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Abstract 
Estimates of a low flow index in ungauged catchments calculated by a regional regression 

model and a regional hydrological model were compared for a study region southwestern 

Norway.  The regression method was based on a relationship between the low flow index and 

an optimal set of catchment descriptors, established using stepwise linear regression for 

homogeneous subregions.  Subregions were distinguished according to the season in which 

the lowest flow occurs, winter (May to October) or summer (November to April), and the 

average July temperature was found to be the best index for determining the low flow season 

for ungauged catchments.  Catchment descriptors characterising the presence of lakes and 

bogs, in addition to catchment length and indicators of climatic conditions, were found to be 

important in the regression models.  A cross-validation procedure was used to evaluate the 

predictive performance of the model in ungauged catchments.   A gridded version of HBV, a 

daily rainfall-runoff model was also applied as a regional hydrological model and was 

calibrated using the average Nash-Sutcliffe coefficient for log-transformed streamflow as the 

calibration criterion. A comparison of the two methods in 21 independent catchments 

indicates that the regression method generally gives better estimates of Qc in ungauged 
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catchments than does the HBV model , particularly in those catchments with the lowest Qc 

values. 

Key words: Low flow index; ungauged catchment; regional regression; rainfall-runoff model 

 

Introduction 
Information about low flows is required in water resources management, for example to 

estimate hydropower energy production, to design abstraction schemes for public water 

supply, fish farming and irrigation and to estimate dilution of effluents. Low flows are often 

characterized by indices, i.e. single numbers describing an aspect of the low flow behaviour at 

a site or in a region. Assuming that a stationary flow record of a certain length undisturbed by 

human influence is available, various low flow indices can be calculated. Frequently applied 

indices are percentiles from the flow duration curve and mean annual minimum flows. In 

Hisdal et al. (2004) the derivation of various low flow indices and the interrelationships 

between indices are described.  

Often the low flow indices are needed for ungauged river basins or at sites where data are 

incomplete, and regionalisation techniques are therefore essential in operational hydrology. In 

Norway increasing requests to build small hydropower plants has led to a growing demand for 

low flow data, especially for small ungauged catchments. The Norwegian Water Resources 

Act requires estimation of a specific low flow index, the “common low flow”, QC, if a 

hydropower plant is to be constructed. This index is often used as a starting point to set 

residual flow in the licensing procedure.  QC is calculated as follows: a) use a flow record with 

a daily time resolution (preferably 15-20 years of data); (b) remove the 15 smallest values 

every year; (c) calculate the annual minimum series; and (d) rank the values in the annual 

minimum series and remove the 1/3 smallest values. The smallest value remaining is defined 
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as the QC. Based on order statistics, it can be shown that for a sample of iid values, the rth 

order statistics pr is asymptotically normally distributed (David and Nagaraja, 2003): 
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Using r = 16 and n = 365, and calculating the 1/3 quantile for pr, we obtain pclf = 0.96. This 

means that QC  is approximately the 0.96 quantile of the flow duration curve, i.e. the flow that 

is exceeded 96 percent of the time. We will use QC as an example of a low flow index, even 

though this index is only used in Norway. The results and methodology are, however, of 

general interest since QC is closely related to Q95, a low flow index that is widely applied. The 

conclusions would not have changed if Q95 was used instead of QC.  

 

Many decisions in water resources management include some degree of subjectivity. In water 

resources administration, it is important to establish methods and procedures where the 

outcome does not depend on the individual officer in charge. A common procedure for 

estimation of low flow indices at an ungauged site is to select a donor  catchment. This 

procedure includes subjectivity in the choice of donor catchments and how to transfer the low 

flow index from the donor catchment to the ungauged catchment.  An objective method to 

estimate low flow indices at ungauged sites is therefore required.. In the literature, two 

basically different methods are presented, the stochastic or the deterministic approach (e.g. 

Smakhtin, 2001).   

In the stochastic approach, the streamflow statistics at ungauged sites are conditioned on the 

streamflow statistics at gauged sites using either catchment descriptors or spatial distance as 

similarity measures. The streamflow statistics (e.g. a low flow index) can be related to 
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catchment characteristics such as area, land use or geology via multiple regression (see 

Demuth and Young (2004) for an overview of these methods). Alternatively, geostatistical 

interpolation approaches can be used to explore the whole spatial-temporal correlation 

structure of the runoff field (e.g. Gottschalk et al., 2006, Skøien et al., 2006) although these 

methods are not frequently implemented for operational use. Interpolation, top-kriging, is 

compared to regional regression in Laaha et al. (2007), and they conclude that regression 

outperforms interpolation for small catchments and headwater catchments in regions with 

scarce station density. In this paper we, therefore, choose the regression approach since the 

density of the streamflow observations is very low compared to the correlation-length of low 

flow indices in most of Norway. The region studied has large precipitation and climatic 

gradients that make the variability in hydrology over short distances very large. In addition 

the interpolation method does not account for lakes, which are a very pronounced 

characteristic of the Norwegian landscape and are especially important for low flows.   

The regression approach is widely applied to predict low flows in ungauged catchments. 

Smakhtin (2001) and Demuth (2004) give extensive lists of references to applications in 

Canada, USA, Australia, New Zealand, Slovenia, Slovakia, Greece, Japan, UK, Germany and 

Norway. Some of the earlier publications include Thomas and Benson (1970) in the USA, 

Leith (1978) in Canada, the low flow studies report by Institute of Hydrology (1980) in the 

UK, and Krokli (1988) in Norway. Recent publications include low flow estimation as a part 

of the StreamStats software of USGS USA (Ries, 2002), the Low Flows 2000 software 

(Gustard et al., 2004) in the UK, and a national procedure for low flow estimation in Austria 

(Lahaa and Blöschl, 2007).    

