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Abstract
Microwave radar is an important tool for observation of birds in flight and represents a 
tremendous increase in observation capability in terms of amount of surveillance space 
that can be covered at relatively low cost. Based on off- the- shelf radar hardware, auto-
mated radar tracking systems have been developed for monitoring avian movements. 
However, radar used as an observation instrument in biological research has its limita-
tions that are important to be aware of when analyzing recorded radar data. This article 
describes a method for exploring the detection capabilities of a dedicated short- range 
avian radar system used inside the operational Smøla wind- power plant. The purpose of 
the testing described was to find the maximum detection range for various sized birds, 
while controlling for the effects of flight tortuosity, flight orientation relative to the radar 
and ground clutter. The method was to use a dedicated test target in form of a remotely 
controlled unmanned aerial vehicle (UAV) with calibrated radar cross section (RCS), 
which enabled the design of virtually any test flight pattern within the area of interest. 
The UAV had a detection probability of 0.5 within a range of 2,340 m from the radar. The 
detection performance obtained by the RCS- calibrated test target (−11 dBm2, 0.08 m2 
RCS) was then extrapolated to find the corresponding performance of differently sized 
birds. Detection range depends on system sensitivity, the environment within which the 
radar is placed and the spatial distribution of birds. The avian radar under study enables 
continuous monitoring of bird activity within a maximum range up to 2 km dependent on 
the size of the birds in question. While small bird species may be detected up to 0.5–1 km, 
larger species may be detected up to 1.5–2 km distance from the radar.

K E Y W O R D S

bird monitoring, clutter, detection probability, swerling, target detection, unmanned aerial 
vehicle

1  | INTRODUCTION

Birds link ecosystem processes and communities over long distances 
making them special from the perspective of ecosystem services, 
including transport of energy, nutrients, propagules, parasites, and 
pathogens (Bauer & Hoye, 2014; Whelan, Wenny, & Marquis, 2008). 

The study of flight behavior, migration phenomena, and responses 
of birds to man- made structures such as wind turbines requires 
ways to observe and document the movement of birds in the area 
of interest. Traditionally, flight activity and bird migration have been 
studied using techniques like observations from vantage points, 
line-  and point- transects, and relocation of ringed birds (Sutherland, 

www.ecolevol.org
http://orcid.org/0000-0002-6580-4064
http://creativecommons.org/licenses/by/4.0/
mailto:roel.may@nina.no


     |  5931MAY et Al.

Newton, & Green, 2004). More recently, these methods have been 
complemented with individual- based telemetry methods (Bridge 
et al., 2011). Although built and optimized for a completely differ-
ent purpose, both long- range meteorological radars and dedicated 
short- range radars can be used to extract and track bird activity in 
space and time (Urmy, Warren, & Parrini, 2016; Van Den Broeke, 
2013). Such extraction of bird migration from long- range meteoro-
logical radar data has been carried out with success in, for exam-
ple, the Netherlands (Dokter et al., 2011; Van Gasteren, Holleman, 
Bouten, Van Loon, & Shamoun- Baranes, 2008) and the USA (Buler & 
Dawson, 2014; Gauthreaux & Livingston, 2006). Networks of mete-
orological radars and associated radar ornithologists have the poten-
tial to reveal intercontinental bird migration patterns and phenomena 
(Chilson, Bridge, Frick, Chapman, & Kelly, 2012; Shamoun- Baranes 
et al., 2014). Dedicated short- range avian radar complements such 
large- scale information by enabling surveillance of local key sites 
to study spatiotemporal movements of (migrating) birds (Beason, 
Nohara, & Weber, 2013; Dokter, Baptist, Ens, Krijgsveld, & van Loon, 
2013; Gerringer, Lima, & DeVault, 2016; McCann & Bell, 2017; Urmy 
et al., 2016). Automated short- range avian radar tracking systems 
(e.g., Accipiter Radar Technologies, Canada; DeTect, USA; Robin 
Radar Systems, the Netherlands) have been developed commercially 
to aid in pre-  and postconstruction studies and monitoring collision 
risk at airstrips and in wind- power plants (Cabrera- Cruz & Villegas- 
Patraca, 2016; Coates, Casazza, Halstead, Fleskes, & Laughlin, 2011; 
Gerringer et al., 2016; Krijgsveld et al., 2011; Plonczkier & Simms, 
2012; Skov et al., 2016; Villegas- Patraca, Cabrera- Cruz, & Herrera- 
Alsina, 2014).

