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Abstract—In this paper a new method for power system
stability analysis is introduced. The method is based on injection
of a small voltage or current in an arbitrary point of the system.
The apparent impedance is defined as the ratio between the
voltage and current in the injection point. It is shown that the
apparent impedance can be used to estimate the eigenvalues
of the system that are observable from the injection point.
The eigenvalues are obtained by applying the Vector Fitting
algorithm to the measured set of apparent impedances. The
proposed method holds some advantages over the well established
impedance-based analysis method: It is no longer needed to
estimate the source and load impedance equivalents separately,
and it is not necessary to make any assumption regarding where
the source and load are located. This reduces the required
measurements and data processing. Furthermore, the stability
analysis is global in the sense that the resulting stability margin
does not depend on the injection point location. Finally, the
method is well suited for real-time implementation due to low
computational requirements. The method is outlined for DC-
systems, while further work will extend the theory to cover single-
phase and three-phase AC systems.

Index Terms—Vector Fitting, State-space modeling,
Impedance-based analysis, Power system stability analysis.

I. INTRODUCTION

Stability analysis of power systems is often conducted by

small-signal methods. Two branches of small-signal methods

exist: impedance-based analysis and state-space analysis. The

advantage of state-space analysis is the ability to decompose

system dynamics into different oscillation modes, and to assess

the stability of each mode by eigenvalues and participation

factors. The main drawback of state-space analysis is that

detailed information and parameter values for all units in the

system are usually required. The impedance-based method is

an alternative method which decomposes the system into a

source and load impedance equivalent [1], [2], [3]. Stability

can be analyzed by applying the Nyquist Criterion to the ratio

between source and load impedance. The main advantage of

the impedance-based method is that stability can be analyzed

from measurement/simulations in a single point in the system.

Hence, this can be viewed as a black-box approach. In order

to perform such analysis, a disturbance or perturbation must

normally be injected into the system. The impedance-based

analysis has traditionally been applied to power systems based

on power electronic converters.

This paper proposes a new method for stability analysis

called the apparent impedance method. The approach is based

on measurements in a single point similar to the above men-

tioned impedance-based analysis. But instead of applying the

Nyquist Criterion, the method identifies the system eigenvalues

based on the measured impedance values. Furthermore, it is

not required to estimate the source and load impedances sepa-

rately. Only the apparent impedance as defined in (1) needs to

be estimated. A major advantage with the apparent impedance

method is that the resulting stability estimate does not depend

on the measurement location and therefore provides a global

stability margin. Finally, the number of measurements required

for stability analysis is lower than the traditional impedance-

based analysis.
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II. APPARENT IMPEDANCE DEFINITION

The definition of the apparent impedance assumes an in-

jection of voltage or current at some point in the system. In

Fig. 1 an injection is applied to a DC system composed by

two subsystems. The injection point separates the system into

two subsystems (1 and 2), here represented by their frequency-

dependent Thevenin and Norton equivalents. It will be shown

later that the choice of Thevenin vs. Norton does not impact

the stability analysis. The upper part of Fig. 1 represent shunt

injection, while the lower part represent series injection. The

choice of shunt vs. series injection has an impact on the

methodology as illustrated in Fig 2.

The apparent impedance is defined as:

Za(s) =
vp(s)

ip(s)
=

1

Ya(s)
(1)

where vp and ip are defined in Fig. 1. The apparent admittance

Ya(s) is defined as the inverse of the apparent impedance. The

relation between Za and the subsystem impedances Z1 and

Z2 depends on the choice of shunt vs. series injection. When

deriving these expressions we can neglect the impact from the

sources v1 and i2 due to the small-signal assumption. The

following expressions can then be obtained for Za by circuit

analysis applied to Fig. 1:

Za,shunt = Z1||Z2 =
Z1Z2

Z1 + Z2

(2)

Za,series = Z1 + Z2 =
Y1Y2

Y1 + Y2

(3)

Note that these expressions do not depend on the type of

subsystem equivalent (Thevenin vs. Norton) since we are dis-

regading the impact of the voltage and current sources during

small-signal analysis. The application of apparent impedance

in stability analysis is explained in the next section.