In this paper a regional regression approach in which large or heterogeneous domains are 

grouped into homogenous regions with respect to low flow processes is applied. Regression 

equations are established for each region independently. It is necessary to define either 
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geographically continuous regions or regions defined by catchment and climate 

characteristics. Smakhtin (2001) and Laaha (2006) give reviews of strategies to define 

homogeneous regions.  These include weighted cluster analysis (Nathan and McHahon (1990) 

regression tree and residual pattern analysis (Laaha and Blöschl, 2006). The most appropriate 

classification procedure to use depends on the climate and landscape characteristics. Laaha 

(2006) show that for Austrian catchments, a grouping based on seasonality gives the best 

prediction of low flow indices, whereas Young et al. (2000) show that in the UK where soil 

classes, rather than seasonality, should be used to define homogeneous regions. 

In the deterministic approach, a precipitation-runoff model is used to generate a continuous 

streamflow time series at ungauged sites from which the desired stream flow statistics can be 

extracted. Smakhtin (2001) reviews this method, and finds that applications of the method are 

rather limited in number. Previous examples include Smakhtin and Watkins (1997) in South 

Africa, Clausen and Rasmussen (1993) in Denmark, and Lanmen et al. (1993) in Europe. In 

order to use a rainfall runoff model for low flow estimations, calibration criteria that provide 

information about the quality of the low flow simulations are necessary (Smakhtin, 2001). To 

calculate the runoff at ungauged sites, the model parameters have to be transferred to the 

ungauged sites (e.g. Engeland, 2006).  

The choice of regionalisation method, stochastic or deterministic, depends on data availability 

and the purpose of the regional estimates. The deterministic approach is preferred when more 

explicit knowledge of the hydrological processes is required, for example to obtain runoff 

statistics for climate change or land-use change scenarios, and the stochastic approach is most 

frequently applied for prediction at the ungauged site (Smakhtin, 2001).  

A comparison of the two approaches for low flow estimation at the ungauged site is lacking in 

the literature.  The aim of this paper is, hence, to evaluate and compare regression- and 
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precipitation-runoff modelling methods to estimate low flow indices in small ungauged 

catchments (catchment area less than 2000 km2). The study region is located in Southern 

Norway and includes 51 pristine catchments with suitable streamflow records. Regression 

equations were established between QC and catchment characteristics. A gridded version of 

the HBV-model was calibrated using objective criteria that ensure good model fits at low 

flows. The two methods were compared using a split sample test focussing on explained 

variance (R2) and bias for the predicted QC.  

This paper starts with a presentation of the streamflow and geographical data. Then the 

regression method and derivation of regional regression equations is described, followed by a 

presentation of the HBV model and a comparison of the two methods. Finally, the results are 

presented and discussed, and conclusions are drawn. 

Study Region and Data Availability 
The study region is the south-western part of Norway (Fig. 1). Precipitation in this region is 

mainly caused by depressions arriving from the south-west. Air masses are lifted when 

arriving at the mainland due to the presence of a mountain range. A maximum zone of 

precipitation is found 50-100 km from the coast, and on the leeward side of the mountains, the 

precipitation is lower. The measured average annual precipitation in the study region varies 

from 515 mm to 2800 mm (Førland, 1993). The average annual runoff varies from 10 ls-1km-2 

to 130 ls-1km-2. Close to the coast, monthly average temperatures are above 0 ºC, whereas in 

the mountains, six months of the year (November – April) have a monthly average 

temperature below 0ºC. The climatic differences lead to different hydrological regimes. In the 

inland and mountainous areas the low flow period is in the winter due to precipitation being 

stored as snow, whereas in the coastal lowlands the low flow period is in the summer due to 

increased evapotranspiration and slightly lower rainfall. The vegetation cover is mainly 
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coniferous and deciduous forests in the low-land and grass and bushes in the mountains. 
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Fig. 1 Catchments and corresponding streamflow stations used in this study. 
 

Agricultural and urban areas are of minor importance. The landscape also includes numerous 

lakes and mires that are of high importance for the hydrological response. Soils are mainly 

thin till deposits on bedrock and localised fluvial deposits in the valley bottoms.  

Daily streamflow data were obtained for 51 stations with catchment areas less than 2000 km2. 

The stations and their catchment boundaries are shown in Fig. 1. Table 1 lists the selected 
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stations, record length, catchment area, QC, mean annual runoff and the dominant low flow 

season.  

Tab. 1. Gauging stations used in the analysis. All stations were used to develop the regression 
equations. Stations marked with bold types were used to calibrate the HBV model and the regression 
parameters in a split-sample test of model performance. The remaining stations were used for 
validation. 

