), and one individual to one block (fine grained paral-
lelism) (Li et al. [53], Fujimoto and Tsutsui [32]), see also Table 3. In some papers,
different parallelization schemes are used for different operators. We have seen no
paper that directly compares both schemes for the same operation.

1 Artificial Immune Systems (AIS) is a sub-field of Biologically-inspired computing. AIS is
inspired by the principles and processes of the vertebrate immune system.
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Author Crossover Mutation Vaccination Tour evaluation
T B T B T B T B

Li et al. [53] x
Chen et al. [17] x x
Fujimoto and Tsutsui [32] x x x
Zhao et al. [98] x U

Table 3: Studied implementation approaches with respect to whether one indi-
vidual is assigned to one thread or block. Legend: T – thread; B – block; U –
uncertain.

The scheme chosen obviously influences the efficiency and quality of the GPU
implementation. On the one hand a minimum number of individuals is needed to
fully saturate all of the computational units of the GPU, especially with the one-
individual-per-thread scheme. On the other hand, from an optimization point of
view, it might not increase the quality of the algorithm to have a huge population
size (Fujimoto and Tsutsui [32]). Analogously, the one-individual-per-block scheme
only makes sense if the underlying operation can be distributed over the threads
of a block.

Most of the papers describe their approach with details on the implementation.
In [98], Zhao et al. also compare with the results of four other papers [2,50,51,
53]. They report that their own implementation has the shortest GPU running
time, but interestingly the speedup compared to unknown CPU implementations
is highest for [53].

2.4 Local Search and Trajectory-based Metaheuristics

Local Search (LS, neighborhood search), see for instance [1], is a basic algorithm in
discrete optimization and trajectory-based metaheuristics. It is the computational
bottleneck of single solution based metaheuristics such as Tabu Search, Guided
Local Search, Variable Neighborhood Search, Iterated Local Search, and Large
Neighborhood Search. Given a current solution, the idea in LS is to generate a
set of solutions — the neighborhood — by applying an operator that modifies the
current solution. The best (or, alternatively, an improving) solution is selected,
and the procedure continues until there is no improving neighbor, i.e., the current
solution is a local optimum. An LS example is described in Part I [9].

The evaluation of constraints and objective components for each solution in
the neighborhood is an embarrassingly parallel task, see for instance [65] and [9]
for an illustrating example. Given a large enough neighborhood, an almost linear
speedup of neighborhood exploration in LS is attainable. The massive parallelism
in modern accelerators such as the GPU seems well-suited for neighborhood ex-
ploration. This has naturally lead to several research papers implementing local
search variations on the GPU, reporting speedups of one order of magnitude when
compared to a CPU implementation of the same algorithm. Profiling and fine-
tuning the GPU implementation may ensure good utilization of the GPU. Schulz
[82] reports a speedup of up to one order of magnitude compared to a naive GPU
implementation. To fully saturate the GPU, the neighborhood size is critical; it
must be large enough [82]. The effort of evaluating all neighbors can be exploited
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more efficiently than by just applying one move. In [12], a set of improving and in-
dependent moves is determined heuristically and applied simultaneously, reducing
the number of neighborhood evaluations needed.

We would have liked to present clear guidelines for implementing LS on the
GPU based on the observed literature. Due to the richness of applications, prob-
lems, and variations of LS, this is not possible. Instead, we shall discuss approaches
taken in papers that study routing problems.

Although the term originates from Genetic Algorithms, we will use the term
fitness structure for the collection of delta values (see Section 5 in [9]) and feasibility
information for all neighbors of the current solution. Table 4 provides an overview
of the routing related GPU papers using some kind of local search. The earliest
by Janiak et al. [40] utilizes the graphics pipeline for tabu search by providing
a fragment shader that evaluates the whole neighborhood in a one fragment per
move fashion. The remaining steps of the search were performed on the CPU.

With the availability of CUDA, the number of papers studying LS and LS-
based metaheuristics on the GPU increased. The technical report by Luong et
al. [57] discusses a CUDA based GPU implementation of LS. To the authors’
best knowledge, this is the first report of a GPU implementation of pure LS.
Further research is discussed in two follow-up papers [62,61]. The authors apply
LS to different instances of well-known DOPs such as the Quadratic Assignment
Problem and the TSP. We will concentrate on their results for routing related
problems, i.e., the TSP.

