An Assessment of Avionics Software Development
Practice: Justifications for an Agile Development Process

Geir K. Hanssen'™”, Gosse Wedzinga®, and Martijn Stuip

1 SINTEF, Trondheim, Norway
geir.k.hanssen@sintef.no
2 NLR, Amsterdam, The Netherlands
{gosse.wedzinga,martijn.stuip}@nlr.nl

Abstract. Avionic systems for communication, navigation, and flight control,
and many other functions are complex and crucial components of any modern
aircraft. Present day avionic systems are increasingly based on computers and a
growing percentage of system complexity can be attributed to software. An error
in the software of a safety-critical avionic system could lead to a catastrophic
event, such as multiple deaths and loss of the aircraft. To demonstrate compliance
with airworthiness requirements, certification agencies accept the use of RTCA
document DO-178 for the software development. Avionics software development
is typically complex and is traditionally reliant on a strict plan-driven develop-
ment process, characterized by early fixture of detailed requirements and late
production of working software. In this process, requirement changes and solving
software errors can lead to much rework, and create a risk of budget and schedule
overruns. This raises the question whether avionics software development could
benefit from the application of agile approaches. Based on the results of three
activities: (1) a literature study on industrial experience with the use of agile
methods in a DO-178 context, (2) an expert assessment of the DO-178 objectives,
and (3) a survey conducted among European avionics industry, an outline is
presented of an agile development process, where Scrum is extended to achieve
the DO-178 objectives. The application of agile methods is expected to support
frequent delivery of working software and ability to respond to changes, resulting
in reduced risk of budget and schedule overruns.

Keywords: Avionics - Certification - Safety critical software - DO-178 -
Software Life-Cycle - Agile - Scrum

1 Introduction

Avionic systems play a crucial role aboard modern aircraft. These systems offer pilots
operational support in areas such as communications, navigation, and control of the
aircraft during all phases of flight and in all weather conditions. A system is safety-
critical when its failure could result in loss of life, significant property damage, or
damage to the environment [11]. An example of a safety-critical avionic system is the
flight control system, which governs the attitude of an aircraft and, as a result, the flight
path it follows. Safety-critical systems are not limited to the avionics domain only,

© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 217-231, 2017.
DOI: 10.1007/978-3-319-57633-6_14

218 G.K. Hanssen et al.

examples of other important domains include, process control [20], medical equipment
[17], and automotive [9].

Present day avionic systems are increasingly based on computers and more functions
are implemented as software. Certification agencies, like the European Aviation Safety
Agency (EASA), accept the use of RTCA document DO-178 [18] for the development
of avionics software to provide assurance of compliance with airworthiness require-
ments. Document DO-178 requires the achievement of many safety objectives, which
is generally costly and time consuming [4, 10].

The avionics industry traditionally uses the V-model, or a variant thereof, as life-
cycle model for software development. This matches DO-178 well when looking at the
life-cycle data items that have to be produced. There are, however, also disadvantages.
For example, no working software is produced until late in the development life-cycle.
Errors detected in this stage can lead to much rework of earlier performed activities, and
increase the risk of budget and schedule overruns [4]. In the same way, changes in
requirements in a late stage can also lead to much rework with similar consequences.

The application of agile methods could be a solution for these problems. The diffi-
culty lies, however, in the fact that the looseness of an agile process does not seem to
be reconcilable with the rigour imposed by DO-178. For example, agile development
considers responding to change more important than following a plan, while DO-178 is
strictly plan driven. The main question addressed by this research is how agile methods
can be adapted to be usable in an avionics development process that is governed by
DO-178.

The following of the paper describes our research method (Sect. 2), an analysis of
DO-178C (Sect. 3), an overview of research and industry experience (Sect. 4), a survey
of present practice (Sect. 5), and an outline of an agile process aligned with DO-178
(Sect. 6). Conclusions and further work are presented in Sect. 7.

2 Research Method

In order to answer our research question, three complimentary activities have been
carried out and used to propose a DO-178-aligned agile process.

(1) An assessment of DO-178 has been performed to indicate how an agile strategy for
meeting the objectives could look like and whether there are potential conflicts by
using an agile method (Sect. 3.2). Annex A of DO-178 contains 10 summary tables
with 71 objectives. The information provided for each objective includes: (a) a brief
description, (b) its applicability for each software criticality level, (c) the require-
ment for independent achievement, and (d) the data items in which the results are
collected. Each objective has been assessed to determine how the objective can be
met using an agile approach like Scrum and whether there is a need for extensions
beyond what can be considered a plain agile approach. The work performed by
K. Coetzee! was taken as a starting point.