Station 
Period of 

measurements 

Area   

(km2) 

QM*  

(ls-1km-2) 

QC

(ls-1km-2) 
Low flow season 

16.31 Omnesfoss 1921-1957 806 28.3 3.18 Winter 

16.32 Hjartsjø 1919-1957 215 27.4 2.27 Winter 

16.33 Seljordvatn 1912-1944 728 18.8 3.38 Winter 

16.34 Totak 1895-1957 855 37.0 4.08 Winter 

16.37 Vinjevatn 1919-1955 907 43.7 3.77 Winter 

16.66 Grosettjern 1949-2005 6.48 29.2 2.16 Winter 

16.75 Tannsvatn 1955-2005 117 22.8 2.54 Winter 

16.104 Kilen 1962-2005 121 15.7 0.69x Summer 

16.112 Byrteåi 1967-2005 37.3 50.2 1.55 Winter 

16.122 Grovåi 1972-2005 42.7 19.2 1.12x Summer 

16.127 Viertjern 1977-2005 49.0 29.4 1.86 Winter 

16.128 Austbygdåi 1976-2005 344 25.5 1.35 Winter 

16.193 Hørte 1961-2005 156 15.5 2.24 Winter 

18.10 Gjerstad 1980-2005 237 25.1 0.62 Summer 

19.73 Kilåi bru 1968-2005 64.4 28.5 0.50 Summer 

19.76 Tovsliøytjønn 1969-2002 115 32.8 2.67 Summer 

19.78 Grytå 1977-2005 18.7 24.2 1.76 Summer 

19.79 Gravå 1970-2005 6.31 22.1 0.32 Summer 

19.80 Stigvassåni 1972-2005 14 27.4 0.43 Summer 

19.82 Rauåna 1972-2005 8.93 23.9 0.34 Summer 

21.47 Lislefjødd 1972-1995 19 35.8 1.32 Winter 

22.5 Austerhus 1922-1957 413 43.5 3.49 Summer 

22.16 Myglevatn 1951-2005 182 44.8 0.81 Summer 

22.22 Søgne 1973-2005 210 29.9 1.45 Summer 

24.8 Møska 1978-2005 121 50.2 2.50 Summer 

24.9 Tingvatn 1922-2005 272 61.2 2.47 Summer 

25.24 Gjuvvatn 1971-2005 97 65.4 7.41 Winter 

26.4 Fidjedalsvatn 1919-1969 506 80.7 5.42 Winter 

26.5 Dorgefoss 1913-1969 808 76.4 4.53 Winter 

26.6 Lindeland 1913-1969 963 74.2 5.42 Winter 

26.7 Sirdalsvatn 1894-1964 1528 70.1 7.31 Winter 

26.8 Lundevatn 1897-1964 1899 68.2 9.14 Winter 

26.10 Liland 1933-1970 72.7 64.2 2.31 Winter 

26.20 Årdal 1970-2005 77.3 68.1 5.02 Summer 

26.21 Sandvatn 1970-2005 27.5 62.1 4.76 Summer 

26.26 Jogla 1973-2005 31.1 70.5 2.73 Winter 

27.15 Austrumdal 1980-2005 60.5 95.8 11.42 Winter 

27.20 Gya 1933-2005 60.7 97.1 4.51 Summer 
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Tab. 1 continues 
27.24 Helleland 1896-2005 186 79.5 9.85 Summer 

27.26 Hetland 1970-2005 69.5 58.5 3.15 Summer 

28.7 Haugland 1918-2005 140 49.8 3.31 Summer 

31.2 Lysedalen 1953-1984 47.2 90.5 11.33 Winter 

33.2 Tveid 1896-1956 513 88.9 10.69 Winter 

35.2 Hauge bru 1905-1980 394 87.0 5.88 Winter 

35.16 Djupadalsvatn 1990-2005 45.4 70.48 5.84 Winter 

35.9 Osali 1982-2005 22.6 86.6 4.78 Winter 

36.11 Stråpa 1904-1964 1307 73.5 5.33 Winter 

36.14 Røldalsvatn 1913-1964 496 73.2 3.22 Winter 

36.32 Lauvastøl 1985-2005 20.5 105.1 4.88 Winter 

48.5 Reinsnosvatn 1918-2004 121 76.50 4.34 Winter 

50.1 Hølen 1923-2004 232 53.22 2.72 Winter 

* QM is mean annual runoff for the period 1961-1990 from Beldring et al. (2002). 

 
 

We chose to model Qc normalized with respect to catchment area (units ls-1km-2). All other 

fluxes used in the regression equations (mean annual runoff, precipitation) were also specified 

in equivalent units (length / time).   

The stations were selected according to their record length and the quality of low flow 

measurements. A minimum of 20 years with streamflow measurements, if possible covering 

the period 1960-2000, was required. A few stations do not have any observations within this 

period, and these are mainly catchments that have been heavily modified due to construction 

of reservoirs for hydropower production. In this study, only data predating hydropower 

regulation period are used. The second selection criterion was the low flow data quality. The 

streamflow is derived from measured river stage via the rating curve. The uncertainty in the 

rating curve for low flows is dependent on the number of flow measurements at low water 

levels, and on the shape and stability of the river profile. The quality of the rating curve was 

evaluated by a procedure based on a Bayesian estimation of credibility intervals around the 

annual minimum flow (Petersen-Øverleir et al., 2008). The relative uncertainty measured as 

the average ratio between width of the 95% credibility intervals and the estimated annual 
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minimum flow, was used to classify the stations into five classes: very good (0-20%), good 

(20-40%), satisfactory (40-60%), bad (50-80%), very bad (>80%). The numbers in 

parentheses indicate the relative uncertainty. The stations classified as ‘very bad’ were 

excluded from the dataset. In addition to the rating curve evaluation, a subjective quality 

control was performed. Personal communication with field hydrologists provided information 

about small regulations not included in national databases, unstable profiles, problems with 

leaking V-notch weirs, and difficult ice conditions at the gauging stations.     