However, as for all methods, radar technology also has its own 
limitations which are important to be aware of when employing such 
systems (Beason et al., 2013; Dokter et al., 2013; McCann & Bell, 
2017; Schmaljohann, Liechti, Bachler, Steuri, & Bruderer, 2008; Urmy 
et al., 2016). Dependent on a set of system parameters, such as the 
wavelength, detection of objects using radar may be affected by en-
vironmental conditions (Dokter et al., 2013; Krijgsveld et al., 2005, 
2011; Schmaljohann et al., 2008). Given its location, the radar’s 
transmitted energy may be reflected against structures in the land-
scape, be that topography, vegetation, and/or man- made structures, 
creating zones where the radar is totally blind or have reduced de-
tection capability (Beason, Humphrey, Myers, & Avery, 2010; Dokter 
et al., 2013; Gerringer et al., 2016; Schmaljohann et al., 2008). Wind 
turbines, for example, have a huge radar cross section with compli-
cated signatures in time and Doppler and represent a particular clut-
ter challenge to any radar that may have them within its field of view. 
Received signal energy decreases exponentially with distance and 
causes the targets to fade quickly as they move out in range, which 
is especially of importance for the detection of smaller objects such 
as birds. In addition to radar- inherent limitations, off- the- shelf auto-
mated avian radar track- while- scan systems employ algorithms spe-
cifically designed to handle unwanted reflections (clutter) and track 
birds (i.e., moving targets) over time. These tracking algorithms may 
potentially further affect detection of a bird in—irregular—flight with 
regard to aspect and tortuosity (Dokter et al., 2013; McCann & Bell, 

2017). Given the radar beam width and the surrounding terrain at a 
site, detection probability decreases with distance (Krijgsveld et al., 
2005) as well as parts of the line- of- sight may be obstructed thus lim-
iting the altitudinal coverage (Schmaljohann et al., 2008). However, 
such tracking systems are often considered to be “black boxes” with 
proprietary clutter- reducing and tracking algorithms (Dokter et al., 
2013). Contrary to calibrations performed for off- the- shelf radars 
(Urmy et al., 2016), automated radar tracking systems require a cali-
brated moving target (McCann & Bell, 2017) for assessing detection 
capabilities.

The aim of this study was to verify the performance of avian 
radar concerning the detection and tracking of small flying objects, 
such as birds, within the settings of a wind- power plant. Given the 
environment it was placed in, we investigated the limitations of 
the avian radar in successfully detecting moving targets. Although 
the performance results will be highly site- , system- , and setting- 
specific, the methodologies presented enable replication at other 
sites and will be applicable to similar types of track- while- scan radar 
systems.

2  | MATERIALS AND METHODS

2.1 | Study area

Smøla is an archipelago located off the coast of Møre & Romsdal 
County, Central Norway (63°24′N, 8°00′E) (Figure 1), and consists of 
a large main island together with approximately 5,500 smaller islands, 
islets, and small skerries. The terrain is flat, and the highest peak on 

F IGURE  1 All tracks included in the detection analyses 
(detections and nondetections are shown in green and red, 
respectively). The yellow diamond indicates the location of the 
radar, the blue crosses indicate the wind turbines, and the gray areas 
represent areas in line- of- sight of the radar (i.e., clutter areas). The 
numbers indicate the track ID (cf. Table 1)



5932  |     MAY et Al.

the main island is only 69 m. The habitats are characterized by rela-
tively flat open terrain consisting of heath and marsh vegetation, and 
rocky outcrops, interspersed with minor bogs and lakes. The Smøla 
wind- power plant is situated on the northwest side of the main is-
land. It was built in two phases by the Norwegian energy company 
Statkraft; the first phase consisting of 20 2.1 MW turbines was fin-
ished in September 2002, while the second phase with an additional 
48 2.3 MW turbines became operational in August 2005. Since 2005, 
the wind- power plant has comprised 68 turbines. The wind- power 
plant covers an area of 17.83 km2, represented by the minimum con-
vex polygon (i.e., envelope) around the outermost turbines including 
a 200- m buffer. The wind- power plant area is accessible through un-
paved maintenance roads.