L http://www.embeddedfool.net/blog/2015/04/08/a-more-agile-do-178/ (last accessed, Dec. 5,
2016).

http://www.embeddedfool.net/blog/2015/04/08/a-more-agile-do-178/

An Assessment of Avionics Software Development Practice 219

(2) Relevant literature addressing the application of agile methods in the avionics
domain has been reviewed and main findings about opportunities and limitations
of using agile methods for development of avionics software were summarized
(Sect. 4). In order to build an understanding of the status of research and reported
industrial experience on the use and effects of agile methods in development of
safety-critical avionics software, a search for relevant literature has been conducted
with Google Scholar. We applied search phrases based on relevant terms such as
‘agile’, ‘avionic’, and ‘DO-178’. To strengthen the search, we applied snowballing,
meaning that relevant work referenced in identified publications was checked for
relevance and potentially included if the focus and quality was found sufficient.
From this search, 11 publications were found that potentially could offer insight
into industrial experience.

(3) A survey was done as an online questionnaire to establish a better overview of the
state—including challenges and potential points of improvement—of software devel-
opment and certification in the avionics industry, and to map the current status of
using or plans to use agile methods. As part of the ASHLEY? EU-project, we
selected professionals believed to have sufficient knowledge about their own organ-
ization and about how software is developed and certified. 29 contact persons were
selected, each representing a unique ASHLEY partner organization. 10 contact
persons completed the questionnaire fully or partially.

Our study has some limitations. Firstly, the literature review identified a relatively
low number of relevant studies providing industrial experience. This is however a
valuable insight as it nevertheless summarizes the present state of research within this
specific domain. Secondly, the survey has a relatively low number of respondents. This
is due to resource priorities, but is somewhat compensated by selecting qualified
respondents, each representing a major avionic system provider in Europe. The results
present the most comprehensive overview of this industry so far.

3 Certification Aspects of Avionics Software Development

3.1 Overview of Document DO-178C

Document DO-178C, “Software considerations in airborne systems and equipment
certification” [18] governs the approval of software for avionic systems by certification
authorities, such as EASA. In this paper, we simply write DO-178 when referring to
revision C of the document.

DO-178 distinguishes five software levels (A—E) based upon the failure condition
that may result from erroneous behaviour of the software. Software is classified as (the
highest) level A, if erroneous software behaviour can cause or contribute to a cata-
strophic failure condition of the aircraft, which would result in multiple fatalities, usually

2 Avionics Systems Hosted on a distributed modular electronics Large scale dEmonstrator for
multiple tYpe of aircraft, http://www.ashleyproject.eu (last accessed, Dec. 9 2016).

http://www.ashleyproject.eu

220 G.K. Hanssen et al.

with loss of aircraft. For lower software levels, the consequence of erroneous software
behaviour gradually reduces to no effect on safety (level E).

DO-178 is a process-based standard relying on evidence that the various activities
associated with software development have been performed successfully. DO-178 cate-
gorizes processes into three types: (1) the software planning process, which defines and
coordinates the activities of all processes (2) the software development processes, which
produce the software product, and (3) the integral processes, which ensure the correct-
ness of the software product and confidence in the software development processes and
their outputs. DO-178 does not address system life-cycle processes, but it does describe
the interaction with system processes, including system safety assessment.

Table 1. Assessment of objectives for the software development processes.

DO-178 Objective

Agile Strategy

Remarks

1. High-Level Requirements
(HLRs) are developed

A system is divided into
features. Features are divided
into stories. Stories consist of
HLRs (and their test cases)

Features are client-valued
functions. At the end of each
Sprint, the implemented user
stories are used to update the
HLRs

2. Derived HLRs are defined
and provided to the system
processes, including system
safety assessment process

Derived HLRs are not directly
traceable to system
requirements. They are
developed in the same way as
HLRs (see objective 1)

Derived HLRs are provided to
the system processes to
determine if there is any
impact on the system safety
assessment and system
requirements

3. Software architecture is
developed

Start with a high-level
architecture and update/refine
it at each software release

Closure activities include a
review of the software
architecture to make sure it is
consistent with the source code

4. Low-Level Requirements
(LLRs) are developed

Develop LLRs by defining
conditions and associated
actions [13]

LLRs can be contained in the
source code or the unit tests
(embedded in the source code)