In inland and high elevation areas with winter low flow, the quality of the low flow 

measurements depends on the ice conditions. Ice can cause the water level to rise without an 

increase in runoff. ‘Ice reduction’ procedures are carried out in order to reduce the increased 

streamflow and obtain more correct values. Ice can also influence the measurement 

instruments themselves. Winter low flow measurements might therefore be of poorer quality 

than summer low flow measurements. 

The physiographic catchments descriptors were obtained from a GIS system. Table 2 lists 

physiographic together with climatic descriptors. All the land cover percentages were based 

on the national N50 maps (Scale 1:50 000). All the gradients  were based on a digital 

elevation model with a resolution of 100x100 m. A digital river network was used to calculate 

the river gradients. The mean annual runoff QM was obtained from the runoff map of Norway 

(Beldring et al., 2002) for all locations. Observed values of QM were not used as the aim is to 

test the model performance at ungauged sites. The average precipitation PA (annual), PS 

(summer) and PW (winter) as well as temperature TA (annual), TS (summer) and TW (winter) 

were provided by the Norwegian Meteorological Institute. They were given as average values 

for the period 1961-1990 on a regular grid with a resolution of 1x1km. Catchment averages 

were estimated based on the gridded values. 
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Tab. 2. The catchment characteristics included in the regression analysis. 

Symbol Group Description 
A 1 Catchment area (km2) 
RL 1 Length of main river (km) from the outlet to the most distant river string. 
CL 1 Catchment length (km) from outlet to the mots distant point at the water divide 
CW 1 Catchment width (km) 
QM 2 Mean annual runoff (l/s km2) from the runoff map of Norway (Beldring et al. (2002) 
PA 2 Annual precipitation (mm) 
Ps 2 Summer precipitation (mm) 
Pw 2 Winter precipitation (mm) 
RG 3 River gradient (m/km) 
G1085 3 River gradient excluding the 10 % lowest parts and the 15% highets parts1085 (m/km) 
CG 3 Catchment gradient (m/km) 
DH 3 Elevation gradient (m) 
Hmax 4 Maximum elevation (masl) 
Hmin 5 Minimum elevation (masl) 
U% 6 Urbanised areas (%) 
A% 7 Agricultural areas (%) 
F% 8 Forested area (%) 
BB% 9 Bogs (%) 
M% 10 Mountainious areas (%) 
L% 11 Lake percentage (%) 
Leff 11 Effective lake percentage (%) 
TA 12 Average annual temperature (oC) 
Ts 12 Average summer temperature (oC) 
Tw 12 Average winter temperature (oC) 
 

 
Methods 
Regional regression analysis 
The regional regression analysis was performed in two steps. The first step was to divide the 

data into regions that can be regarded as homogeneous with respect to their low flow 

behaviour. In the second step the independent variables for the regression equations were 

selected for each region using a stepwise procedure.  

Laaha and Blöschl (2006) investigated several catchment grouping strategies when 

developing regression equations to estimate low flow indices in Austria. The results showed 
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that a catchment grouping based on seasonality gave the best performance. The reason is the 

large differences in low flow processes in Austria:  winter low flows due to precipitation 

stored as snow and summer low flows due to high soil moisture deficit caused by 

evapotranspiration losses. Since the climate in Norway is similar, the catchments were 

divided into two groups: summer- and winter low flow catchments. The summer season was 

defined as May to October and the winter season as November to April. The average flows 

for the three winter months and the three summer months with the lowest streamflow were 

used to determine the dominant low flow season (Table 1). In ungauged catchments, it is 

necessary to use climate and geographical data for this classification. Climate statistics 

describing mean monthly, seasonal and annual temperatures and precipitation were compared 

to the hydrograph-based classification.  

In the second step multiple linear regression was used to obtain relationships between the low 

flow index, QC, and catchment characteristics for the winter and summer regions separately. 

In total, 24 catchment characteristics (Tab. 2) were potential candidates for the regression 

equation. A stepwise procedure (Draper and Smith, 1998) was used to select the most 

important characteristics explaining low flows. Since the aim is model prediction at ungauged 

sites, a cross-validation test based on the cross-validated explained variance R2
CV was used to 

select the independent variables:  
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where i is the index for the observation site, n is the number of observations, Qc,pred,i the 

predicted low flow index at site i estimated by leaving the observed value QC,obs,i at this site 

out from the parameter estimation.  If the model fit is perfect, R2
CV is equal to one, and very 

poor models can give slightly negative values. Note that the explained variance, R2, has zero 
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as minimum value, whereas for cross-validated values, R2
CV can be negative. To evaluate 

R2
CV, each site was successively left out in the estimation of the regression parameters. The 

QC was then predicted at the independent site. New variables were included if they increased 

R2
CV. We also required that the regression coefficients should be significant at a 5% level. 

Independent variables that had a high correlation were pooled into groups (Tab. 2), and from 

each group the variable giving the highest R2
CV was selected. In addition a subjective selection 

procedure was carried out to obtain more robust equations. The value of the regression 

coefficient should be reasonable, e.g. the regression coefficient for lake percentage should be 

positive since increasing lake percentage should lead to increasing QC.  

As a part of the regression analysis, it is important to check whether the necessary 

assumptions of multiple regression are fulfilled:   

• Homoscedasticity: does the variance of the residuals depend on the predicted value? 

• Bias: does the bias of the residuals depend on the predicted value? 