2.2 | Avian radar description and recordings

The avian radar system was positioned in the middle of the wind- 
power plant and operated with an instrumented range of two 
nautical miles (ca. 3.7 km), which provided an instrumented radar 
coverage of the complete wind- power plant area. The MERLIN Avian 
Radar System model XS2530e (DeTect, Inc.) subjected to the tests 
is an automated processor of radar data enabling the continuous re-
cording of bird activity 24/7 (Bevanger et al., 2010). The system is 
based on cost- effective off- the- shelf hardware, using standard “T- 
bar” ship radars. The radars in the system are standard S-  and X- 
band radars with nominal frequencies of 3,050 MHz and 9,410 MHz, 
respectively. The radar antennas are so- called fan beam antennas, 
which mean that they have a narrow beam in the horizontal plane 
and wide beam in the elevation plane. The horizontal and vertical 
3 dB one- way beam widths are 1.9°/30° and 1.0°/20° for the S- 
band and X- band, respectively. They are operated independently 
from each other. The S- band radar is used in normal horizontal sur-
veillance mode, while the base of the X- band antenna is tilted 90° 
giving a vertical scan pattern which enables height measurements 
in a narrow sector. The ship radars have antennas which give hori-
zontal polarization of the transmitted electromagnetic wave. As the 
X- band antenna in this case is mechanically tilted 90°, the X- band 
polarization will be vertical. The detection tests are solely based on 
the horizontal S- band radar. Although the radar hardware is not de-
signed specifically to capture small flying objects such as birds, the 
developed data extractor is especially designed to do extract small 
flying objects from the radar signals. The target data extractor has 
two main functions: detection and tracking. The detection process 
establishes the automatic detection thresholds on a combined back-
ground of clutter and system noise and, for each antenna scan, de-
tects any signal level above this threshold as a target. The tracker 
takes the detections as input and, based on the movement charac-
teristics of birds, performs scan to scan processing to identify and 
combine successive detections of the same target. Detections from 
several antenna scans found to be from the same moving target are 
stored together as a “target track” in the target database. The entire 
system is mounted on a trailer and can thus be moved to any desired 
location for data collection.

2.3 | Detection test flights using UAV

A remotely controlled unmanned aerial vehicle (UAV) was used as a 
test target to investigate the performance of the radar system in its 
actual operating environment. The UAV was equipped with a video 
camera and video link to the controlling pilot on the ground. This 
expands the controlling range up to ranges in excess of 2 km which 
makes it possible to design and perform virtually any test flight pat-
tern within the wind park and the radar coverage. The UAV fuselage 
is made from balsa tree with ribs of plywood, covered with a plastic 
foil. Apart from the flaps, the wing consists only of plywood ribs with a 
plastic foil cover and has a wingspan of 2.1 m. The radar returns from 
these wooden structures, and plastic foil was anticipated to be minor 
and that the dominant radar scatterers were the different mounted 
metallic parts: motor, battery pack, and remote control receiver, GPS- 
unit, and a 500 mW video transmitter (2.4 GHz) mounted on top of 
the wing.

The detection tests were executed on 17 August 2009 to 20 
August 2009. Weather conditions at that time were characterized 
by calm and clear skies without any precipitation. At the time of test-
ing, the wind turbines were not operational. The performance test 
was therefore not affected by adverse conditions rendering dynamic 
sources of clutter, precipitation, and/or operational turbines, which re-
duce detection. Take- off of the UAV was carried out from the unpaved 
roads near different turbine bases (Figure 1). Flight lags for detection 
over range (N = 7) were done at circa hub height (70 m) away from 
and toward the radar. Flight lags over clutter areas (N = 6) passed over 
specific areas repeatedly. The radar and GPS data are provided as sup-
plementary information (Data S2).

