

SINTEF ICT

Networked Systems and Services
2014‐06‐23

 SINTEF A26187 ‐ Unrestricted

Report

Assessing the Usefulness of Testing for
Validating the Correctness of Security
Risk Models Based on an Industrial
Case Study

Author(s)
Gencer Erdogan1, Fredrik Seehusen1, Ketil Stølen1, and Jan Aagedal2

1 Department for Networked Systems and Services, SINTEF ICT

 PO Box 124 Blindern, N‐0314 Oslo, Norway

2 Accurate Equity, Martin Linges vei 25, N‐1364 Fornebu, Norway

Table of Contents

1 Introduction . 4
2 Research Method . 5

2.1 Risk Models . 5
2.2 Difference between Risk Models . 6

3 Overview of Process for Test-driven Security Risk Analysis 7
4 Results . 9
5 Discussion . 11

5.1 The Need to Add Elements after Testing . 11
5.2 The Need to Delete Elements after Testing 12
5.3 The Need to Edit Elements after Testing . 13

6 Related Work . 13
7 Conclusions . 14

Acknowledgments. 14

1 Introduction

Security risk analysis (SRA) is a process that is carried out in order to identify
and assess security specific risks. Traditional risk analysis often rely on expert
judgment for the identification of risks and their causes and the estimation of
their likelihood and consequence. The outcome of these kinds of risk analysis is
therefore dependent on SRA participant’s background, experience, and knowl-
edge, which in turn reflects an uncertainty in the correctness of the SRA results.

In order to validate the correctness of the SRA results, the SRA process can
be complemented by other ways of gathering information of relevance to the
analysis other than relying on expert judgment by the SRA participants. One
such approach is to combine risk analysis with security testing following the
steps described below:

Phase 1 Establish context and target of evaluation, and carry out security risk
analysis of the target of evaluation relying mostly on expert judgment from
the SRA participants.

Phase 2 Generate and execute security tests that explore the risks identified
during the security risk analysis.

Phase 3 Validate and update the risk model (produced in phase 1) based on
the security test results.

We refer to this approach as test-driven security risk analysis (TSR).

Between March 2011 and July 2011 we conducted an industrial case study
based on the TSR process. The target system analyzed is a multilingual Web-
based e-business application. The system serves as the backbone for the system
owner’s business goals and is used by a large number of users every day. The
system owner, which is also the client that commissioned the case study, required
full confidentiality. The results that are presented in this report are therefore
limited to the experiences from applying the TSR approach.

From a scientific perspective, our objective with the case study was to assess
how useful testing is for gaining confidence in the correctness of the risk models
produced in the risk analysis (phase 1 above). To make the analysis precise, we
have specifically focused on the degree to which the testing yielded information
that caused us to change the risk model.

In the case study, the testing yielded new information which was not found
in the risk analysis phase (phase 1 above). In particular, new vulnerabilities
were found which resulted in the likelihood values of threat scenarios and risks
in the security risk model to be updated. We believe that the update led to a
more correct risk model, and that the testing therefore was useful in gaining
confidence about the correctness of the risk model.

The rest of the report is structured as follows: Section 2 describes the research
method. Section 3 gives an overview of the TSR process used in the case study.
Section 4 describes evaluation results. Section 5 provides a discussion of the
results. Section 6 discusses related work. Finally, Section 7 concludes the report.

4

2 Research Method

The basis of our evaluation is to compare the risk models produced before and
after testing. Before making this comparison, we first describe what we mean by
a risk model, and what we mean by risk models being different.

2.1 Risk Models

Risk models are created during the risk analysis phase. These models contain
the identified risks as well as other information that is relevant for the analysis
such as the cause of risks and how likely it is that these causes will occur and so
on.

The kind of risk models that were produced in our case study were CORAS
risk models [10]. These were constructed on-the-fly during a series of workshops.
All the information in these workshops were based on expert judgment, mostly
from the customer on whose behalf the analysis was conducted.