In order to perform a statistical inference it is also necessary to test if the residuals are 

normally distributed. Further, to obtain the best possible predictions, it is useful to check if the 

relationship between the dependent and independent variable is linear. In many cases a 

transformation of the independent variable can make the system more linear. In this study we 

allowed each variable to be either untransformed or log-transformed and select the one giving 

the highest R2
CV. 

We tested six alternative models (M1-M6) in order to investigate these requirements (Tab. 3). 

Several transformations of QC were tested in order to obtain homoscedasity and normally 

distributed residuals, and the log-transformation was found to be the best alternative. QC was 

therefore log-transformed in M2 - M5 before performing the linear regression. M2 was based 

on the regression equation developed by Væringstad and Hisdal (2005). In this paper, the 
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same independent variables were used, but new regression coefficients were calculated as a 

slightly different set of streamflow records were included. All variables were log-transformed. 

Prior to the log-transformation 0.1 was added for the land cover variables and 10 for the 

temperatures. For the models M3 - M5 different transformations of the independent variables 

were considered in order to test the linearity requirement. To test the effect of dividing the 

data into one summer- and one winter region, a global regression equation was developed 

assuming that all data belonged to the same region (M6) using the same stepwise procedure as 

for M5. In order to check the regression requirements, diagnostic plots of observed versus 

predicted values and qq-plots of regression residuals versus normal quantiles were produced. 

To evaluate the predictive capability of the model, cross validation tests were carried out for 

the summer and winter regions separately.   

Tab. 3. The regression models.  
 
Name Model 
M1 Untransformed variables. 
M2 Model from Væringstad and Hisdal (2005). 
M3 All variables log-transformed. 
M4 Only the QC is log transformed. 
M5 The QC is log-transformed, the model chooses between untransformed 

and log-transformed independent variables. 
M6 Like M5, but the winter and summer regions are merged. 

The HBV-model 
A gridded version of the Norwegian HBV-model (Sælthun, 1996; Beldring et al., 2002; 

Beldring et al., 2003) was used. The model has previously been used to calculate a water 

balance map for Norway (Beldring et al., 2002), and to assess climate change impacts 

(Beldring et al., 2008) and in combination with ecological modelling (L’Abée-Lund et al., 

2004). The HBV-model operates on a daily time step. In this study, the model calculated the 

water balance for grid-cells of 1x1km. For each grid-cell the percentage of lake and glacier 

was determined in addition to the proportion of the two dominant out of five land use classes 
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(Tab. 4). Some of the model parameters were common for the whole region whereas others 

were determined for each land use class. The same process parameterisations were applied to 

all grid-cells (Fig. 2). The interception storage has to be filled up before the precipitation falls 

to the ground. Water evaporates at the potential rate from the interception storage. Sub-grid 

scale distribution of snow is accounted for in calculating the snow melt. The snowmelt or 

throughfall (in snow free areas) might either infiltrate into the soil moisture zone or percolate 

into the upper zone. The separation between infiltration and percolation is controlled by the 

soil moisture content (Fig. 2). From the soil moisture zone water evaporates from the snow 

free part of the area. The evaporation is reduced when the soil moisture is low. The upper 

zone generates runoff as a piecewise linear reservoir, but some water can percolate at a 

constant rate to the groundwater zone. The groundwater zone is a linear reservoir, but water 

can also be drawn up to the soil moisture zone when the soil moisture is low. The grid-cells 

are not connected through routing and the total catchment runoff is the sum of runoff from all 

of the individual cells. This does not introduce large errors in catchments with small lakes 

since for low flows the hillslope response and not the channel network response, will be the 

factor controlling catchment runoff response. However, if lakes are present in the river 

network, they can have an important influence. The estimated low flows from the HBV-

model might therefore have been improved if the effects of lakes in the channel network were 

explicitly included in the model structure and not implicitly accounted for via the model 

calibration. 

Tab. 4. The vegetation classes used in the GWB model. 
 
No Description 
1 Areas above the tree line with sparse vegetation. 
2 Areas above the tree line with grass, heather, shrubs or dwarfed trees. 
3 Areas below the tree line with sub alpine forest. 
4 Lowland areas with coniferous or deciduous forest. 
5 Non-forested areas below the tree line. 
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Fig. 2 The structure of the HBV model. 

 

Daily precipitation and temperature observations were provided by the Norwegian 

Meteorological Institute. They were interpolated to each grid-cell using an inverse distance 

weighting routine with elevation correction to account for temperature and precipitation 

dependence on altitude. The temperature gradients were based on physical considerations. 

The precipitation gradients were calibrated according to the procedure described in Beldring 

et al. (2002). The gradients were between 8 % and 12 % per 100 meter up to 1200 m above 

sea level. For higher elevations the gradients were 4% to 6% per 100 meter. The gradients 

were defined for 29 points covering Norway, and for each grid cell a unique elevation 

gradient was obtained by an inverse distance weighting of the 3 closest of the 29 gradient 

points.  
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Calibration and validation 
To evaluate the predictability of QC in ungauged catchments using the HBV-model, a split 

sample test was applied (e.g. Klemeš, 1986). The dataset was divided into two groups, daily 

streamflow observations from 30 stations were used for calibration and 21 as independent 

stations for validation (Tab. 1). Only stations with observations in the period 1961-1990 were 

selected. The software PEST (Doherty, 2004) was used for automatic calibration of the 

model. The HBV-model was calibrated using the average root means square error for daily 

runoff values measured in mm for selected catchments all over Norway (Beldring et al, 2002). 