5. Derived LLRs are defined
and provided to the system
processes, including system
safety assessment process

Derived LLRs are not directly
traceable to HLRs. They are
developed in the same way as
LLRs (see objective 4)

Derived LLRs are provided to
the system processes to
determine if there is any
impact on the system safety
assessment and system
requirements

6. Source Code is developed

Develop source code by
applying Test-Driven
Development (TDD)

Stories are implemented
during Sprints

7. Executable Object Code and
Parameter Data Item Files, if
any, are produced and loaded
in the target computer

Develop object code by
applying Continuous
Integration (CI) and
Continuous Delivery (CD)

When a defined set of features
is completed, a release will
follow

An Assessment of Avionics Software Development Practice 221

DO-178 provides guidance by (1) stating objectives for software life-cycle
processes, (2) describing activities that provide a means for satisfying the objectives,
and (3) describing evidence in the form of data items to demonstrate that the objectives
have been satisfied. DO-178 does not prescribe a particular software life-cycle or meth-
odology. A software development project defines its software life-cycle by specifying
a set of processes and their sequence. The usual sequence through the software devel-
opment processes is requirements, design, coding, and integration.

3.2 Assessment of Document DO-178C

The assessment revealed that objectives for the software development processes
(DO-178, Table A-2) and testing (DO-178, Table A-6) can be achieved by applying
agile techniques. The remaining objectives are either outside the agile process or there
are no suitable agile techniques to achieve them. These objectives can be achieved using
traditional methods (inspections, reviews, analyses, management records).

Table 1 presents the assessment of the 7 objectives for the software development
processes (DO-178, Table A-2).

In conclusion, agile methods can be used to achieve a subset of the DO-178 objec-
tives. No prohibitive conflicts have been identified.

4 Overview of Existing Research and Industry Experience

Most of the 11 reviewed publications provide discussions at a conceptual level without
any empirical data, indicating that this is a relatively new and immature—but growing—
concept within the avionics domain. Some empirical data is presented in only three of
the papers. Wils et al. [22] provide some minor insights from the Barco company, Paige
et al. [16] present a very small-scale experiment, and Carlson and Turner [1] make a
review of five case studies.

This lack of empirical data from industry is in contrast to non-safety-critical domains
where the use of agile methods has become common, with correspondingly more empir-
ical research available [6]. One comparable domain, the process control domain, where
the IEC 61508 standard applies, is a bit more advanced, but in general it seems that the
application of agile methods and techniques to safety-critical software is in its early
stages [8]. However, the emergence of literature presenting ideas over the past few years
means that the industry is seeking new opportunities for improving their software devel-
opment processes inspired by other domains.

4.1 Why This Interest in Agile Methods?

The common background and motivation for nearly all reviewed publications is the need
for improving the software development process, including certification based on
DO-178B/C. The trend seems to be that avionic system complexity is increasing [5].
Requirements tend to be more volatile (even late in the development process), calling
for better approaches to manage requirements and their changes in more flexible ways

222 G.K. Hanssen et al.

[5, 15, 16]. We also see an increased customer orientation where industry wants to listen
more closely to customers [1, 3, 16, 21, 22], opening up for a more flexible development
process with less emphasis on complete and detailed up-front design. Experience also
indicates that cost and schedule overruns are happening too frequently [1, 4].

4.2 Evidence and Documentation

Regardless of the process framework, e.g., V-model or an agile process, there is a set of
formal data items that has to be produced [5], but an agile process may allow for doing
this more efficiently as well as data items may be updated more often. However, if an
agile approach is to be used, it calls for some extensions [16], as agile methods, such as
Scrum, do not specify such documentation at all. Examples of such data items that are
required by certification authorities are the Plan for Software Aspects of Certification
(PSAC) and the Software Accomplishment Summary (SAS) [18]. These documents,
together with the plans that concern the definition of the life-cycle processes may best
be kept outside the agile process.

4.3 More Flexible Management of Requirements and Change

One of the main characteristics of the established practice and application of the V-
model is that development of avionics software may be characterized as document driven
and sequential [16]. This may become challenging in cases where requirements change
throughout a development project, even despite there have been made very detailed plans
and design up-front. Change may come from several sources, like design revisions,
review of safety analysis, and verification [16]. Recent figures indicate that requirements
change can be quite extensive, from 25% in typical projects to 35% in large and complex
projects [21], and discovering problems and dealing with changes late in the process
may become very costly [4]. According to Wils et al., agile methods may lower the
change effort as compared to traditional development [22]. This does not mean that up-
front plans are to be avoided, as that would conflict seriously with the process objectives
in DO-178. However, the role of agile requirements management is to detail high-level
requirements per iteration, not to create new high-level requirements [5]. New high-
level requirements could be added after the Sprint, as part of the Sprint review. Up-front
requirements may not be complete or even in conflict (and need to be refined) [5].
However, there is a potential conflict here—that flexible requirements management
negatively affects the software verification process. If previously verified components
of a system are changed, the verification results need to be updated. This requires strict
configuration management and relentless testing of the software under development [2].