As illustrated by the example in Fig.1, a CORAS risk model is a directed
acyclic graph where every node is of one of the following kinds:

Threat A potential cause of an unwanted incident.
Threat scenario A chain or series of events that is initiated by a threat and

that may lead to an unwanted incident.
Unwanted incident An event that harms or reduces the value of an asset.
Asset Something to which a party assigns value and hence for which the party

requires protection.

Fig. 1. Example of a CORAS risk model.

Risks can also be represented in a CORAS risk model. These correspond to pairs
of unwanted incidents and assets. If an unwanted incident harms exactly one
asset, as is the case in Fig. 1, then this unwanted incident will represent a single
risk. In the case study, each of the identified unwanted incidents harmed exactly
one asset. Thus every unwanted incident corresponded to exactly one risk. For
this reason, we will only use the CORAS models with unwanted incidents as

5

basis for the evaluation, and we will sometimes use the terms unwanted incident
and risk interchangeably when the distinction is not important.

A risk may have a risk level which is calculated from the combination of a
likelihood value and a consequence value. For instance, the risk corresponding
to the unwanted incident in Fig.1, has a risk level which is calculated from the
combination of the likelihood value Rare and the consequence High.

The risk levels that were used in the case study were calculated by using
risk matrices (one for each asset) assigning to every pair of likelihood and con-
sequence value (w.r.t. a particular asset), one of the three values: Low, Medium,
and High.

Risk The likelihood of an unwanted incident and its consequence for a specific
asset.

A relation in a CORAS model may be of one of the following kinds:

Initiates relation going from a threat A to a threat scenario or an unwanted
incident B, meaning that A initiates B.

Leads to relation going from a threat scenario or an unwanted incident A to
a threat scenario or an unwanted incident B, meaning that A leads to B.

Harms relation going from an unwanted incident A to an asset B, meaning
that A harms B.

Relations and nodes may have assignments, in particular:

Likelihood values may be assigned to a threat scenario or an unwanted inci-
dent A, estimating the likelihood of A occurring.

Conditional probabilities may be assigned on the leads to relations going
from A to B, estimating the probability that B occurs given that A has
occurred.

Consequence values may be assigned on the harms relations going from A to
B, estimating the consequence that the occurrence of A has on B.

Vulnerabilities may be assigned on the leads to relations going from A to B,
describing a weakness, flaw or deficiency that opens for A leading to B.

Throughout this document, we use the term risk model element, or just element
for short, to mean either a node, a relation, or an assignment.

2.2 Difference between Risk Models

Two CORAS risk models are equal if they contain the same risk model elements.
Otherwise they are not equal. Let RMB be the risk model before testing, and
RMA be the risk model after testing, then we distinguish between 3 different
kinds of changes

Add An element in RMA has been added if it is not in RMB .
Delete An element in RMB has been deleted if it is not in RMA.
Edit A node or relation in both RMB and RMA has been edited if its assign-

ment in RMB or RMA is different.

6

3 Overview of Process for Test-driven Security Risk
Analysis

Security Risk Analysis

Security Testing

P
h
a

s
e
 1

P
h
a

s
e
 2

P
h
a

s
e
 3

Fig. 2. The steps in Test-driven Security Risk Analysis.

This section presents the process according to which the case study was
carried out.

As shown in Fig. 2, our TSR process is divided into three phases which in
turn are split into various steps. Phase 1, the risk analysis phase, consists of four
steps corresponding to steps of the CORAS risk analysis method [10]. These are
the steps in which the risk model, which serves a basis for test identification,
are constructed. In the case study, the risk models were mainly constructed in
workshops by the analyst team with help from the customers. The reader is
referred to [10] for a more detailed explanation of the steps of phase 1.