This calibration, referred to as the first calibration, places a relatively high weight on higher 

streamflow values. Therefore another calibration, referred to as the second calibration, was 

performed using the average Nash-Sutcliffe coefficient Reff for log-transformed streamflow as 

a calibration criterion.  
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where i is an index for time, j is an index for catchment, n is number of time steps, m is 

number of catchments, and qobs and qpred is the log-transformed observed and simulated 

streamflow. This criterion was applied to obtain a better fit at the lowest flows. To reduce the 

number of parameters for calibration, the parameters were not calibrated for each land use 

class. Instead a common calibration factor was applied. For example, for calibration of the 

evaporation parameter, a factor was calibrated with which the evaporation parameter for each 

individual class was multiplied.  

The QC was calculated both for the calibration and the validation catchments and compared to 

observed values. The explained variance R2 and bias were calculated both for the calibration 

and the validation sets. 
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In order to compare the prediction of QC using the regression method and the HBV-model in a 

proper way, a split sample test was performed also for the regression method. The same 30 

catchments were used to estimate the coefficients in the best regression model established by 

stepwise regression. The regression equations were established separately for the summer and 

the winter low flow regions. The estimated coefficients were then used to obtain the predicted 

QC in the 20 independent catchments. The explained variance and bias were calculated both 

for the calibration and the validation set. 

 
 

Results and discussion 
Regression model 
A classification rule was sought and climate statistics describing mean monthly, seasonal and 

annual temperatures and precipitation were compared to the hydrograph-based classification. 

Among these variables, the average July temperature performed best in reproducing the initial 

classification. If this temperature is higher than 10.4 oC the catchment has summer low flow. 

Fig. 3 shows how the July temperature 10.4 oC divides the catchments into two groups. Using 

this criterion only two stations were not classified according to the hydrograph-based 

classification. Station 16.122 Grovåi shifted from the summer to the winter region. Inspection 

of the hydrograph showed that this station has a mixed regime with low flow periods during 

both summer and winter. The error would therefore not have been large, if it had been 

included in the winter region. Station 16.193 Hørte shifted from the winter to the summer 

region. Further inspection of the summer stations indicated that this station has the lowest 

ratio of winter precipitation divided by summer precipitation (Fig. 3), i.e. summer 

precipitation is very high compared to winter precipitation. Inspection of the hydrograph 

indicated that this station has a mixed regime with winter as the most pronounced low flow 

period. For the final classification, it was decided to assign catchments with average July 
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temperature higher than 10.4 oC and the ratio between winter- and summer precipitation 

larger than 0.65 to the summer low flow region, and the others to the winter low flow region 

(Fig. 3). In total, 32 catchments were assigned to the winter region and 19 to the summer 

region. 
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Fig. 3 Classification of summer and winter catchments. The circles and crosses indicate the 

summer and winter catchments, respectively, according to the initial classification, whereas 

the lines indicate the limits according to the classification based on climatic conditions.  

 

We assume that for Norway the processes controlling low flows are snow cover formation 

and evapotranspiration. The analysis described above, shows that a temperature index is the 

best way to determine the dominating low flow process. A high temperature indicates that the 

snow-covered period is short and that evapotranspiration is high. These catchments will 

therefore have summer low flows. A low temperature implies low evapotranspiration, a long 

period with precipitation being stored as snow, and the winter as the dominating low flow 

period. Any temperature index will describe the importance of snow cover and 

evapotranspiration, and the average July temperature was the best for reproducing the initial 
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classification. One possible explanation for why the July temperature was chosen among all 

the temperature indices is the difference in how low flows respond to temperature during the 

winter and summer seasons. Winter low flows are controlled by a threshold temperature, 0oC, 

and it is of no importance how far below this threshold the temperature is. For summer low 

flows, however, it is reasonable to assume that the magnitude of the temperature is also 

important since higher temperature leads to higher evapotranspiration losses. It is interesting 

to note that the average July temperature is the temperature index that has the lowest 

correlation with the winter temperature indices (0.51 on average). 

The estimated regression coefficients for the different regression models are shown in Tab. 5. 

For all models, except M6, separate regression equations were established for the summer- 

and the winter regions. Tab. 6 lists the results of the cross validation test using equation (2). 

The values of R2
CV are shown for both QC and ln(QC). Note that exactly the same regression 

coefficients were used to evaluate R2
CV for  QC and ln(QC). The only difference is the log-

transformation of the observed and predicted values. R2
CV was calculated for the summer and 

winter region separately and for all observations and all predictions pooled into one region. 

Fig. 4 shows diagnostics for the fit of M5 that gave the best results according to R2
CV. There 

are four plots for the summer catchments and four plots for the winter catchments. In the 

upper plots QC is untransformed, whereas the lower plots show the results for log-transformed 

QC. Note that exactly the same regression coefficients were used to evaluate QC and ln(QC). 

The only difference lies in the log-transformation of the observed and predicted values. 

The first plot shows predicted versus observed QC for the summer region. A good model fit is 

achieved if the points are close to the diagonal line. The second plot is a qq-plot for the 

residuals versus standard normal quantiles for the summer region. For normally distributed 

20 



Printed in Water Resources Management: Volume 23, Issue 12 (2009), Page 2567-2586. 

residuals, the points should lie on the diagonal line. The third and fourth plots show the same 

results, but for the winter region.  