2.4.1 Local Search on the GPU

Thanks to the flexibility and ease of programming of CUDA, more steps of the LS
process can be executed on the GPU. Table 5 provides an overview of what steps
are done on the GPU in which routing related publication. Table 6 shows the CPU-
GPU copy operations involved. Broadly speaking, LS consists of neighborhood
generation, evaluation, neighbor/move selection, and solution update. The first
task can be done in several ways. A simple solution is to generate the neighborhood
on the CPU and copy it to the GPU on each iteration. Alternatively, one may
create the neighborhoods directly on the GPU. The former approach, taken by
Luong et al. in [62], involves copying a lot of information from the CPU to the GPU
on each iteration. The neighborhood is normally represented as a set of moves, i.e.,
specific changes to the current solution. If one thread on the GPU is responsible
for the evaluation of one or several moves, a mapping between moves and threads
can be provided. This mapping can either be an explicit formula (Luong et al. [62],
Burke and Riise [12], Coelho et al. [20], Rocki and Suda [77], Schulz [82]) or an
algorithm (Luong et al. [62]). Alternatively, it can be a pre-generated explicit
mapping that lies in the GPU memory as investigated by Janiak et al. [40], and
Schulz [82]. The advantage of the mapping approach is that there is no need for
copying any information to the GPU on each iteration. The pre-generated mapping
only needs to be copied to the GPU once before the LS process starts.

The neighborhood evaluation is the most computationally intensive task in LS-
based algorithms. Hence, all papers perform this task on the GPU. In contrast,
selecting the best move is not always done on the GPU. A clear consequence of
CPU based move selection is the necessity of copying the fitness structure to the
CPU on each iteration. GPU based move selection eliminates this data transfer,
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Author Year Problem Algorithm Neighborhood
Janiak et al. [40] 2008 TSP TS 2-exchange (swap)
Luong et al. [62] 2011 TSP LS 2-exchange (swap)
O’Neil et al. [70] 2011 TSP MS-LS 2-opt
Burke and Riise [12] 2012 TSP ILS VND: 2-opt + relocate
Coelho et al. [20] 2012 SVRPDSP VNS swap + relocate
Rocki and Suda [77] 2012 TSP (LS) 2-opt, 3-opt
Schulz [82] 2013 DCVRP LS 2-opt, 3-opt

Author Approach
Janiak et al. [40] Graphics pipeline: move evaluation by fragment shader
Luong et al. [62] CUDA
O’Neil et al. [70] CUDA: multiple-ls-per-thread, load balancing
Burke and Riise [12] CUDA: one-move-per-thread, applies several independent moves at once
Coelho et al. [20] CUDA: one-move-per-thread
Rocki and Suda [77] CUDA: several-moves-per-thread
Schulz [82] CUDA: one-move-per-thread, asynchronous execution, very large nbhs

Author GPU(s) Max. Speedup CPU code
Janiak et al. [40] GeForce 8600 GT 1.12 C#
Luong et al. [62] a.o. Tesla M2050 19.9 ?
O’Neil et al. [70] Tesla C2050 61.9 single core
Burke and Riise [12] GeForce GTX 280 70×7.5 ?
Coelho et al. [20] Geforce GTX 560 Ti 17 own
Rocki and Suda [77] a.o. Geforce GTX 680 27 32 cores
Schulz [82] GeForce GTX 480

Table 4: Overview of LS-based GPU literature on routing. Legend: TS - tabu
search; LS - local search; MS-LS - multi start local search; ILS - Iterated Lo-
cal Search; VND - variable neighborhood descent; VNS - variable neighborhood
search; SVRPDSP - single vehicle routing problem with deliveries and selective
pickups; a.o. - amongst others (only maximum speedup is mentioned); (LS) -
Rocki and Suda consider only the neighborhood evaluation part.

Author Nbh gen. Nbh eval. Neighbor sel. Sol. update
Janiak et al. [40] i x
Luong et al. [62] -/i x -/x
O’Neil et al. [70] i x x x
Burke and Riise [12] i x
Coelho et al. [20] i x x
Schulz [82] i x x x

Table 5: Tasks performed on the GPU during one iteration. Legend: Nbh – neigh-
borhood; gen. – generation; eval. – evaluation; sel. – selection; Sol – solution; i –
neighborhood generation is done implicitly (use of some nbh description); -/x –
done in some settings; -/i – done in some settings.

but an efficient selection algorithm needs to be in place on the GPU. A clear
example is simple steepest descent, where the best move can be computed by a
standard reduction operation. A tabu search can also be implemented on the GPU
by first checking for each move whether it is tabu, and then reducing to the best
non-tabu move. In general, it may not be clear which approach will perform better;
it depends on the situation at hand. In such cases, the alternative implementations
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Author Once In each iteration
Prob. desc. Nbh. desc. Sol. Nbh. FS Sel. move