Phase 2 consists of two steps, test case generation and prioritization (step 5),
and test execution (step 6). Step 5 was performed as follows. First we made a list
of all the threat scenarios identified in the risk analysis phase. Then we selected
those threat scenarios that were considered most important to test (i.e., we did
not test all the threat scenarios of the risk model). Typically, a threat scenario
would correspond to a particular type of attack, and the purpose of testing a
threat scenario was to find vulnerabilities that could be exploited by the attack.
The priority of a threat scenario was assessed by considering three things:

Severity An estimate of the impact that a threat scenario has on the identified
risks of the analysis.

Testability An estimate of the time it would take to test a threat scenario
and/or whether the threat scenario could be tested given the tools available.

7

Uncertainty An estimate of the uncertainty related to the severity estimate of
a threat scenario. High uncertainty suggests a need for testing.

After selecting the threat scenarios with the highest priority, we made a detailed
description of how we intended to test them.

Step 6, test execution, is the activity of carrying out the tests. In the case
study, the tests were executed using tools for automated, semi-automated, and
manual testing:

Automated testing IBM Rational Software Architect (IBM RSA) [2], Smartest-
ing CertifyIt [5], Selenium [4], Eclipse [1];

Semi-automated testing OWASP WebScarab[3];

Manual testing Wireshark [6];

The automated process was as follows. First we specified a model of the system
under test using IBM RSA together with the CetifyIt plugin, then we used
CetifyIt to generate abstract Java tests, then we concretized these in Java, and
finally we executed them using Selenium.

All the tests were executed at the level of the HTTP protocol (i.e., at the
application level) and from a black-box view of the web-application that was
analyzed.

Phase 3, consisting of step 7, has two main purposes. The first is the update
the risk model (which is the output from phase 1) based on the test results (which
is the output of step 6). The second is to identify treatments for the updated risk
model. This step was based on the corresponding step of the CORAS method.
Most of the reminder of this paper will be devoted to explaining the degree to
which we had to update the risk model based on the test results.

The case study was carried out through 6 workshops. An overview of these
workshops is given in Table 1. In the participants column, the denotations C:n
and A:m represents n participants from the customer side and m participants
from the risk analysis team. Notice that there was no workshop addressing step
6 (test execution) of the TSR process. This is because this step was entirely
conducted between the fifth and the sixth workshop.

Table 1. Overview of the workshops.

Date Step Participants Duration

28.03.11 Step 1 C:1, A:3 2 hours

12.04.11 Step 1 C:3, A:4 3 hours

09.05.11 Step 1 C:2, A:3 3 hours

20.05.11 Step 2 and 3 C:1, A:2 6 hours

27.05.11 Step 4 and 5 C:1, A:2 6 hours

07.07.11 Step 7 C:2, A:2 2 hours

8

4 Results

In this section, we describe the differences between the risk models before and
after testing.

After testing, no nodes or relations were added to or deleted from the risk
model. The only risk model elements that were added or deleted were vulnerabil-
ities (recall that vulnerabilities are not classified as nodes, but as assignments to
relations). More precisely, one vulnerability was deleted and four vulnerabilities
were added after testing. In Fig. 3, we have illustrated both the number of risk
model nodes and the number of vulnerabilities before and after testing.

0

5

10

15

20

25

30

35

40

45

50

Before

After

Fig. 3. Number of risk model nodes and vulnerabilities before and after testing.

The only risk model elements that were tested in the case study were threat
scenarios. The aim of testing a threat scenario was to discover whether the
target of evaluation had any vulnerabilities that could be exploited by the attack
described by the threat scenario.

In Fig. 4, we show the total number of threat scenarios and risks that were
identified, and how many of these were tested. We have also shown the number of
potentially affected unwanted incidents or threat scenarios that the tested threat
scenarios could lead up to. All threat scenarios or unwanted incidents that a
tested threat scenario T can lead up to are potentially affected by the testing,
e.g., if the likelihood value of T is edited after testing, then this could potentially
cause the likelihood values of all risk elements led up to by T to be edited as
well. As can be deduced from Fig. 4, 14% of the threat scenarios were tested,
33% of the threat scenarios were potentially affected by the testing, and 42% of
the risks were potentially affected by the testing.