4.4 Applicability and Obstacles

In general, the consensus seems to be that there is no conflict per se for using agile
methods in development of avionics software [2, 3, 13, 21, 22]. In fact XP/Agile is
claimed to be particularly suitable [3] to deal with the increasing complexity and

An Assessment of Avionics Software Development Practice 223

requirements volatility in safety-critical software projects. As changes inevitably do
happen, we could make use of better strategies to manage changes.

However, agile methods, such as Scrum, were not designed to support development
of large and complex systems like safety-critical avionic systems and there is a lack of
techniques and practices to meet the objectives of DO-178. E.g., the requirements for
data items and traceability have to be met by setting up a well-functioning framework
of tools to support and automate the process to a large extent [3, 22]. An agile process,
with short iterations of work, frequent feedback, and evaluation of status and incremental
development of the software supports the production of some of the needed data items
as part of the development itself. Instead of explicitly producing separate documents,
some of the information may be extracted from tools and logs. One of the core objectives
of agile methods is to minimize the effort for producing documentation [16, 21]. There
is work going on to extend Scrum to make it applicable to regulated domains, for
example the SafeScrum framework [14] and R-Scrum [7], which seek to meet require-
ments mentioned above.

Besides practical aspects of setting up an agile process and a chain of supporting
tools, we also need to clarify such a change with the certification authority. A more or
less radical change in process will affect the work to be done by this stakeholder and it
is of course important that the certification authority representative gets all requested
information and eventually gets confidence that the applied approach has led to a safe
product without extra problems and in an efficient way.

Besides the core principle of incremental and iterative development, agile methods
may also be seen as a collection of practices and techniques. From Chenu [3] and Paige
et al. [16], we extracted the following set that may be particularly relevant to safety-
critical systems development:

Test-driven development (need some adaptation, see also [12]).

Coding standards (already mandatory for DO-178 levels A—C).

Design improvement/refactoring (creates some challenges with respect to safety
analysis [5]).

The planning game (from XP).

Emphasis on communication (other than through extensive documentation).

4.5 Team Efficiency and Motivation

One of the main aspects of agile methods is how people work together. As a contrast to
plan-based methods where developers take on specialized roles, following detailed plans,
agile methods rely on multi-disciplinary teams, with the idea that this better enforces learning
and motivation [3]. Furthermore co-located teams are also believed to improve design flex-
ibility and a shared vision of the system under development [1]. A team may also have
Designated Engineering Representatives (DERs), who are embedded representatives of the
certification authorities within the development team [5].3

® Under EASA regulation, Certification Verification Engineers (CVEs) perform equivalent tasks as
DERs.

224 G.K. Hanssen et al.

4.6 Testing

Extensive testing and full traceability is fundamental in development of avionics soft-
ware and implementation of all requirements has to be verified by tests [3]. Testing is
also strongly emphasized in agile methods, which focus on test-driven development and
high test-coverage. However, for avionics software development purposes, agile
methods need to extend testing activities—e.g. by having more thorough acceptance
testing (not (only) relying on customer feedback) [2, 16]. Carlson and Turner argue that
incremental testing increases iteration pace and enables issues to be revealed and
dispatched [1]; they also argue that testers should be part of the development team
(provided that any independency requirements are guaranteed).

4.7 Adoption of New Software Process Models

Experience (e.g. from object-oriented development) shows that uptake and acceptance
of a new practice takes time—we should expect the same for agile methods as well [21,
22]. The avionics domain relies on well-established and well-proven practices and
processes and it is natural to be careful with new ideas, like agile methods, as they may
seem to impose more challenges than benefits. However, as this literature in sum shows,
there seems to be a growing interest at least.

4.8 Relating Findings to Other Domains

The literature review done here has focused explicitly on the avionics domain. However,
we find that the main challenges and approaches clearly coincide with other domains
where safety-critical software is essential. Other studies show that the same type of
challenges are being addressed, e.g., for process control systems [20], medical equip-
ment [17], and automotive [9], and that agile methods may be applicable to other safety
standards and frameworks like IEC 61508, SPICE, and IEC 62304.