Janiak et al. [40] ↑ ↑ ↑ ↓
Luong et al. [62] ↑ ↑ -/↑ -/↓ -/↓
O’Neil et al. [70] ↑
Burke and Riise [12] ↑ ↑ s↓
Coelho et al. [20] ↑ ↓ ↑
Schulz [82] ↑ ↑ ↓

Table 6: Data copied from and to GPU. Legend: Prob. – problem; Nbh. – neigh-
borhood; desc. – description; Sol. – solution; FS – fitness structure; Sel. – selected;
↑ – upload to GPU from CPU; ↓ – download from GPU to CPU; s↓ – subset of
fitness structure is downloaded from GPU; -/↑ or -/↓ – copied in some settings.

must be compared. All routing related papers we found use either one or the other
approach for a given algorithm, see Table 5. Luong et al. [62] compare them for
hill climbing on the permuted perceptron problem.

If move selection is performed on the GPU, the update of the current solution
may also be performed on the device. This eliminates the otherwise necessary
copying of the updated current solution from the CPU to the GPU. Alternatively,
the chosen move can be copied to the GPU (Coelho et al. [20]).

2.4.2 Efficiency aspects and limitations

In CUDA it is not possible to synchronize between blocks inside a kernel. Since
most papers employ a one-move-per-thread approach, the LS process needs to
be implemented using several kernels. In combination with the different copy op-
erations that might be needed, the question of asynchronous execution becomes
important. By using streams in combination with asynchronous CPU - GPU co-
ordination, it is possible to reduce the time where the GPU is idle, even to zero.
Only the paper by Schulz [82] proposes and investigates an asynchronous execution
pattern.

The efficiency of a kernel is obviously important for the overall speed of the
computation. The papers (Luong et al. [62], O’Neil et al. [70], Coelho et al. [20],
Rocki and Suda [77], Schulz [82]) all discuss some implementation details and
CUDA specific optimizations. Only Schulz [82] provides a profiling analysis of the
presented details.

So far we have assumed that the GPU memory is large enough to store all
necessary information such as problem data, the current solution, and the fitness
structure. For very large neighborhoods the fitness structure might not fit into
GPU memory. Luong et al. mention this problem in [62]. They seem to solve it by
assigning several moves to one thread. Schulz [82] provides an implementation for
very large neighborhoods by splitting the neighborhood in parts.

When evaluating the whole neighborhood one naturally selects a single, best
improving move. However, as observed by Burke and Riise in [12], one may waste a
lot of computational effort. They suggest an alternative strategy where ones finds
independent improving moves and applies them all. This reduces the amount of
iterations needed to find a local optimum.
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2.4.3 Multi-start Local Search

Pure local search is guaranteed to get stuck in a local optimum, given sufficient
time. Amongst alternative remedies, multi-start LS is maybe the simplest. New
initial solutions may be generated randomly, or with management of diversity.
Multi-start LS thus provides another degree of parallelism, where one local search
instance is independent of the other. In the GPU literature we have found two
main approaches. Either, a GPU based parallel neighborhood evaluation of the
different local searches is performed sequentially (Luong et al. [61]), or, the local
searches run in parallel on the GPU (O’Neil et al. [70,99], Luong et al. [61]).

For approaches where there is no need for data transfer between the CPU and
GPU during LS, the former scheme should be able to keep the GPU fully occupied
with neighborhood evaluation. However, LS might use a complicated selection
procedure that is more efficient to execute on the CPU, despite the necessary copy
of fitness structure. In this case one could argue that using sequential parallel
neighborhood evaluation will lead to too many CPU-GPU copy operations, slowing
down the overall algorithm. However, this is not necessarily true. If the copying of
data takes less time than neighborhood evaluation, asynchronous execution might
be able to fully hide the data transfer. In one iteration, while the fitness structure
of the i-th local search is copied to the CPU, the GPU can already evaluate the
neighborhood for the next, j-th local search where j = i + 1. Once the copying is
finished, the CPU can then perform move selection for the i-th local search, all
while the GPU is still evaluating the neighborhood of the j-th local search.

The second idea of using one thread per LS instance also has its drawbacks.
First, for the GPU to be fully utilized, thousands of threads are needed. This
raises the question, whether, from a solution quality point of view, it makes sense
to have that many local searches. On the GPU, all threads in a warp perform
exactly the same operation at any time. Hence, all local searches in a warp must
use the same type of neighborhood. Moreover, different local searches in a warp
might have widely varying numbers of iterations until they reach a local optimum.
If all threads in the same warp simply run their local search to the end, they have
to ’wait’ until the last of their local searches is finished before the warp can be
destroyed.