Fig. 5 shows the difference between the threat scenarios and risks before and
after testing for all risk model elements that were tested or potentially affected
by the testing. In the figure, each threat scenario and risk TR has a label of the
form i/j which means that TR had a likelihood value of i before testing, and j
after testing. The likelihood scale that was used in the case study can be mapped

9

to a number between 1 and 5, where 1 represents the most unlikely value and 5
denotes the most likely value.

0

5

10

15

20

25

30

35

40

45

50

Total Total potentially

affected

Total tested

Threat scenarios

Risks

Fig. 4. Number of risks and threat scenarios tested and potentially affected by the
testing.

T1

3 / 2

A1

2 /2

A2

3 / 3

C1

2 / 3

C2

2 / 3

C3

2 / 3

C4

3 / 3

C5

2 / 2

C7

2 / 2

I1

1 / 3

I2

1 / 3

I3

1 / 3

I4

1 / 1

I8

2 / 2
T4

3 / 3

T6

2 / 3

T7

2 / 3

T8

3 / 3

T9

3 / 3

T10

2 / 3

T11

1 / 1

T13

3 / 3

T14

2 / 3

T22

2 / 2

T23

2 / 2

T19

2 / 2

T37

1 / 3

Tested

Potentially affected by testingLikelihood value not edited after testing

Likelihood value edited after testing

Fig. 5. Difference between risk models before and after testing.

All the threat scenarios and risks whose likelihood values were edited after
testing are in Fig. 5 represented with a darker color (green) than those threat
scenarios and risks that were not edited (blue). Note that all except one risk
element whose likelihood values were edited after testing were estimated to be
more likely after testing than before testing.

10

In Fig. 5, the threat scenarios that were directly tested are represented by
ellipses with a dotted outline; all the other elements of the diagram are poten-
tially affected by the tested threat scenarios. It can be noted that the level of
indirection from the tested threat scenarios to the risks is quite large.

Recall that risks may have risk levels which are calculated based on likelihood
and consequence values. The change in likelihood values resulted in the risk levels
of four risks being changed after testing. All risks whose risk levels changed were
given a higher risk level after testing than before testing. In Fig. 6, we have
illustrated the total number of risks identified, the number of risks that were
potentially affected by the testing, and the number of risks whose risk levels
were edited after testing.

����
������
����

���	
 �����������	

��	������� ����
���
���	����
���

Fig. 6. Risk levels changed.

5 Discussion

5.1 The Need to Add Elements after Testing

Based on the discussion in Sect. 4 and the numbers in Fig. 3, we know that
new vulnerabilities were added to the risk model after testing, and that no other
kinds of risk elements were added.

Why did the testing only yield new information about the vulnerabilities?
The main reason for this is that the tests were designed from the threat sce-
narios, and the purpose of the tests were to identify vulnerabilities that could
be exploited by the threat scenarios. In other words, the tests were designed to
uncover vulnerabilities; not unknown assets, threats, threat scenarios, or risks.
These elements were instead part of the context in which the testing was per-
formed.

Recall that an asset is something that is of value for the party, and that can
be harmed by a risk. If a party has no assets, then there is no reason to conduct

11

a risk analysis. For this reason, assets are always identified in the beginning of
the risk analysis, before the risks are identified. In our experience, the process
of identifying the risks has never led to the identification of new assets because
the assets are then part of the context of the risk identification. The same is also
true for the testing.

The argument is similar regarding threats. A threat is a potential cause of
an unwanted incident such as a hacker, an insider or a virus, and the testing is
performed with regards to the identified threats. It therefore seems unlikely that
the testing would uncover additional threats.