III. STABILITY ANALYSIS BY THE APPARENT IMPEDANCE

Apparent impedance stability analysis is a small signal

method. The objective is to estimate all eigenvalues of the

system based on sampled values of Za. The stability analysis

follows directly by evaluating the eigenvalues in the complex

plane. A flowchart of the methodology is presented in Fig. 2:

A. State-space modeling and transfer functions

In small-signal analysis it is assumed that the entire system

can be represented by a linear state-space model:

sx = Ax+Bu

y = Cx+ (D + sE)u (4)

where x is the vector of n states, u is the single input to

the system, while y is the single output. A is the n× n state

matrix, B is a n× 1-vector, C is a 1×n-vector, while D and

E are scalars. Note that (4) assumes a Single-Input-Single-

Output (SISO) system, which is the case for a DC-system.

Choose injection 

type

Shunt Series

Estimate Za

 at f1, f2 ... fn

Eq. (1)

Estimate Ya

 at f1, f2 ... fn

Eq. (1)

Vector Fitting Vector Fitting

Evaluate 
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-Za ≈c(s-A)
-1

b+d
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λa,series=eig(A)

-Ya≈c(s-A)
-1

b+d

Fig. 2: Flowchart of apparent impedance stability analysis

In case of three-phase systems, u, y,D,E would also become

vectors, while B would become a matrix.

By control theory, an impedance represents a transfer func-

tion between current and voltage. With reference to the state-

space model (4), a general transfer function H(s) can be

defined as the ratio between output y and input u:

H(s) =
y(s)

u(s)
= C (sI −A)

−1
B +D + sE (5)

A general impedance Z(s) and admittance Y (s) can be

defined accordingly based on some voltage v and some current

i.

Z(s) =
v(s)

i(s)
= CZ (sI −AZ)

−1
BZ +DZ + sEZ

Y (s) =
i(s)

v(s)
= CY (sI −AY )

−1
BY +DY + sEY (6)

For the following analysis the circuit diagrams in Fig. 1

have been transformed to block diagrams in Fig. 3.

For a moment it is assumed the injection sources do not

exist. For shunt current injection, the transfer function between

subsystem 2 load current i2 and the interface point voltage vp
is then expressed as:

vp(s)

i2(s)
= −

Z1Z2

Z1 + Z2

= −Za,shunt (7)

where the last equality is obtained from (2). Similarly

under series voltage injection, the transfer function between
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Fig. 3: Block diagram of the circuit in Fig. 1. Upper figure:

shunt injection, lower figure: series injection

subsystem 1 source voltage v1 and interface point current ip
is expressed as:

ip(s)

v1(s)
= −

1

Z1 + Z2

= −
1

Za,series

= −Ya,series (8)

where the last equality is obtained from (3). This is the

key point in the deriving process: the apparent impedance

represents a closed-loop transfer function in the system both

for shunt and for series injection. Note that the negative sign

will not influence the stability analysis.

The next step in deriving the apparent impedance method

is to rewrite the general transfer function in (5) according to

the inputs and outputs in (7) and (8):

−Za,shunt(s) =
vp(s)

i2(s)

= CZ (sI −AZ)
−1

BZ +DZ + sEZ (9)

−Ya,series(s) =
ip(s)

v1(s)

= CY (sI −AY )
−1

BY +DY + sEY (10)

The matrices AZ and AY will contain the system eigen-

values that are observable from the injection point. The final

step in the method is to estimate the state-space models in

(9) and (10) based on a set of measured/simulated values of

Za. The system eigenvalues can then be computed and the

stability analysis is complete. The Vector Fitting (VF) method

is applied for this purpose in the next section.