S Survey to Assess Present Practice

A questionnaire was used to gain insights into the organizations’ profiles, their maturity,
their relationship to safety standards and authorities, various life-cycle aspects, and
perceived challenges and problems.

5.1 Respondents’ and Organizations’ Profiles

Respondents have a great variety in profiles, from developers and testers to managers.
Their organizations also have a wide range of business models, target markets (civil
passenger aircrafts on the top), and type of software applications (real-time embedded
systems being the most common).

An Assessment of Avionics Software Development Practice 225

5.2 Maturity

The avionics domain/industry is mature and professional with established system
providers having decades of experience. There is a wide range of methods for require-
ments analysis and architectural and detailed design in use. There is also a wide range
of testing approaches in use (white/black-box—unit/module/system/hardware-in-the-
loop). All practice extensive testing and inspection. Customer involvement is extensive.
There is extensive use of DOORS® from IBM Rational for requirements analysis and
management, but half of the respondents also use typical office tools.

5.3 Relationship to Safety Standards and Authorities

DO-178 is clearly the most relevant standard for all organizations. Applications are
developed at all levels of DO-178, where level C is the most common (60% of the
respondents). Consequently, there is a very high coverage of data items. When asked
about the level of interaction with the external assessor, 50% report that they collaborate
with the assessor in all phases of the project. The rest report a lower level. The average
estimate of costs related to verification and certification (including all reviews and
testing) is 40% of the total project budget.

5.4 Life-Cycle Aspects

There are a wide variety of software life-cycle models in use. The V-model is in use in
some form by all organizations, while 25% use incremental/iterative methods in some
form. Customers are involved to a very high degree. Testing (in general) and code
inspection/analysis are used by all respondents. Formal methods are applied by about a
third of the respondents.

5.5 Perceived Challenges and Problems

The top challenges with respect to verification and certification include: (1) having
sufficient resources, infrastructure, and competency/staff, (2) having sufficient quality
of customer communication, including requirements specification and feedback, and (3)
demonstrating compliance with DO-178 requirements to certification authority. The top-
rated problems with the software development process are requirements management
(frequent changes, insufficient requirements, ambiguous requirements, and addition of
new requirements), late discovery of problems/defects, and project cost overruns.

6 Towards an DO-178-Aligned Agile Approach

As mentioned in Sect. 3.1, document DO-178 [18] does not prescribe a particular soft-
ware life-cycle model. This makes it possible to define software life-cycles, such as,
waterfall, V-model, incremental, and spiral, but also to apply agile methods. Scrum is
considered to be a suitable (non-safety) agile framework that could be used as a baseline.

226 G.K. Hanssen et al.

It is the most commonly used agile framework in the software industry, in general, with
a large number of training resources, industrial experience, and available research liter-
ature. Scrum will have to be extended for the development of avionics software to enable
delivery of all required data items in compliance with DO-178.

6.1 Scrum Phases

In his seminal paper [19] on the Scrum development process, K. Schwaber made a
distinction into the phases Pregame, Game, and Postgame. In this paper, we use the
terms Preparation, Development, and Closure, which are also frequently used, e.g., [13].
Applying the Scrum phases to the software development and software verification
processes of DO-178, as depicted in Fig. 1, allows the mapping of agile methods to these
processes.*

Scrum phases
A
r Al r
Preparation Development Closure Preparation
[

Software

development
o | I | | | | I | | I |
Software

verification

process
[Il Il | 1 |

DO-178 processes

Fig. 1. Application of Scrum phases to DO-178 processes.

During the Preparation phase, planning and architecture activities are performed.
Scrum’s concept of planning is somewhat broader than that of DO-178. Scrum includes
the definition of the next software release based on the currently known backlog, analysis
of system requirements, and development of user stories. The architecture activities
establish (or update) the software structure. During the Development phase, the func-
tionality of a new release is developed as well as tests for new or changed code. The
software is designed, and source code is implemented, integrated, and tested during a
sequence of Sprints. In the Closure phase, the software release is prepared, including
system testing, final documentation, and release. The sequence of Preparation, Devel-
opment, and Closure is repeated until the final software release has been completed. In
the next sections, the activities in each phase are described in more detail.

6.2 Preparation Phase Activities

During the Preparation phase, the allocated system requirements, or a subset thereof,
are taken and high-level requirements (HLRs) are produced in the form of features that

* For simplicity, the DO-178 planning process and integral processes other than software veri-
fication are not shown in Fig. 1.