In principle, we cannot rule out that it would be possible that the test re-
sults could yield information that would lead to the identification of new threat
scenarios or risks. For instance, it might be the case that a threat scenario may
be refined (i.e., split up into more than one threat scenarios) after testing, or
lead to the identification of an unwanted incident that had not been previously
thought of. However, as long as the tests are designed to uncover vulnerabilities,
we believe that this would be unlikely.

It is worth noting that vulnerabilities uncovered by testing in the case study
could never have been uncovered if we had performed a risk analysis alone (with-
out doing the testing), regardless of how much effort we would have spent. This
is because the testing uncovered issues which only appeared in extremely spe-
cific circumstances which could not have been reproduced without executing the
system under analysis.

5.2 The Need to Delete Elements after Testing

Based on the discussion in Sect. 4, we know that the testing resulted in the
deletion of exactly one risk element – a vulnerability. Furthermore, we believe
that this result is generalizable. That is, in general, threats, threat scenarios,
risks and assets are unlikely to be deleted after testing, whereas vulnerabilities
may be deleted.

The reason why we deleted a vulnerability after testing was that the testing
provided evidence that a potential vulnerability identified in the risk analysis
phase was actually not present in the system. This led us to remove the vulner-
ability from the risk model. We also believe that in general, testing can result in
the deletion of vulnerabilities, since the tests can be designed to check whether
a vulnerability is actually present in the system or not.

The reason why threats and assets are unlikely to be deleted after testing
is the same as for why they are unlikely to be added after testing. That is, the
assets and threats are part of the context in which the testing is performed, and
the testing is therefore unlikely to yield information about this context.

As for threat scenarios and unwanted incidents, these are risk model elements
that contain assigned likelihood values. Therefore, there will never be a need to
delete these from the risk model after testing. Instead of deleting them from the
risk model, we would assign a low likelihood value on these risk model elements.

12

5.3 The Need to Edit Elements after Testing

As documented by the figures of Sect. 4, 14% of the likelihood values of threat
scenarios, 19% of the likelihood values of unwanted incidents, and 13% of the
risk levels of risks were edited after testing.

For all risk elements that were edited (with the exception of one), the likeli-
hood value was increased after testing, i.e., the risk element was believed to be
more likely after testing than before testing. The reason for this was that the
testing uncovered vulnerabilities that were previously unknown, and that led to
the belief that certain threat scenarios were more likely to occur than believed
before testing.

For one of the threat scenarios, the likelihood value was decreased after test-
ing as a result of one vulnerability being deleted.

In general, we believe that testing will uncover information that may cause
the likelihood values of threat scenarios and unwanted incidents to be edited
after testing.

The testing did not result in the consequence values that unwanted incidents
have on assets being edited. The reason for this is that all the tests were designed
to uncover information about vulnerabilities that would increase or decrease the
likelihood of a successful attack; the consequence of a successful attack was al-
ready known in advance. Is this result generalizable? We believe it is. As long as
all the risks have been identified before testing, their consequences can be esti-
mated before testing, and it is unlikely that the testing will uncover information
which will cause the consequence values to change.

6 Related Work

This paper has addressed test-driven risk analysis (TSR), i.e., the process of
using testing to improve the risk analysis results. We distinguish this from the
notion of risk-based testing (RBT) which is the process of using risk analysis
to improve the test results. This distinction is usually unclear in the literature.
However, most of the literature on combining risk analysis and testing fits into
the latter category (RBT). Indeed, the idea of combining risk analysis and test-
ing first originated from the testing community [8]. Since then, a number of
approaches to RBT have been proposed. These approaches have in common
that the identified risks become the central factor used for a systematic identifi-
cation of test objectives, the evaluation of the test quality and the test results.
Redmill [11, 12], for example, describes the use of risk analysis to optimize the
test planning. The quantified risks are used to prioritize the testing and the
analysis of system failures and their impact. Amland [7] calculated the risk of
the individual software functions and the expected failure probability for these
functions weighted with risk factors such as design quality, size and complexity
of the evaluated software. Finally, Stallbaum et al. [13] describe a model-based
approach, which allows the automatic derivation of system test cases from dif-
ferent kind of functional models as well as their prioritization based on risk. This

13

approach is called RiteDAP (Risk-based test case Derivation And Prioritization)
and uses activity diagrams as system models to automatically generate test case
scenarios. Those test models are augmented with the risk values needed for the
test case prioritization.