B. Estimating state-space model by the Vector Fitting method

Vector Fitting (VF) is a well established method for ratio-

nal approximation in the frequency domain using poles and

residues [4] [5] [6]. The method is able to estimate a state-

space model to a measured or computed transfer function

based on curve fitting. Vector Fitting is widely applied in

many engineering fields, from high-voltage power systems

to microwave systems and high-speed electronics. A Matlab-

implementation of the method is available online [7].

The input to the vector fitting algorithm is:

• A set of measured/simulated apparent impedance values

function values Za1, Za2...Zan taken at the frequencies

f1, f2...fn (convert to Ya for series voltage injection).

• The order of the resulting state-space model. The maxi-

mum possible value is the number of impedance values

(n).

The output of VF is then the state-space model represented

by A,B,C,D,E (4). For convenience, the matrix A is rep-

resented on diagonal form, hence the eigenvalues are directly

available on its diagonal.

IV. STABILITY ANALYSIS BY THE NYQUIST CRITERION

As discussed in the introduction, the traditional impedance-

based stability analysis is conducted by means of the Nyquist

Criterion. The Nyquist Criterion is based on the open-loop

gain of the system (also called the minor-loop gain), i.e. the

product of all transfer functions in the loop. By considering

the block diagram in Fig. 3, the open loop gain L is found as:

L(s) =
Z1(s)

Z2(s)
(11)

A common assumption in impedance-based analysis is to

require a stable source when unloaded, and a stable load

when connected to an ideal grid [3]. In this case the Nyquist

Criterion states that the system is stable if and only if L(s)
does not encircle the point (−1, 0) when drawn in the complex

plane.

While L(s) represents the open-loop gain in the system, the

apparent impedance represents closed-loop transfer functions

as derived in (7) and (8). Comparisons between stability

analysis conducted with the Nyquist Criterion and by the

apparent impedance method will be presented in the simulation

section.

V. SIMULATION RESULTS

A case study has been defined in Fig. 4. This is a DC-

system where a Constant Power Load (CPL) to the right is

fed by a Buck converter. The CPL consumes constant power

P ∗ by drawing a current IL that is inverse proportional to its

terminal voltage vC2. The CPL dynamics are represented by

the filter time constant τ used to lowpass-filter the measured

voltage vC2. The Buck converter has a constant duty cycle

D, switching frequency fsw and an output filter represented

by R1, L1, C1, Rc1. Series impedance R2, R3, L3 separates the

source and load from each other. Note that the model is non-

linear due to the term iL = P∗

ṽ2

C2

.

The system is represented in MATLAB Simulink Simscape

Power Systems using a switched (detailed) model. The simu-

lation time step is fixed and equal to Tsim = 1 µs.
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A. Analytical state-space model

By circuit analysis the state-space model of the system in

Fig. 4 is derived in (12) - (13). The CPL has been linearized

around its operation point denoted by the stationary voltage

VC2. The applied parameter values are given in Table I.
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where

A =















−R1+Rc1

L1

− 1

L1

Rc1

L1

0 0
1

C1

0 − 1

C1

0 0
Rc1

L2

1

L
−R1+R2+Rc1

L2

− 1

L2

0

0 0 1

C2

0 P∗

C2V
2

C2

0 0 0 1

τ
− 1

τ















(13)

TABLE I: Parameter data applied in the simulation model

Parameter Value Parameter Value
VDC 2 V D 0.5
R1 10 mΩ L1 0.9 mH
C1 1.1 mF Rc1 500 mΩ

R2 50 mΩ R3 20 mΩ

L2 1.6 mH C2 10 mF
P ∗ 0.5 W τ 5 ms.
Tsim 1 µs fsw 2.5 kHz

The eigenvalues λanalytic of the state matrix A have been

calculated in MATLAB using the data in Table I. They are

compared with the eigenvalues obtained by the proposed

method in Section V-C.