There are ways to tackle these problems. In [70] O’Neil et al. use the same
neighborhood for all local searches and employ a kind of load balancing to avoid
threads within a warp waiting for the others to complete. Another idea, used e.g. in
(Zhu et al. [99], Luong et al. [61]), is to let the LS in each thread run only for a given
number of iterations and then perform restart or load balancing before continuing.
Due to the many variables involved, it is impossible to state generally that the
sequential parallel neighborhood evaluation is better or worse than the one thread
per local search approach. Even for a given situation, such a statement needs to
be based on implementations that have been thoroughly optimized, analyzed and
profiled, so that the advantages and limitations of each approach become apparent.
We have not found a paper that provides such a thorough comparison between
the two approaches.
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2.5 GPU Computing for Shortest Path Problems

Already in 2004, Micikevicius [66] describes his graphics pipeline GPU implemen-
tation of the Warshall-Floyd algorithm for the all-pairs shortest paths problem.
He reports speedups of up to 3x over a CPU implementation. In 2007, Harish
and Narayanan [39] utilize CUDA to implement breadth first search, single source
shortest path, and all-pairs shortest path algorithms aimed at large graphs. They
report speedups, but point out that the size of the device memory limits the size
of the graphs handled on a single GPU. Also, the GPU at the time only sup-
ported single precision arithmetic. Katz and Kider [41] describe a shared memory
cache efficient CUDA implementation to solve transitive closure and the all-pairs
shortest-path problem on directed graphs for large datasets. They report good
speedups both on synthetic and real data. In contrast with the implementation of
Harish and Narayanan, the graph size is not limited by the device memory.

Buluç, Gilbert, and Budak [10] implemented (CUDA) a recursively partitioned
all-pairs shortest-paths algorithm where almost all operations are cast as matrix-
matrix multiplications on a semiring. They report that their implementation runs
more than two orders of magnitude faster on an NVIDIA 8800 GPU than on an
Opteron CPU. The number of vertices in the test graphs used vary between 512
and 8192. The all-pairs SPP was also studied by Tran [88], who utilized CUDA to
implement two GPU-based algorithms and reports an incredible speedup factor of
2,500 relative to a single core implementation.

In a recent paper [26], Delling et al. present a novel algorithm called PHAST to
solve the nonnegative single-source shortest path problem on road networks and
other graphs with low highway dimension. PHAST takes advantage of features
of modern CPU architectures, such as SSE and multi-core. According to the au-
thors, the method needs fewer operations, has better locality, and is better able
to exploit parallelism at multicore and instruction levels when compared to Dijk-
stras algorithm. They also implement a GPU version of PHAST (GPHAST) with
CUDA, and report up to three orders of magnitude speedup relative to Dijkstras
algorithm on a high-end CPU. They conclude that GPHAST enables practical
all-pairs shortest-paths calculations for continental-sized road networks.

With robotics applications as main focus, Kider et al. [43] implement a GPU
version of R*, a randomized, non-exact version of the A* algorithm called R*GPU.
They report that R*GPU consistently produces lower cost solutions, scales better
in terms of memory, and runs faster than R*.

3 Literature on Non-routing Problems

Although the specifics of a metaheuristic may change according to the problem at
hand, its main idea stays the same. Therefore it is also interesting to study GPU
implementations of metaheuristics in a non-routing setting. This is especially true
for metaheuristics where so far no routing related GPU implementation exists.
In the following, we present a short overview over existing GPU literature for
metaheuristics applied to DOPs other than routing problems.
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3.1 Swarm Intelligence Metaheuristics (Non-ACO)

Particle Swarm Optimization (PSO) is normally considered to belong to swarm
intelligence methods, but may also be regarded as a population based method. Just
as GA, PSO may be used both for continuous and discrete optimization problems.
An early PSO on GPU paper is Li et al. (2007) [52]. They use the graphics pipeline
to fine grained parallelization of PSO, and perform computational experiments
on three unconstrained continuous optimization problems. Speedup factors up to
5.7 were observed. In 2011, Solomon et al. [83] report from an implementation
of a collaborative multi-swarm PSO algorithm on the GPU for a real-life DOP
application: the task matching problem in a heterogeneous distributed computing
environment. They report speedups factors up to 37.

Emergent behavior in biology, e.g., flocking birds and schooling fish, was an
inspiration for PSO. However, the flocking birds brand is still used for PSO-like
swarm intelligence methods in optimization. Charles et al. [16] study flocking-
based document clustering on the GPU and report a speedup of 3-5 relative to a
CPU implementation. In a 2011 follow-up paper with partly the same authors [23],
speedup factors of 30-60 were observed. In an undergraduate honors thesis [91],
Weiss investigates GPU implementation of two special purpose swarm intelligence
algorithms for data mining: an ant colony optimization algorithm for rule-based
classification, and a bird-flocking algorithm for data clustering. He concludes that
the GPU implementation provides significant benefits.