2.4 | Correlating radar tracks and GPS tracks

Because the time stamps of the UAV’s GPS and the Merlin avian radar 
system were not synchronized, we had to estimate the offset in time 
between GPS flight tracks and radar tracks to be able to correlate the 
data sets properly. First, we gave each GPS track (one for each test) 
and associated radar tracks a unique test- ID, thereby clustering both 
roughly. Thereafter, we estimated the offset in seconds Ti ℮ [0,120] 
between GPS and radar for each test- ID i by maximizing the log- 
likelihood of the following linear model:

with Di,t as the distance, ΔRi,t as the difference in range from the 
radar (Rradar – Rgps), and ΔBi,t as the distance effect due to the dif-
ference in bearing α from the radar (sin(α/2)·(Rradar + Rgps)) between 
each position pair (GPS position and time- adjusted radar position) 
i,t. After having found the most likely offset (Table 1), we connected 
the radar- detected positions to the GPS positions by timestamp. 
Thereafter, we derived nondetections by interpolating consecutive 
detections with an average time difference of 2.7 s (i.e., 22.5 radar 
scans per minute). The S- band pulse repetition frequency (PRF) used 
is 1,900 Hz with a pulse width of 70 ns, corresponding to 10.5 m 

(1)D2
i,t
=β0+β1×ΔR2

i,t
+β2×ΔB2

i,t
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in distance (range). The best- case angular resolution of the system 
is approximately equal to the 3 dB beam width, and the best- case 
range resolution is equal to the pulse width, giving a theoretical res-
olution cell of 10.5 m × 1.9°. The actual resolution experienced in a 
practical system is usually coarser, dependent on the actual signal 
processing in the receiver chain. R code is provided as supplemen-
tary information (Data S1).

2.5 | Detection theory and in practice

The ability for an object to reflect the signal energy back to the radar 
is called its radar cross section (RCS) and is measured in square me-
ters (Barton & Leonov, 1997). The main problem in detecting birds 
with a radar system is the small RCS. The signal level in the radar 
receiver from any object within its coverage is proportional to the 
objects RCS. The literature reports for large birds (e.g., a swan or 
an eagle) an average RCS of −20 dBm2, or 0.01 m2, measured at a 
frequency of 10 GHz (Eastwood, 1976; Skolnik, 2001; Vaughn, 
1985). In comparison, a small aircraft may be in the order of 1–3 m2. 
However, the measured RCS depends on several factors, such as 
the size and shape of the bird, the frequency, and the aspect angle. 
The RCS of complex targets will therefore fluctuate in time. In an 
attempt to capture target RCS fluctuation effects in a mathematical 
model that could be easily used in detection studies, Peter Swerling 
developed statistical representations of RCS fluctuations that are 
commonly referred to as the Swerling target models. The theoretical 
probability of detection (Pd) will depend on the type of RCS fluc-
tuation model used and is a function of the signal- to- noise ratio 
(SNR). Theoretically, the SNR in the receiver for a target with RCS 
σ is obtained by the radar equation (Skolnik, 2001). The radar equa-
tion represents the physical dependence of radar properties (e.g., 

wavelength, antenna gain, transmit power) and inherent loss factors 
(e.g., atmospheric, attenuation, and fluctuation losses) with RCS and 
range (~R−4) (Larkin & Diehl, 2012).