An Assessment of Avionics Software Development Practice 227

are further divided into user stories. A software architecture is established (or refined),
which, together with the prioritized HLRs, as part of the product backlog, is provided
to the Development phase. As required by DO-178, outputs of all processes are verified,
e.g., by means of review or analysis. Further details are presented in Table 2.

Table 2. Activities during Preparation phase.

DO-178 Process Inputs Activities Outputs
Software Allocated system Define system features | HLRs, trace data
requirements requirements, and prepare user
software level stories. A story
consists of HLRs
Software design HLRs Establish or refine Software architecture,

software architecture, | trace data
including partitioning

concept
Software verification | HLRs, software Define test cases for | HLR test cases,
architecture, trace data | HLRs. Verify all verification results
outputs

The planning process of DO-178 is kept outside the agile process. It is responsible
for establishing and updating all plans, including the Software Development Plan, the
Configuration Management Plan, and the Plan for Software Aspects of Certification.
The latter document is used for communication with the authorities.

6.3 Development Phase Activities

The Development phase consists of a sequence of Sprints, all with preferably the same
fixed duration (from 1 to 4 weeks). The number of Sprints is not fixed. The result of a
Sprint is a set of implemented and tested user stories that are integrated into a working
application. In addition, a Sprint produces information for the assessor (the data items).
The application can be demonstrated to stakeholders, but not all features may be
complete and hence it is not releasable. Further details are presented in Table 3.

Agile development promotes the Test-Driven Development (TDD) technique. A
cyclic process is performed whereby first LLRs are established together with their test
cases. Next, test code is produced and all tests are executed to verify that they fail. Then,
source code is produced that just passes the tests. Finally, the code is refactored and tests
are re-executed. This cycle repeats until all LLRs have been implemented. In practise,
the TDD technique implies that software development activities will be performed in
conjunction with software verification activities.

6.4 Closure Phase Activities

Upon start of the Closure phase, a sufficient number of features should be completed to
warrant release of the application. During Closure, all data items that already exist in
some form (see outputs in Tables 2 and 3) are brought up to date. The remaining data

228 G.K. Hanssen et al.

Table 3. Activities during Development phase.

DO-178 Process Inputs Activities Outputs

Software design HLRs, software Define Low-level LLRs, trace data
architecture, trace data | requirements (LLRs)
by conditions and
associated actions [13]

Software coding LLRs Produce code for the | Source code
LLRs

Integration Source code Perform continuous | Executable object
integration code

Software verification | HLRs, HLR test cases, | Establish test cases for | HLR test procedures,
software architecture, | LLRs. Produce test HLR test results, LLR
LLRs, source code, code for HLRs and test cases, LLR test

executable object LLRs. Execute procedures, LLR test
code, trace data (automated) tests. results, verification
Verify all outputs results

items required for compliance with DO-178 are produced by other processes than soft-
ware development and software verification. For example, the software configuration
process produces the Software Configuration Index and the certification liaison process
produces the Software Accomplishment Summary.

6.5 Remarks and Potential Issues

The proposed process aims to address some of the key challenges we identified in the
survey, in particular challenges related to requirements management. Breaking work
down in shorter iterations, including planning (Preparation) and evaluation (Closure)
means that planning may be done using updated information from previous Sprints, and
that each Sprint provides information needed to meet the requirements of DO-178 (in
the form of data items). From related research we know that such a process needs to be
supported by tools to automate test-driven development and documentation creation as
much as possible in order to save time and to ensure quality and consistency [8].

Including agile approaches in the development process for avionics software prom-
ises the usually cited benefits such as frequent delivery of working software, including
all data items required by DO-178, and the ability to deal with frequent changes in
requirements. There are, however, also a number of potential issues.

Contrary to the waterfall model, or the V-model, HLRs are defined in batches; each
time that the Preparation phase is entered, a sufficient number of HLRs are defined for
the subsequent sequence of Sprints. Having no overview of the complete set of HLRs
in an early phase of the development could lead to an inadequate software architecture
that may need drastic (and therefore costly) revision during subsequent Preparation
phases. This means that also agile projects needs to invest in a sufficient level of detail
of HLRs and overall system architecture early. An agile process though may create better
opportunities to manage changes when they occur.