3.2 Population Based Metaheuristics

In [97], Yu et al. describe an early (2005) implementation of a fine-grained paral-
lel genetic algorithm for continuous optimization, referring to the 1991 paper by
Spiessens and Manderick [85] on massively parallel GA. They were probably the
first to design and implement a GA on the GPU, using the graphics pipeline. Their
approach stores chromosomes and their fitness values in the GPU texture memory.
Using the Cg language for the graphics pipeline, fitness evaluation and genetic op-
erations are implemented entirely with fragment programs (shaders) that are exe-
cuted on the GPU in parallel. Performance of an NVidia GeForce 6800GT GPU im-
plementation was measured and compared with a sequential AMD Athlon 2500+
CPU implementation. The Colville function in unconstrained global optimization
was used as benchmark. For genetic operators, the authors report speedups be-
tween 1.4 (population size 322) and 20.1 (population size 5122). Corresponding
speedups for fitness evaluation are 0.3 and 17.1, respectively.

Also in 2005, Luo et al. [55] describe their use of the graphics pipeline and
the Cg language for a parallel genetic algorithm solver for 3-SAT. They compare
performance between two hardware platforms.

Wong et al. [95,94,30] investigate hybrid computing GAs where population
evaluation and mutation are performed on the GPU, but the remainder is exe-
cuted on the CPU. In [93], Wong extends the work to multi-objective GAs and
uses CUDA for the implementation. For a recent comprehensive survey on GPU
computing for EA and GA but not including Genetic Programming, see Section
1.3.2 of the PhD Thesis of Thé Van Luong [56].
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Genetic Programming (GP) is a special application of GA where each indi-
vidual is a computer program. The overall goal is automatic programming. Early
GPU implementations (2007) are described by Chitty [18], who uses the graphics
pipeline and Cg. Harding & Banzhaf [38] also use the graphics pipeline but with
the Accelerator package, a .Net assembly that provides access to the GPU via Di-
rectX. Several papers involving a subset of Banzhaf, Harding, Harrison, Langdon,
and Wilson [36,47,6,48,37] reports from extensions of this initial work. Robilliard
et al. have published three papers on GPU-based GP using CUDA [75,76,74],
initially a fine-grained parallelization scheme on the G80 GPU, then with differ-
ent parallelization schemes and better speedups. Maitre, Collet & Lachiche [64]
reports from similar work. For details, we refer to the recent survey by Langdon
[49] and the individual technical papers.

3.3 Local Search and Trajectory-based Metaheuristics

Luong et al. have published several follow-up papers to [57,62,61]. In [58], they
discuss how to implement LS algorithms with large-size neighborhoods on the
GPU2, with focus on memory issues. Their general design is based on socalled
iteration-level parallelization, where the CPU manages the sequential LS itera-
tions, and the GPU is dedicated to parallel generation and evaluation of neighbor-
hoods. Mappings between threads and neighbors are proposed for LS operators
with Hamming distance 1, 2, and 3. From an experimental study on instances of
the Permuted Perceptron Problem from cryptography the authors conclude that
speedup increases with increasing neighborhood cardinality (Hamming distance
of the operator), and that the GPU enables the use of neighborhood operators
with higher cardinality in LS. Similar reports are found in [59] and [60]. The PhD
thesis of Thé Van Luong from 2011 [56] contains a general discussion on GPU
implementation of metaheuristics, including results from the papers mentioned
above.

The paper by Janiak et al. [40] applies Tabu search also to the Permutation
Flowshop Scheduling Problem (PFSP) with the Makespan criterion. Their work
on the PFSP was continued by Czapinski & Barnes in [24]. They describe a tabu
search metaheuristic based on swap moves. The GPU implementation was done
with CUDA. Two implementations of move selection and tabu list management
were considered. Performance was optimized through experiments and tuning of
several implementation parameters. Good speedups were reported, both relative
to the GPU implementation of Janiak et al. and relative to a serial CPU imple-
mentation, for randomly generated PFSP instances with 10–500 tasks and 5–30
machines. The authors mainly attribute the improved efficiency over Janiak et
al. to better memory management.

The first of three publications we have found on GPU implementation of Sim-
ulated Annealing (SA) is a conference paper by Choong et al. [19]. SA is the
preferred method for optimization of FPGA placement3. In [35] Han et al. study
SA on the GPU for IC floorplanning by using CUDA. They work with multiple

2 The title of the paper may suggest that it discusses the Large Neighborhood Search meta-
heuristic, but this is not the case.