Tab. 5. The estimated regression coefficients. Qc is given in (ls-1km-2). 
Model Equation 
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Tab. 6 The cross validated R2

CV for  and CQ ( )CQln  (in brackets) Qc is given in (ls-1km-2).  
Model 2

CVR  Summer 2
CVR  Winter 2

CVR  All catchments 
M1 0.447 [-] 0.565 [-] 0.587 [-] 
M2  0.467 [0.689] 0.480 [0.561] 0.537 [0.712] 
M3 0.659 [0.792] 0.667 [0.695] 0.703 [0.803] 
M4 0.676 [0.845] 0.607 [0.696] 0.670 [0.829] 
M5 0.757 [0.820] 0.711 [0.816] 0.755 [0.855] 
M6 - - 0.520 [0.692] 
 
 

The model that gave the best fit according to the R2
CV, is Model 5. For this model QC was log-

transformed before the regression equation was established, and the stepwise procedure chose 

between untransformed and log-transformed independent variables.  
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From Tab. 6 we clearly see that the R2
CV is much smaller for Model 6 than for Model 5, which 

distinguishes summer and winter regions. We therefore concluded that two regions should be 

used.  

0 2 4 6 8 10

0
2

4
6

8

Observed clf  (l s km2)

Pr
ed

ic
te

d 
cl

f (
l

s
km

2 )

-1.0 0.0 1.0 2.0

-1
.0

0.
5

1.
5

Ibserved clf ln(l s km2)

P
re

dic
te

d 
cl

f l
n(

l
s

km
2 )

-3 -1 0 1 2

-2
-1

0
1

Empirical residuals

No
rm

al
 q

ua
nt

ile
s

- 1.0 0.0 0.5

-0
.5

0.
0

0.
5

Empirical residuals

N
or

m
al

 q
ua

nt
ile

s
Summer catchments

2 4 6 8 10

2
4

6
8

Observed clf (l s km2)

Pr
ed

ic
te

d 
cl

f (
l

s
km

2 )

0.5 1.5 2.5

0.
5

1.
5

2.
5

Ibserved clf  ln(l s km2)

P
re

dic
te

d 
cl

f l
n(

l
s

km
2 )

-6 -4 -2 0 2

-3
-1

1
2

3

Empir ical residuals

N
or

m
al

 q
ua

nt
ile

s

-0.8 -0.2 0.2 0.6

-0
.4

0.
0

0.
4

Empir ical residuals
N

or
m

al
 q

ua
nt

ile
s

Vinter catchments

Observed Qc (l/s km2)

P
re

di
ct

ed
Q

c
(l/

s 
km

2 )

P
re

di
ct

ed
Q

c
(l/

s 
km

2 )

Observed Qc (l/s km2)Empirical residuals Empirical residuals

Empirical residuals Empirical residualsObserved Qc ln(l/s km2) Observed Qc ln(l/s km2)

P
re

di
ct

ed
Q

c
ln

(l/
s

km
2 )

P
re

di
ct

ed
Q

c
ln

(l/
s

km
2 )

N
or

m
al

 q
ua

nt
ile

s

N
or

m
al

 q
ua

nt
ile

s
N

or
m

al
 q

ua
nt

ile
s

Vinter catchments
N

or
m

al
 q

ua
nt

ile
s

Summer catchments

 

Fig. 4 Cross-validation of Model 5. The upper plots show the results as untransformed QC (ls-

1km-2), whereas the lower plots show the results with QC log-transformed.  

 

The qq-plots of the residuals indicate that the residuals from the log-transformed QC are close 

to normally distributed. For untransformed residuals, the normal distribution did not fit so 

well. We also see that for untransformed values, the estimation error depends on the predicted 

value. We therefore concluded that QC should be log-transformed to obtain normally 

distributed and homoscedastic residuals.  

The bias of the residuals was centred on zero, but for many of the models the highest low 

flow values were underestimated. For a few of the models the lowest low flow values were 
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overestimated. This was seen both for the log-transformed and the re-transformed low flow 

index. 

The results show that better predictions were obtained for the summer region than for the 

winter region. A likely reason, apart from that the regression model performs worse, is that in 

Norway the low flow data are more uncertain in the winter than in the summer. During winter 

instruments may freeze up, or the low flows may have been estimated flow values based on 

an ice reduction procedure.   

The different models include different combinations of independent variables, but some 

common features are seen. In all models either average runoff or summer precipitation was 

included. QC increased with increasing average runoff. QC also increased with lake percentage 

(included in 7 of the 11 equations). Bogs had the opposite effect of lakes. Increasing bog 

percentage gave decreasing QC. This is consistent with previous papers showing that the base 

flow from peat land is relatively small compared to other soils (e.g. Bragg, 2002; Bullock and 

Acreman, 2003; Evans et al., 1999, Shantz and Price, 2006). For the winter region QC 

increased with increasing temperatures. This is reasonable for winter catchments where snow 

accumulation and snow melt, highly influenced by temperature, control the magnitude of the 

low flow. The temperature was selected in 4 of 5 equations. QC increased with catchment 

length or width. This indicates that larger catchments have larger QC. Note that since we 

model QC in l / s km2, this is an effect independent of QM that is given in the same units. 

Catchment geometry was included in 5 of 11 equations.  

It is difficult to explain why QC decreased with increasing forest cover in M5 for the winter 

region. It might be that forest cover increases the evaporation from intercepted snow. It is, 

however, also possible that the correlation between the independent variables have given 

regression coefficients that can produce misleading interpretations, and they should be used 
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with care. The correlation between TS and F% is 0.50, between TS and M% -0.42 and between 

F% and M% -0.70.  