Although some RBT approaches exist, we are not aware of any approach for
TSR – let alone any that target security. One of the reasons for this may be that
many risk analysis process standards such as ISO 31000 [9] are so generic that
they do not stipulate the manner in which data for the risk analysis is collected
and used. Therefore, the notion TSR can be seen as an instance of many risk
analysis processes.

7 Conclusions

We have described an evaluation of a process for test-driven security risk analysis
(TSR) based on our experiences from applying this process in a case study.
The objective of the evaluation was to evaluate how useful testing is in gaining
confidence in the correctness of the risk models produced in the risk analysis
phase of the TSR process. To make the evaluation precise, we analyzed the
difference between the risk model produced before testing and the risk model
produced after testing.

The process of testing yielded information which led to a change in the risk
model created before testing. Specifically, four vulnerabilities were added to the
risk model, one vulnerability was deleted, and 14% of the likelihood values of
threat scenarios, 19% of the likelihood values of unwanted incidents, and 13% of
the risk levels of risks were edited after testing.

We believe that the testing was useful in the sense that it yielded a more
accurate risk model. But more than this, the testing uncovered vulnerabilities
that would never have been uncovered in the risk analysis phase, regardless of
how much effort we would have spent. In other words, if the testing phase had
been dropped and we instead had extended the risk analysis phase with the
corresponding effort, we would not have uncovered the vulnerabilities that were
uncovered in the testing phase.

Acknowledgments. This work has been conducted as a part of the DIAMONDS
(201579/S10) project funded by the Research Council of Norway, as well as a
part of the NESSoS network of excellence funded by the European Commission
within the 7th Framework Programme.

References

1. Eclipse. http://www.eclipse.org/. Accessed November 7, 2011.
2. IBM Rational Software Architect (RSA). http://www.ibm.com/developerworks/

rational/products/rsa/. Accessed November 7, 2011.
3. OWASP WebScarab. https://www.owasp.org/index.php/Category:OWASP_

WebScarab_Project. Accessed November 7, 2011.

14

4. Selenium - Web Browser Automation. http://seleniumhq.org/. Accessed Novem-
ber 7, 2011.

5. Smartesting CertifyIt. http://www.smartesting.com/index.php/cms/en/

product/certify-it. Accessed November 7, 2011.
6. Wireshark. http://www.wireshark.org/. Accessed November 7, 2011.
7. S. Amland. Risk-based testing: Risk analysis fundamentals and metrics for soft-

ware testing including a financial application case study. Journal of Systems and
Software, 53(3):287–295, 2000.

8. J. Bach. Heuristic risk-based testing. Software Testing and Quality Engineering
Magazine, 11:9, 1999.

9. International Organization for Standardization. ISO 31000:2009(E), Risk man-
agement – Principles and guidelines, 2009.

10. M. S. Lund, B. Solhaug, and K. Stølen. Model Driven Risk Analysis - The CORAS
Approach. Springer, 2011.

11. F. Redmill. Exploring risk-based testing and its implications: Research articles.
Softw. Test. Verif. Reliab., 14(1):3–15, March 2004.

12. F. Redmill. Theory and practice of risk-based testing. Software Testing, Verifica-
tion and Reliability, 15(1):3–20, 2005.

13. H. Stallbaum, A. Metzger, and K. Pohl. An automated technique for risk-based
test case generation and prioritization. In Proc. of the 3rd international workshop
on Automation of software test, pages 67–70. ACM, 2008.

15

Technology for a better society
www.sintef.no

	01
	02
	03
	04