B. Obtaining apparent impedances by simulation

Obtaining impedance values by simulation can be achieved

by most time-domain analysis tools. The idea is to inject a

small disturbance in the interface point as illustrated in Fig

1. The disturbance can contain a single frequency (single-

tone), or be composed by several frequencies (multi-tone). In

case of single-tone, a set of consecutive simulations must be

performed in order to establish the impedance curves.

In this work, a multi-tone signal composed by 8 frequencies

is injected. The frequencies are logarithmically spaced in the

range between 2 and 2000 Hz as:

finj = [2, 6, 14, 38, 104, 278, 746, 2000] Hz (14)

A time-domain simulation of steady-state operation is pre-

sented in Fig 5. Shunt current injection is applied to intersec-

tion B, and the injected current ip as well as the intersection

point voltage vp is presented in the plot. The amplitude of

each injected frequency component is 0.5 mA, giving a total

RMS of 1√
2
· 8 = 2.8 mA. This is approximately 0.5 % of the

average load current.

The curves in Fig. 5 is the only information needed to

perform the remaining part of the stability analysis. First, the

FFT is applied to vp and ip, and the result is presented in

Fig. 6. Since shunt current is applied to this example, the

current magnitudes are equal for all injected frequencies, while

the voltage amplitudes and angles depend on the system. The

apparent impedance is defined in (1) as the ratio between vp
and ip in the frequency domain.

The resulting impedance curves are presented in Fig. 7 for

intersection A and in Fig. 8 for intersection B. The intersec-

tions are defined in Fig. 4. The impedances are estimated for

the 8 frequencies in finj , while the Vector Fitting algorithm

is used to interpolate between them. Only the impedance

magnitudes are presented, but it has been verified that the an-

gles are consistent with the conclusions. Za,shunt is obtained

from shunt current injection, while Za,series is obtained from

series voltage injection. The subsystem impedances Z1 and Z2

defined in Fig. 1 are also presented in the same plot. They are

corresponding to the left (Buck) and right (CPL) subsystem

impedances in Fig. 4, respectively. Z1 and Z2 are the basis

for establishing the Nyquist plots in Fig. 10.

The impedance curves can be explained as follows: It is

clear that the simulated apparent impedance Za,shunt com-

plies with (2) at both intersections. It represents the parallel

connection of the subsystem impedances Z1 and Z2. When

the two subsystem impedances have large difference in mag-

nitude, Za,shunt ≈ min[Z1, Z2]. A resonance peak occurs

at fmax = 45 Hz where Z1 and Z2 have equal amplitude

but opposite phase. At low frequencies, Za,shunt ≈ Z1 since
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the inductive path through the buck converter has significantly

lower impedance than the capacitive path through the CPL.

The simulated apparent series impedance Za,series complies

with (3) as the series connection of Z1 and Z2. When the

two subsystem impedances have large difference in magnitude,

Za,series ≈ max[Z1, Z2]. There is also a resonant frequency

at fmin = 45 Hz at both intersections. This is expected since

the two subsystems have similar magnitude and opposite phase

at this frequency.

C. Eigenvalue comparison

The next and final step in the stability analysis is to apply

Vector Fitting (VF) to estimate the system state-space model,

and to evaluate the eigenvalues of the matrix A. The input to

VF is the set of simulated values for Za,shunt or Ya,series,

along with the frequency vector finj (14).

The VF directly outputs the state-space model and

eigenvalues based on the sampled values of apparent

impedance/admittance. The estimated (apparent) eigenvalues

corresponding to shunt and series injection are presented in
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Table II for intersection A, and in Table III for intersection B.