The HBV model 
The results of the first calibration show that the QC is overestimated with a bias of  1.21 ls-

1km-2 and an explained variance of only 0.29 (Fig. 5b). In the second calibration the bias is 

closer to zero (-0.05 ls-1km-2) and the explained variance increases to 0.59 (Fig. 5c). Hence, 

the calibration of the HBV-model with more weight on the low flow values improved the 

results. For the validation catchments, however, the first calibration gives better results than 

the second calibration if one considers both bias (0.07 ls-1km-2 in the first calibration and -

0.99 ls-1km-2 in the second calibration) and explained variance (0.45 in the first calibration and 

0.32 in the second calibration). If the three highest observed values are excluded from the 

validation set, the second calibration performs the best.   

The use of the HBV-model to calculate QC demands high performance during the recession 

period. The regression method shows that it is very likely that, in addition to climatic 

descriptors, lakes and bogs are important landscape characteristics controlling the low flow. 

In this version of the HBV-model, individual lakes were not included as explicit elements in 

the model, and the bogs were not included in the model parameterisation at all. Better results 

might have been obtained with an improved interpolation of precipitation, an improved 

representation of lake elements and the introduction of soil and land use classes that are 

important for the recession. 

Comparison between regression model and HBV model 
Model M5, which gave the best fit according to the R2

CV , was used in the split sample test for 

comparison with the results from the HBV model. The same independent variables as in M5 

were used to re-estimate the regression coefficients using data from the 31 calibration 
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catchment, and QC was predicted for the 21 independent catchments using the re-estimated 

regression coefficients. Fig. 5 shows the observed, HBV-estimated, and regression-estimated 

QC for the calibration and validation catchments.  
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Fig. 5 The observed and simulated QC (ls-1km-2) for the calibration catchments for a) the 

regression method; b) the HBV-model, first calibration; c) the HBV-model, second 

calibration with high weights on low streamflow values, and for the validation catchments for 

d) the regression method; e) the HBV-model, first calibration; f) the HBV-model, second 

calibration with high weights on low streamflow values. 
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The regression method in general gave better prediction of QC in ungauged catchments than 

did the HBV-model. The regression method was especially superior to the HBV-model for the 

lowest QC -values. The predictive power for QC -values less than 2-3 ls-1km-2 for the HBV-

model was rather limited.   

The rainfall-runoff models introduce some additional intermediate steps, and thus some 

additional error sources, in the regional estimates of streamflow statistics. Most importantly, 

the structure of the models is constructed to describe all important hydrological processes, as 

opposed to the regression model that only contains explicit equations for the statistics of 

interest. Secondly, the hydrological model is calibrated to fit the hydrograph whereas the 

regression model is calibrated to fit the statistics of interest. The hydrologic model provides a 

lot of information that is actually not needed, and the principle of parsimony tells us that the 

simplest model should be preferred. 

The error in the regression estimated QC is dependent on the predicted level. For log-

transformed regression, the errors are proportional to the magnitude of streamflow. This 

means that the absolute error was small for lower predicted values of QC and larger for higher 

predicted values of QC. This was not the case when using the HBV-model. The absolute error 

seemed to be independent of the magnitude of QC, implying that the precision of the lowest 

QC predictions was low.  

None of the methods accounted for the correlation in QC along rivers as few nested 

catchments were included in the dataset. If measurements are available from the same river, 

these should be used to obtain estimates of QC., e.g. by interpolation (Laaha et al, 2007). 
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Conclusions 
The motivation for this study is the need for an objective method to estimate a low flow index 

at an ungauged site in order to improve operational procedures in water resources 

management. We have tested and compared two objective methods, a multiple regression 

analysis and a rainfall-runoff model. The regression method was used to establish a 

relationship between catchment characteristics and the low flow index. The rainfall-runoff 

model was used to simulate daily runoff series in ungauged catchments and to calculate the 

low flow index from these time series. The calculations were performed for QC, but the results 

are of general interest since QC is closely related to Q95, a widely applied low flow index. 

Based on the results, the following conclusions can be drawn: 

• The regression method gave better estimates of QC in ungauged catchments than did 

the HBV-model, especially for low values of QC. 

• For the regression method, a catchment grouping based on the dominant low flow 

season was an effective method for obtaining homogeneous sub-regions in Norway 

where winter low flow and summer low flow are controlled by different processes. 

The average July temperature was the best index for determining the low flow season 

for ungauged catchments. 

• Important catchment characteristics controlling low flows in the region were found to 

be average runoff, lakes, bogs, catchment area and average air temperature. 

• For the regression method, the best results in this study were obtained when the QC 

was log-transformed and some of the independent variables were log-transformed. 

It should be emphasized that these conclusions are based on a dataset characterized by many 

relatively small catchments, most of them unnested, in a landscape with many small lakes. 

Different results might have been obtained in a region with a denser gauging network and 
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different landscape characteristics. _E.g. in partially gauged catchments, the interpolation 

method should be considered. 

As an extension of this study, regression equations have now been developed for the whole of 

Norway (Engeland et al., 2008) for estimating low flows. In order to deliver this method as a 

standard tool, GIS-based software has been developed to automatically retrieve catchment 

boundaries and required physiographic and climatic catchment characteristics upstream from  

a user-selected point in a river (Voksø et al., 2008). The regression equations are 

implemented in an interactive web-application, the Norwegian low flow map, and the low 

flow index is calculated.  
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