An Assessment of Avionics Software Development Practice 229

Another issue is that the definition of derived HLRs late in the development, e.g.,
after several cycles of Preparation, Development, and Closure have taken place, may
have consequences for the safety analysis [21]. For example, if derived HLRs imply
new interfaces that falsify earlier independence claims, a higher software level could be
required, creating additional (verification) work that could have been done more effi-
ciently when known beforehand.

7 Conclusions and Further Work

The development of safety-critical software by the avionics industry is governed by
RTCA document DO-178. The document places much emphasis on documented and
traceable verification to achieve an acceptable level of confidence that the software
development activities have been performed successfully. Indeed, our survey, among
major players in the European avionics industry, confirmed that verification and certif-
ication constitutes a large portion of the total costs of development (estimated 40%). The
survey also revealed other challenges perceived by this industry, including requirements
volatility, late discovery of problems/defects, and project cost overruns.

The adoption of an agile framework could be a solution for these challenges; this is
in line with other related safety-industry oriented research [7, 8]. At present, the life-
cycle model mostly used by the avionics industry to organize software development is
the V-model, or variants thereof. DO-178, however, does not preclude the use of any
particular model, and in general, there seem to be no obstacles for adopting an agile
framework. It is clear that agile methods, like Scrum, need to be adapted to fit in the
development and certification of avionics software. In particular, such methods need to
be extended to fulfil requirements of traceability and documentation. Some of these may
be enabled by use of proper tools that provide a high level of automation.

Using Scrum as a basis, an approach has been outlined that benefits from agile
methods and can also satisfy the objectives of DO-178. Some DO-178 objectives are
achieved in an agile way, while others, in particular a subset of the verification objec-
tives, are achieved by traditional means (management plans, reviews, and analyses).
Benefits expected from the agile approach include reduction of risks, adaptability to
changing requirements, and overall a reduction of development cost.

There are, however, issues that need further investigation. One of these is that soft-
ware requirements are defined in batches; each time, sufficient software requirements
are defined for the subsequent sequence of Sprints. Having no overview of the complete
set of software requirements in an early phase of the development could lead to an
inadequate software architecture that would need thorough revision later on.

To conclude, agile methods may promise to resolve some of the specific challenges
in the avionics domain, but there is still a clear need for more research and industrial
experimentation to verify applicability and to demonstrate improvement effects.

Acknowledgments. The authors would like to thank the anonymous contributors to the survey
and Rob Udo from NLR for his contributions to this research. Also the insightful comments from
the reviewers are much appreciated. The research leading to these results has received funding

230

G.K. Hanssen et al.

from the European Community’s Seventh Framework Programme FP7/2012-2016 under grant
agreement no. ACP2-GA-2013-605442.

References

10.
11.

12.

13.

14.

15.

16.

17.

18.

. Carlson, R., Turner, R.: Review of agile case studies for applicability to aircraft systems

integration. Procedia Comput. Sci. 16, 469-474 (2013)

. Cawley, O., Wang, X., Richardson, I.: Lean/Agile software development methodologies in

regulated environments — state of the art. In: Abrahamsson, P., Oza, N. (eds.) LESS 2010.
LNBIP, vol. 65, pp. 31-36. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16416-3_4

. Chenu, E.: Agility and lean for avionics. In: Lean, Agile Approach to High-Integrity Software

Conference, Paris (2009)

. Chenu, E.: Agile and Lean software development for avionic software. Whitepaper, Thales

Avionics (2011)

. Coe, D.J., Kulick, J.LH.: A model-based agile process for DO-178C certification. In:

Proceedings of 2013 World Congress in Computer Science, Computer Engineering, and
Applied Computing, Las Vegas (2013)

. Dingsgyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies: towards

explaining agile software development. J. Syst. Softw. 85(6), 1213-1221 (2012)

. Fitzgerald, B., Stol, K.-J., O’Sullivan, R., O’Brien, D.: Scaling agile methods to regulated

environments: an industry case study. In: Proceedings of the 2013 International Conference
on Software Engineering. IEEE Press (2013)

. Hanssen, Geir K., Haugset, B., Stilhane, T., Myklebust, T., Kulbrandstad, I.: Quality

assurance in scrum applied to safety critical software. In: Sharp, H., Hall, T. (eds.) XP 2016.
LNBIP, vol. 251, pp. 92-103. Springer, Cham (2016). doi:10.1007/978-3-319-33515-5_8

. Hantke, D.: An approach for combining spice and scrum in software development projects.