Which target model to use depends on the type of target and 
properties of the radar waveform. The Swerling- 0 model describes 
the relationship for “steady” (nonfluctuating) targets. The Swerling- 1 
model describes a target whose RCS is constant throughout the illu-
mination time, that is, antenna scan, but varies independently from 
scan to scan. One of the standard assumptions is that the Swerling- 1 
model is associated with complex targets such as aircraft and ships 
with many independent scattering points. In practice, detection mea-
surements indicate that, indeed, the Swerling- 1 models provide a good 
representation of complex targets (Klein & Sadovnik, 2006; Swerling, 
1954). The Pd for a fluctuating target (i.e., Swerling- 1 model) follows 
the equation:

with Pfa as the probability of false alarms (typically ~10−6).
Although it is unclear from the literature whether birds as radar 

targets follow the latter “fluctuation model,” we expect that the UAV 
can be approximated as a Swerling- 1 target. In the radar equation, this 
gives rise to a growing fluctuation loss when Pd is above circa 0.3. For 
Pd = 0.5 the fluctuation loss lies around 2 dB compared to a target that 
does not fluctuate (Barton, 2004). If birds are to be expected to be a 
more “steady” target, then they thus have detection advantage over 
the UAV, although they may have the same average RCS.

However, to be of use in practical radar problems we need to at-
tempt to relate this statistical model to actual targets detected by the 
Merlin avian radar system. The Swerling- 1 equation follows a (con-
tinuous) chi- squared (or gamma) distribution (Swerling, 1954). When 
the detections (and nondetections) are seen as independent Bernoulli 
trials, this process can be approximated with a binomial distribution. 
The output data of the avian radar system have gone through sev-
eral processing algorithms. Because of the heterogeneous clutter sur-
rounding the radar and the algorithms in the automated processing, 
the relationship between Pd and range as part of the radar equation 
may not be as simple (~e−R4). The same applies to the relationship be-
tween Pd and Pfa. Given the nature of our data (independent detec-
tions and nondetections), we chose to follow a binomial approach, and 
for simplicity chose to model detection over range on a linear scale (cf. 
Dokter et al., 2013).

2.6 | Statistical modeling 

R code for all analyses is provided as supplementary information (Data 
S1.2). Prior to statistical analyses, we assessed data quality and ex-
cluded extreme values from the analyses based on visual inspection 
of the distribution of and cumulative standard deviation in detection 
rates for altitude above ground level and tortuosity (Gerringer et al., 
2016). Low- flying objects may be obscured by terrain formations lim-
iting detection (during take- off and landing of the UAV). Sharp and 
unpredictable in- flight turns and doubling- back are generally difficult 

(2)Pd=e
ln (Pfa )

SNR+1

TABLE  1 Overview over the flight tracks of the unmanned aerial 
vehicle and the estimated offset in seconds. The last column 
indicates in which test the track data was used: detection over range 
(DR) and over clutter areas (DC)

Track ID
Offset 
(sec)

Test 
type

Average 
range (m)

Proportion over 
clutter areas

2 43.578 DR 621 0.41

3 46.169 DC 659 0.38

4 45.836 DC 825 0.13

5 46.169 DC 1,837 0.08

7 47.124 DR 2,062 0.00

8 47.057 DR 2,169 0.00

14 46.228 DR 3,073 0.00

15 45.836 DC 2,198 0.18

18 51.798 DC 2,434 0.10

19 54.042 DC 2,178 0.18

21 59.089 DR 2,999 0.00

22 57.007 DR 1,896 0.00

23 58.302 DR 1,965 0.00
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for tracking algorithms (Schell, Linder, & Zeidler, 2004); however, any 
inability in doing so was not the focus of this study. Tortuosity, de-
fined as the normalized cosine of the turning angle of consecutive po-
sitions, (Si) was calculated for each position i as follows: Si = 1 – ((cos 
ΔHi + 1)/2), with ΔHi as the change in heading between two consecu-
tive positions. We used segmented regression to find the optimal par-
titioning at varying thresholds. Segmented regression aims to find the 
threshold (i.e., minimum altitude or maximum tortuosity) that renders 
the minimum sum of squared residuals. As detection may also be af-
fected by the orientation of a track toward the radar (cf. Schmaljohann 
et al., 2008), we included a grouping covariate to differentiate be-
tween track segments along and across (|cos(α)| > cos(45°)) the radar 
beam.