3 As discussed in Section 2.1 above, FPGAs were used in early works in heterogeneous
discrete optimization.
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solutions in parallel and evaluate several moves per solution in each iteration. As
the GPU based algorithm works differently than the CPU method, Han et al. ex-
amine three different modifications to their first GPU implementation with respect
to solution quality and speedup. They achieve a speedup of up to 160 for the best
solution quality, where the computation times are compared to the CPU code
from the UMpack suite of VLSI-CAD tools [3]. Stivala et al. use GPU based SA in
[86] for the problem of searching a database for protein structures or occurrences
of substructures. They develop a new SA based algorithm for the given problem
and provide both a CPU and a GPU implementation4. Each thread block in the
GPU version runs its own SA schedule, where the threads perform the database
comparisons. The quality of the proposed method various with different problems,
but good speedups of the GPU version versus the CPU one are obtained.

3.4 Hybrid Metaheuristics

The definition of hybrid metaheuristics may seem unclear. In the literature, it often
refers to methods where metaheuristics collaborate or are integrated with exact
optimization methods from mathematical programming, the latter also known as
matheuristics. A restricted definition to combinations of different metaheuristics
arguably has diminishing interest, as increasing emphasis in the design of modern
metaheuristics is put on the combination and extension of relevant working mech-
anisms of different classical metaheuristics. As regards hybrid methods, the three
relevant publications we have found all discuss GPU implementation of combina-
tions of Genetic Algorithms with LS, a basic form of memetic algorithms.

In 2006, Luo & Liu [54] follow up on the 2005 graphics pipeline GA paper
on the 3-SAT problem by Luo et al. [55] referred to in Section 3.2 above. They
develop a modified version of the parallel CGWSAT hybrid of cellular GA and
greedy local search due to Folino et al. [31] and implement it on a GPU using the
graphics pipeline with Cg. They report good speedups over a CPU implementation
with similar solution quality. GPU-based hybrids of GA and LS for Max-SAT was
investigated in 2009 by Munawar et al. in [68].

In [44], Krüger et al. present the first implementation of a generic memetic
algorithm for continuous optimization problems on a GTX295 gaming card using
CUDA. Reportedly, experiments on the Rosenbrock function and a real world
problem show speedup factors between 70 and 120.

Luong et al. propose in [63] a load balancing scheme to distribute multiple
metaheuristics over both the GPU and the CPU cores simultaneously. They apply
the scheme to the quadratic assignment problem using the fast ant metaheuristic,
yielding a combined speedup (both multiple cores on CPU and GPU) of up to
15.8 compared to a single core on the CPU.

3.5 GPU Implementation of Linear Programming and Branch & Bound

Also relevant to discrete optimization we found five publications on GPU imple-
mentation of linear programming (LP) methods. Greeff [33] published a technical

4 The CPU version is generated by compiling the kernels for the CPU.
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report on a GPU graphics pipeline implementation of the revised simplex method
in 2005. Reported speedups were large compared to a CPU implementation. The
implementation could not solve problems with more than 200 variables, however.

In their 2008 paper, Jung & O’Leary [69] present a mixed-precision CPU-GPU
interior point LP algorithm. By comparing GPU and CPU implementations, they
demonstrated performance improvement for sufficiently large dense problems with
up to some 700 variables and 500 constraints.

In 2009, Spampinato & Elster [84] published a continuation of the work by
Greeff from 2005. Their CUDA implementation of the revised simplex method
solves LPs with up to 2000 variables on a CPU/GPU system. They report speedups
factors of 2.5 for large problem instances.

Early GPUs had only single precision arithmetic. In 2011, Lalami et al. [46]
report a maximum speedup of 12.5 for their simplex method implementation with
double precision arithmetic on a GTX 260 GPU. They use randomly generated
non-sparse LP instances. Also in 2011, the same authors report from a CUDA
implementation of the simplex method on a multi GPU architecture [45]. Compu-
tational tests on random, non-sparse instances show a maximum speedup of 24.5
with two Tesla C2050.

Branch & Bound is a widely used exact method for solving DOPs. In [15] the
GPU is used for the bound operator in the algorithm applied to the flow shop
scheduling problem. The paper discusses GPU specific details of the implementa-
tion and in experiments a speedup of up to 77.5 compared to a single core on a
CPU is achieved.

4 Lessons for Future Research

In the previous section we presented a literature survey on GPU computing in
discrete optimization and a more detailed discussion of selected papers on routing
problems. In the following we will provide our views on future research on GPU
computing in discrete optimization.