In: Rout, T., O’Connor, R.V., Dorling, A. (eds.) SPICE 2015. CCIS, vol. 526, pp. 233-238.
Springer, Cham (2015). doi:10.1007/978-3-319-19860-6_18

Hilderman, V.: DO-178B Costs Versus Benefits. HighRely Inc., HighRely Whitepaper (2009)
Knight, J.C.: Safety critical systems: challenges and directions. In: Proceedings of the 24rd
International Conference on Software Engineering, ICSE 2002. IEEE (2002)

Lambourg, J., Comar, C.: Methodology: agile development of safety critical systems.
OpenCoss Framework 7 project (2012)

Meunier, V., Destouesse, M., Cros, T.: How to “take credit” of agile principles within a
certification context? (2008) (Presentation)

Myklebust, T., Stalhane, T., Hanssen, G., Wien, T., Haugset, B.: Scrum, documentation and
the IEC 61508-3: 2010 software standard. In: International Conference on Probabilistic Safety
Assesment and Management (PSAM). PSAM, Hawaii (2014)

Paige, Richard F., Charalambous, R., Ge, X., Brooke, Phillip J.: Towards agile engineering
of high-integrity systems. In: Harrison, Michael D., Sujan, M.-A. (eds.) SAFECOMP 2008.
LNCS, vol. 5219, pp. 30-43. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-87698-4_6
Paige, R.F., Galloway, A., Charalambous, R., Ge, X.: High-integrity agile processes for the
development of safety critical software. Int. J. Crit. Comput.-Based Syst. 2(2), 181-216 (2011)
Rottier, P.A., Rodrigues, V: Agile development in a medical device company. In: AGILE
2008 Conference (2008)

RTCA, DO-178C: Software considerations in airborne systems and equipment certification
(2011)

http://dx.doi.org/10.1007/978-3-642-16416-3_4
http://dx.doi.org/10.1007/978-3-319-33515-5_8
http://dx.doi.org/10.1007/978-3-319-19860-6_18
http://dx.doi.org/10.1007/978-3-540-87698-4_6

An Assessment of Avionics Software Development Practice 231

19. Schwaber K.: SCRUM development process. In: Sutherland, J., Casanave, C., Miller, J., Patel,
P., Hollowell, G. (eds.) Business Object Design and Implementation, pp. 117-134. Springer,
London (1997). ISBN 978-3-540-76096-2

20. Stélhane, T., Myklebust, T., Hanssen, G.K.: The application of Scrum IEC 61508 certifiable
software. In Proceedings of ESREL, Helsinki, Finland

21. VanderLeest, S.H., Buter, A.: Escape the waterfall: agile for aerospace. In: Proceedings of
IEEE/ATAA 28th Digital Avionics Systems Conference, DASC 2009, p. 6, (6D3). IEEE
(2009). doi:10.1109/DASC.2009.5347438

22. Wils, A., Baelen, S., Holvoet, T., Vlaminck, K.: Agility in the avionics software world. In:
Abrahamsson, P., Marchesi, M., Succi, G. (eds.) XP 2006. LNCS, vol. 4044, pp. 123-132.
Springer, Heidelberg (2006). doi:10.1007/11774129_13

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://dx.doi.org/10.1109/DASC.2009.5347438
http://dx.doi.org/10.1007/11774129_13
http://creativecommons.org/licenses/by/4.0/

	An Assessment of Avionics Software Development Practice: Justifications for an Agile Development Process
	Abstract
	1 Introduction
	2 Research Method
	3 Certification Aspects of Avionics Software Development
	3.1 Overview of Document DO-178C
	3.2 Assessment of Document DO-178C

	4 Overview of Existing Research and Industry Experience
	4.1 Why This Interest in Agile Methods?
	4.2 Evidence and Documentation
	4.3 More Flexible Management of Requirements and Change
	4.4 Applicability and Obstacles
	4.5 Team Efficiency and Motivation
	4.6 Testing
	4.7 Adoption of New Software Process Models
	4.8 Relating Findings to Other Domains

	5 Survey to Assess Present Practice
	5.1 Respondents’ and Organizations’ Profiles
	5.2 Maturity
	5.3 Relationship to Safety Standards and Authorities
	5.4 Life-Cycle Aspects
	5.5 Perceived Challenges and Problems

	6 Towards an DO-178-Aligned Agile Approach
	6.1 Scrum Phases
	6.2 Preparation Phase Activities
	6.3 Development Phase Activities
	6.4 Closure Phase Activities
	6.5 Remarks and Potential Issues

	7 Conclusions and Further Work
	Acknowledgments
	References