Thereafter, detection over range (i.e., distance to radar) and over 
clutter areas (i.e., binary variable indicating whether the position 
was inside (=1) or outside (=0) a clutter area) were assessed for each 
track cluster separately (Table 1, Figure 1). Ground clutter was mod-
eled in GIS delineated by areas in line- of- sight to the radar (Figure 1). 
The within- track detection probability analyses were modeled using 
mixed- effects generalized linear models with a binomial distribution. 
For this, we used the glmer function in the lme4 library of statisti-
cal program R 3.1.2 (R Core Team 2014). Here, successful detections 
(versus nondetections) were related to different covariates while con-
trolling for track orientation and tortuosity and a random grouping 
over tracks (i.e., intertrack dependence).

Because the MERLIN software is able to maintain a track, all 
else being equal, when every other detection is lost, we set the 
minimum detection probability level to 0.5, which then defined our 
“maximum detection range” in the detection over range analyses. 
From this, we could derive the expected detection over range and 
clutter areas the MERLIN avian radar system could handle success-
fully. For reasons of comparison, we also estimated detection range 
using a traditional approach and estimated the “blip/scan”- ratio 
(Skolnik, 2001). Here, we estimated the Pd by counting the number 
of detections in 25- m range bins and divided them by the total 
number of detection opportunities for the target within each bin. 
From this plotted graph, we visually assessed the detection range 
for Pd = 0.5.

2.7 | RCS measurement of the UAV for 
extrapolation of detection range to bird targets

To be able to compare the performance of the avian radar system, 
using the test target, against the actual performance with real bird 
targets, the radar cross section (RCSd) of the test target must be 
known. The challenge of using a UAV as test target is that the RCS 
of the UAV generally is unknown and much more difficult to con-
trol than the RCS of simple targets as, for example, a conducting 
sphere. It is expected to vary substantially as a function of the radar 
wavelength and the aspect angle. This is due to the irregular shape 
and positioning of the different scatterers on the UAV. An impor-
tant prerequisite when using the UAV as a test target is therefore 
that its RCS is measured and verified for the relevant aspect angles 

and radar wavelengths. RCS measurement of the UAV has been per-
formed in an anechoic chamber at the NTNU/SINTEF antenna labo-
ratory facilities at Gløshaugen, Trondheim (Appendix 1). The median 
RCS of the UAV at 3,050 MHz (S- band wavelength) over 360° was 
−11.0 dBm2, that is, 0.08 m2, and the 75 percentile was measured at 
−7.5 dBm2, 0.18 m2, and the 25 percentile at −14.6 dBm2, 0.03 m2. 
The UAV had distinct lobes head- on, tail- on, and from the sides. 
These lobes were however not much larger than lobes in other di-
rections, indicating that it is not the balsa and plywood wings and 
fuselage itself that caused the biggest returns, but rather the wiring 
and the different parts mounted both inside and outside the UAV 
(Figure 2).

Finally, the modeled and binned detection ranges (Rd) derived 
from the UAV were extrapolated to bird targets with RCSi using the 
information from the RCS measurements on the UAV (RCSd). This 
was performed using the following formula (Knott, Shaeffer, & Tuley, 
2004): 

where the RCS (in dBm2) of the various species was estimated assum-
ing a spherical water body (Moon, 2002):

with Wi as the weight of the bird (in grams). Weights for the differ-
ent species were obtained from the FLIGHT software (Pennycuick, 
2008).

(3)Ri=

(

10RCSi∕10

10RCSd∕10

)1∕4

×Rd

(4)RCSi=10× log10

(

(

Wi×0.65×3

1000×1000×4π

)2∕3

×π×0.56

)

F IGURE  2 Unmanned aerial vehicle S- band radar cross section 
(RCS) at 0° elevation
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3  | RESULTS

The segmented regression rendered a lower altitude threshold of 27 m 
above ground level and upper tortuosity threshold of 0.33 (indicating a 
turning angle of 70°), above/below which the standard deviation stabi-
lized. For further analyses, we excluded altitudes below 27 m and tor-
tuosity values above 0.33 from the data (signifying 4.1% of the data).