4.1 GPU Implementations in Discrete Optimization

The overwhelming majority of routing related papers on GPU usage in discrete
optimization has focused on relatively simple, well-known optimization algorithms
on the GPU. A main goal is to compare GPU implementations with equivalent sin-
gle core CPU versions. The results predominantly show significant speedups and
hence provide proofs of concept. The observations are consistent with GPU related
research from other parts of scientific computing. Also in optimization, the GPU
is a viable and powerful tool that can be used to increase performance. This is not
uninteresting, particularly from a pragmatic stance. Also from a scientific point of
view, proof of concept papers are important. More power for computational ex-
periments will lead to better algorithms and better understanding of optimization
problems.

Is this the final word? Far from it. Most of the relevant literature does not
consider important aspects of GPU usage and the development of novel algorithms
which fully utilize the combined advantages of the CPU and the GPU to provide
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faster and more robust solutions. In our opinion, the subfield of GPU computing
in discrete optimization is still in its infancy.

For a practitioner it may be of little interest whether the GPU or CPU is used
to its full capacity. From a scientific perspective we would like to use scientific
methods to develop algorithms which are able to yield better and more robust
solutions than the algorithms of today by fully utilizing all available hardware
efficiently. To achieve this goal, research that provides knowledge and ideas towards
this end is welcome. What qualifies such research, and what is lacking so far?

Focusing on comparing CPU and GPU versions of an algorithm is an impor-
tant step to provide proof of concept implementations showing the performance
potential provided by the GPU. Nevertheless, towards the specified scientific goal
of new and efficient algorithms, this approach has several potential drawbacks.

Solution quality: Many of the papers comparing a CPU and a GPU implemen-
tation do not discuss solution quality. On the one hand, if the algorithm is
the same, it can be expected that the solution quality is too. However, the
considered algorithm that is run on the GPU might not be a state-of-the-art
CPU based algorithm and thus not be competitive in terms of latest solution
quality.

CPU speed: Similar to the point above, the used algorithm might not be cutting
edge for the CPU. Hence, even if the GPU implementation is faster than its
CPU counterpart, the leading CPU algorithm might still be faster than the
studied GPU implementation. In addition, the considered implementation of
the algorithm on the CPU might not be state-of-the-art. An efficient GPU
implementation requires effort in finding the right memory access patterns,
the right distribution of data over the different memories, synchronization and
cooperation strategies and much more. An equally optimized CPU implemen-
tation would amongst others utilize multiple cores, have caching strategies and
use SSE or AVX instructions5. Such an effort is rarely seen in the literature.

GPU usage: Although the GPU implementation might perform faster than the
CPU implementation, it does not mean it uses the GPU efficiently. There
might be a better way to distribute the work over the GPU architecture, a
faster memory access pattern, or other improving variants. It might be that
the GPU implementation is using the GPU only a fraction of the time, leaving
it idle for a substantial part of the time. This means that there could be a
different implementation or algorithm for the problem which is able to use the
GPU more efficiently, with resulting speed and/or quality improvement.

CPU usage: In most of the papers comparing CPU and GPU implementations,
the CPU is basically idle the whole time. This is a waste of computational
resources. A truly heterogeneous algorithm will typically have higher perfor-
mance.

In our opinion, future research papers on GPU usage in discrete optimization
should contain algorithm analysis and analysis of hardware utilization. Such anal-
yses will identify areas of further improvement, spawn ideas for novel algorithms,

5 Modern CPUs support vector operations, enabling simultaneous operations on all elements
of those vectors [29]. These so-called SIMD extensions/operations started with MMX on 64byte
registers and developed further with SSE (128byte registers) into AVX (256byte registers). For
a coarse overview see [92], a more detailed discussion of the operations including examples can
be found in [29].
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and point to further research directions. Such analyses are time-consuming. Al-
though the potential gain is high6, one cannot expect that researchers in optimiza-
tion will follow these steps of research in computational science to their end. We
think that initial steps should be mandatory, however.

Analysis of algorithm(s)

This is obviously a wide area that covers mathematical analyses as well as
computational experiments. Such analyses may show that a known algorithm,
deemed too inefficient on the CPU, can now be used beneficially7 with the help
of the GPU. Another example is the development of new algorithms that use
the intrinsic properties of the available hardware (CPU and GPU together) to
provide better or more robust solutions. Clearly one focus here would be on the
improvement of the solution quality. In general, when studying algorithms on the
GPU, one has to make sure that the work done on the GPU is actually beneficial
to the algorithm. In LS one could, for example, question the meaning of evaluating
billions of moves if just one of them is applied afterwards. Does this really increase
the solution quality compared to a simpler first improvement strategy? One could,
as suggested by Burke and Riise in [12], utilize several of the improving moves
found.