The difference between apparent eigenvalues and the analytical

ones is less than 0.01 % at both intersections. The eigenvalues

are visualized in a plot in Fig. 9. The most critical eigenvalue

has an imaginary part equal to 282.8, which is equivalent to

an oscillation frequency of 282.8
2π

= 45.0 Hz. This is the same

frequency as the apparent impedance resonances in Fig. 7 and

8. It is also the oscillation frequency identified in Fig. 11.
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TABLE II: Comparison of analytical eigenvalues with the

apparent eigenvalues obtained at intersection A

λanalytic λa,shunt,A λa,series,A

−30.39± j282.8 −30.37± j282.6 −30.37± j282.6
−2039.3± j1742.8 −2039.3± j1742.7 −2039.3± j1742.7

−208.7 −208.7 −208.8

TABLE III: Comparison of analytical eigenvalues with the

apparent eigenvalues obtained at intersection B

λanalytic λa,shunt,B λa,series,B

−30.39± j282.8 −30.37± j282.6 −30.37± j282.6
−2039.3± j1742.8 −2039.3± j1742.5 −2039.3± j1742.7

−208.7 −208.8 −208.8

D. Nyquist criterion analysis

It has been stated in the introduction that the traditional

impedance-based stability analysis will give a result dependent

on the measurement location. This has been investigated by

applying the Nyquist Criterion to the ratio L = Z1

Z2

at both

intersections A and B (11). Z1 and Z2 are the subsystem

impedances plotted in Fig. 7 and 8. Z1 represents the source

subsystem (Buck converter), while Z2 is the load (CPL).

The Nyquist curves are plotted in Fig. 10. The lower

figure is a close-up showing the behavior in proximity of

the unit circle. It is clear from the figure that neither of

the Nyquist curves encircle the critical point (−1, 0), but the

trajectories are different. The curve at intersection A crosses

the unity circle twice, while intersection B only once. This is

corresponding to the fact that Z1 and Z2 have equal magnitude

at two frequencies for intersection A (Fig. 7), but only for one

frequency at interface B (Fig. 8). The frequency corresponding

to the most critical unity circle crossing is 45.9 and 45.1 Hz

for intersection A and B, respectively. This is very close to

the imaginary part of the most critical eigenvalue, and also to

the resonance points of the apparent impedance.
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Although the Nyquist plot differences are not significant in

the specific case study, it can be concluded that the Nyquist

criterion gives a local stability margin dependent on the

measurement location. By contrast, the apparent impedance

method gives a global stability margin since the system

eigenvalues are estimated.

E. Transient response example

To illustrate the relation between the impedance analysis and

time-domain responses, an example simulation is presented in

Fig. 11. Initially the system operates according to the parame-

ters in Table I. At t = 0 the reference CPL power is increased

with 10 % to P ∗ = 0.55 W . The disturbance injection has

been disabled during this simulation. The transient response

of the voltage vC2 and the line current iL2 are plotted. An

oscillatory mode is triggered during the step, and the frequency

has been accurately estimated as f = 44.8 Hz by zooming

into the plot. This is very close to the frequency predicted

by the apparent impedance, by the eigenvalues, and also by

the Nyquist plots. A small deviation from 45.0 Hz can be

explained from the fact that the operation point is slightly

shifted during this step, which will affect the non-linear part

of the system.
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VI. CONCLUSIONS

The apparent impedance stability analysis method has been

defined in this paper along with an example case study. The

method has been defined for DC-system, while further work

will extend the theory to single-phase and three-phase AC

systems. It has been shown that the apparent impedance can

be used to estimate the eigenvalues of the system that are

observable from the injection point. The eigenvalues are di-

rectly obtained by applying the Vector Fitting algorithm to the

measured set of apparent impedances. The proposed method

holds some advantages over the well established impedance-

based analysis method: It is no longer needed to estimate the

source and load impedance equivalents, and it is not necessary

to make any assumption regarding where the source and load

are located.

In the case study it was found that there are three methods

for estimating the dominant oscillatory mode of the system:

• Resonance points in the apparent impedance

• Imaginary part of most critical eigenvalue

• Frequency of Nyquist curve unity circle crossing

Further work should analyze the robustness of the appar-

ent impedance method compared with the well established

source/load impedance method. The requirements related with

observability should be explored in detail. Finally, it is re-

marked that sensitivity to noise and measurement errors are

critical aspects for experimental implementation.
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