The detection tests over clutter areas showed a 28% (16–41% 
CI) reduction in the detection probability within land clutter areas 
(z = −4.232, p < .001) from 0.51 (0.35–0.66 CI) to 0.36 (0.21–0.56 CI) 
while controlling for potential effects over range (z = 2.756, p = .006), 
track orientation (z = −1.969, p = .05), and tortuosity (z = −0.408, 
p = .683) (Figure 3). To further test for range of detection, we only in-
cluded positions that were positioned outside clutter areas. The de-
tection range, given a threshold detection probability (Pd) of 0.5, was 
2,340 m (1,720–3,060 m CI) from the modeled data (z = −11.951, 
p = .037), while controlling for track orientation (z = 2.088, p < .001) 
and tortuosity (z = −3.650, p < .001) (Figure 4).

Based on the measured RCS of the UAV and estimated average 
detection range (2,340 m; Figure 4), we extrapolated the expected de-
tection range to a range of bird species with different sizes (Figure 5). 
Table 2 compares modeled detection ranges at a Pd of 0.5 with ob-
served ranges of groundtruthed radar tracks of various bird species. 
Although the groundtruthed birds did not represent a representative 
subset of the geographic distribution of birds in the area, it does give 
an indication of the range of possible detections.

4  | DISCUSSION

The modeled species- specific detection ranges signify the minimum 
limit beyond which the avian radar tracking system is expected to lose 
track of a given bird (cf. Gerringer et al., 2016). In other words, within 
this limit the radar system may be expected to maintain a track up to 
the moment when every other plot is undetected (Pd = 0.5). The detec-
tion range is however dependent on a number of external factors limit-
ing detection such as atmospheric conditions, ground clutter, altitudinal 
coverage, and inference from large objects or other radar systems 

F IGURE  3 Detection over clutter areas. Modeled relationship and 
detection limit (at Pd = 0.5) for six flight tests using a binomial mixed- 
effects model

F IGURE  4 Detection over range. Proportion of detections by the 
total number of detections are given in gray, clustered in 25- m bins 
for seven range- detection tracks. Predicted relationship (±SE) and 
detection range (at Pd = 0.5) using a binomial mixed- effects model. 
The red lines indicate the average range for the different tracks. Red 
dots indicate the overall track detection probability

F IGURE  5 Extrapolation of the detection range for different bird 
species with different radar cross section (RCS) (Table 2), based on a 
modeled detection range of 2,340 m (see Figure 4)
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nearby (i.e., shadowing) (Beason et al., 2013). The analyses in this study 
controlled for potential sources of reduced environmental detectabil-
ity due to altitude, clutter, and track orientation. In this study, we also 
assumed that a bird’s RCS equals its water content not taking into ac-
count shape and form of the bird. Birds may be better approximated 
by a prolate spheroid with length- to- width ratios of 2–3 than by the 
often used equivalent weight water sphere (Vaughn, 1985). Assuming 
a more or less crucifix bird shape may thereby, relative to its size, af-
fect detection probability with respect to movement ventral and lateral 
to the radar beam (McCann & Bell, 2017; Schmaljohann et al., 2008). 
Birds, however, do not resemble a static crucifix shape. Various bird 
species deploy a range of different flight modes, including soaring, flap-
ping and intermittent bounding and undulating flight (Norberg, 1990; 
Pennycuick, 2008). To which extent the flight mode affects radar de-
tectability is however uncertain. In addition to aspect and flight mode, 
detection and tracking are likely affected by flight tortuosity. Irregular 
flight of small maneuvering targets (acceleration, sharp turns, crossing, 
and flocking) complicates successful tracking of birds in a cluttered en-
vironment (Beason et al., 2013; Schell et al., 2004). Here, we also have 
to distinguish between the sensitivity of the radar hardware to sense 
a (static) reflected bird echo, and the subsequent clutter suppressing 
algorithms and tracking software to detect this echo from background 
clutter and be able to track bird targets. Although the first two can be 
seen as being limitations inherent to the system employed (as regard-
ing accuracy, sensitivity, and resolution), the potential influence of the 
latter may be hard to assess. Most currently commercially available 
avian radar tracking systems process radar echoes employing “black 
box” algorithms to identify and track birds in space and time (Beason 
et al., 2013; Dokter et al., 2013; Gerringer et al., 2016). In this study, 
we controlled for any potential effects of tortuosity in the detection 
probability, both by excluding extreme values (cf. Urmy et al., 2016) 
and by including random effects in our models. The detection ranges 
estimated in this study were similar, albeit somewhat more conserva-
tive, compared to other validation studies (Beason et al., 2010; Dokter 