Hardware utilization

Hardware utilization should be analyzed, at least to a basic level, so major
bottlenecks are identified and removed. This includes an examination of the CPU-
GPU coordination and whether asynchronous execution patterns might be possible
and beneficial. An example is found in the paper by Schulz [82], although in general
it will not be possible to conduct such a detailed and time-consuming analysis
and performance tuning. The analysis and conclusions should be based on solid
scientific methods and fair comparison.

Even if it is not possible to perform the final steps of performance optimization,
it is important to understand whether an algorithm or implementation is able to
use the hardware efficiently. If not, it is equally interesting to discover why this is
not the case and what the limiting factors are. This will provide valuable infor-
mation for the development of other, more efficient algorithms or implementation
approaches.

4.2 Heterogeneous Discrete Optimization in general

The lessons learnt from GPU-based algorithms in discrete optimization are in
principle also true for heterogeneous discrete optimization. The goal should be
algorithms that use all available hardware resources8 efficiently towards finding

6 The paper by Schulz [82] indicates an order of magnitude speedup by careful tuning of a
basic GPU implementation.

7 Beneficially here means to improve the overall solution quality, speed or robustness of the
overall solution method.

8 I.e., multiple CPU cores and one or more stream processing accelerators according to the
scope of this paper.
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high quality solutions. Ideally, such algorithms should be self-adapting and au-
tomatically configure themselves to the problem, the hardware, and even to the
problem solving status while executing. We think that papers in heterogeneous
discrete optimization and similar areas should give a reasonable contribution in
the form of knowledge that can be used to create and develop such algorithms.
This requires full specification of hardware platforms utilized as well as algorithmic
and implementational details.

A promising and virtually unexplored research avenue is the development of
collaborative methods in discrete optimization that fully utilize modern, hetero-
geneous PC architectures. In the next ten years we may see a general performance
increase in discrete optimization that surpasses the historical increase pointed to
by Bixby [7] for commercial LP solvers.

5 Summary and Conclusion

The sequence of two papers of which this paper is the second, has two primary
goals. The first, addressed in Part I [9], is to provide a tutorial style introduction to
modern PC architectures and the computational performance increase opportuni-
ties that they offer through a combination of parallel cores for task parallelization
and one or more stream processing accelerators. The second goal, addressed in Part
II here, is to present a survey of the literature relevant to discrete optimization
and routing problems in particular.

Part I [9] starts with a short overview of the historical development of CPUs
and stream processing accelerators such as the GPU, followed by a brief discussion
of the development of more user-friendly GPU programming environments. To il-
lustrate modern GPU programming with CUDA, we provided a concrete example:
local search for the TSP. This was followed by the presentation of best practice
and state-of-the-art strategies for developing efficient GPU code. We also discussed
heterogeneous aspects involved in keeping both the CPU and the GPU busy. Here,
in Part II, we provide a comprehensive survey of the existing literature on parallel
discrete optimization for modern PC architectures with focus on routing problems.
Virtually all related papers report on implementation of an existing optimization
algorithm on a stream processing accelerator, mostly the GPU. We provide a crit-
ical, detailed review of the literature relevant to routing problems. Finally, we
present lessons learnt and our subjective views on future research directions.

GPU computing in discrete optimization is still in its infancy. The bulk of
the literature consists of reports from rather basic implementations of existing
optimization methods on GPU, with measurement of speedup relative to a CPU
implementation of unknown quality. It is our opinion that further research should
be performed in a more scientific fashion: with stronger focus on the efficiency
of the implementation, proper analyses of algorithms and hardware utilization,
thorough and fair measurement of speedup, with efforts to utilize all of the available
hardware, and with reports that better enable reproduction. The ultimate goal
would be the development of novel, fast and robust high quality methods that
exploit the full heterogeneity of modern PCs efficiently while at the same time
being flexible by self-adapting to the hardware at hand. The potential gains are
hard to over-estimate.
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25. Delévacq, A., Delisle, P., Gravel, M., Krajecki, M.: Parallel Ant Colony Optimization on
Graphics Processing Units. Journal of Parallel and Distributed Computing 73(1), 52 – 61
(2013). Metaheuristics on GPUs

26. Delling, D., Goldberg, A.V., Nowatzyk, A., Werneck, R.F.: PHAST: Hardware-Accelerated
Shortest Path Trees. In: Proceedings of the 2011 IEEE International Parallel & Distributed
Processing Symposium, IPDPS ’11, pp. 921–931. IEEE Computer Society, Washington,
DC, USA (2011)
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