et al., 2013; Gerringer et al., 2016). Comparing to the groundtruthed 
birds clearly shows that birds in specific situations can be detected by 
the radar up to two nautical miles, the maximum instrumented range 
at which the radar was set. Still, this does not equate to the detec-
tion range at a set detection probability (of e.g., 0.5). Discrepancies 
between this study and visual observations may in part be explained 
by the sensitivity of the systems employed, the environment within 
these were placed and the spatial distribution of birds within the areas. 
In addition, the larger observed distances for greylag goose, mal-
lard, and gulls may in part also be explained by social behavior when 
they are flying in flocks. The smallest bird species, differing most in 
size from the UAV, seemed to result in an underestimation of their 
detection range. This would merit further studies. Still, from our study 
and other validation studies (Beason et al., 2010; Dokter et al., 2013; 
Gerringer et al., 2016) it becomes clear that single birds can in general 
be detected within a circular area with a maximum range up to 2 km 
(ca. 1 nautical mile) from the radar, representing a surface area of ca. 
12.5 km2. However, detection range depends on the size of the bird, 
with smaller species (e.g., fieldfare, meadow pipit) being detected up to 
0.5–1 km and larger species (e.g., whooper swan, white- tailed eagle) 
up to 1.5–2 km from the radar. Thus, to enable continuous monitor-
ing of bird activity within a relatively large area of interest, radar may 
still be the best available technology at present (Chilson et al., 2012; 
Desholm, Fox, Beasley, & Kahlert, 2006). This performance test was 
executed within the settings of a wind- power plant, including the static 
clutter from present structures (wind turbines, buildings, and power 
line) as well as the surrounding terrain. As the test was executed during 
calm and dry circumstances, thereby minimizing any dynamic clutter 
from, for example, operational turbines and precipitation, these ranges 
should be seen as “optimal” ranges within an application- relevant envi-
ronment. Although the performance results will be highly site- , system-
 , and setting- specific, the methodologies presented enable replication 
at other sites and will be applicable for similar types of radar systems 
and situations.

TABLE  2 Groundtruthed birds which were detected by the Merlin avian radar system, and the range (m) at which they were tracked. The 
lower and upper ranges represent the extremes including both uncertainty around the modeled detection range (2,340 m, 1,720–3,060 m CI) 
and quartiles of the radar cross section (RCS) calibration for each species (group). The observed mean, SE, and range values were derived from 
N groundtruthed birds observed in the field and tracked by the avian radar simultaneously

Detection 
range Passerinesa Wadersb

Hooded crow 
(Corvus cornix) Gulls

Mallard (Anas 
platyrhynchos)

Raven 
(Corvus corax)

Greylag goose 
(Anser anser)

White- tailed eagle 
(Haliaeetus albicilla)

RCS (dBm2) −32.0 −28.5 −24.9 −23.5 −22.7 −22.4 −19.5 −18.3

Modeled 707 859 1,051 1,140 1,193 1,214 1,435 1,537

Lower range 578 703 859 932 975 992 1,173 1,257

Upper range 870 1,057 1,293 1,402 1,468 1,494 1,765 1,891

Mean 959 2,058 1,013 1,653 1,434 1,043 1,932 1,497

SE 53 179 49 48 202 63 114 22

Minimum 135 371 214 346 418 292 504 249

Maximum 2,866 4,377 2,869 3,564 3,103 3,446 3,722 3,643

N 76 33 74 220 11 58 38 725

aRepresented by the Fieldfare (Turdus pilaris) and Meadow pipit (Anthus pratensis).
bRepresented by the Common snipe (Gallinago gallinago) and Golden plover (Pluvialis apricaria).
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