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Samandrag 
 
Bakgrunn 
 
Trondheim og andre bykommunar treng betre driftsplanleggingsverktøy for flaum- og overvatn. 
Klimaendringar og byfortetting gjer at eksisterande avløpsnett har fått aukande kapasitetsproblem. Eit viktig 
tiltak er å kunne varsle kraftige regnbyger i tide til at basseng og fordrøyingsvolum som vatnet blir leia 
gjennom for å unngå flaum, kan tappast ned i forkant.  Tradisjonelle varslingsmodellar (dvs 
atmosfæremodellar) egnar seg dårleg for denne typen korttidsvarsling som krev høg romleg oppløysing og 
raskare oppdateringsfrekvens. Derimot gjev verradar av typen installert i Norge momentanbilete av nedbøren 
kvart 15. minutt, så korttidsprognoser frå verradar vil kunne vere avgjerande input til kommunale 
planleggingsverktøy. Det er frå andre studiar kjend at radarbaserte framskrivingar/ekstrapolering gjev betre 
prognoser enn numeriske atmosfæremodellar for leietider under tre timar. I dette prosjektet har vi testa om 
data frå nedbørradar kan brukast til slik korttidsvarsling av intense og kraftige regnbyger, såkalla 
nowcasting. 
 
Analysane 
 
To nedbørepisodar som førde til alvorleg flaum i Trondheim er brukt i studien, 13 august 2007 og 28 juni 
2010. Det er utvikla ein statistisk prognosemodell basert på radardata frå Rissa-radaren, der metodar frå rom-
tid-statistikk er brukt og evaluert i høve til kor gode prognosane blir for nedbørepisodar av ulik varighet, og 
for ulike leietider ved varsling av episodane  
 
Begge dei studerte episodane hadde konvektive eigenskapar med høg nedbørintensitet. I studien vart 
følgjande gjort:  

1. Adveksjonsvektoren mellom etterfølgjande refleksjonsbilete vart berekna: global vektor vha ein 
maksimums krysskorrelasjonsteknikk, og fordelt adveksjonsvektor med ein optisk flytalgoritme.  

2. Varsel med leietider på opp til 2 timar med 15 minutts intervall vart generert ved bruk av global 
adveksjonsvektor. Prediksjonsdomenet var ein 200x200 km2 region rundt Rissa-radaren med romleg 
oppløysing av varsla på 1x1 km2. 

3. Seks prestasjonsmål vart berekna ved å samanlikne varsla og observerte radarbilete. Dette vart gjort 
for fleire terskelverdiar for refleksjon (7, 25, 30, 35 og 40 dBZ, grovt tilsvarande 0.1, 1, 3, 6 og 12 
mm/time) og verifiseringsområder (1x1, 3x3, 5x5, 7x7, 9x9 og 11x11 km2) for å analysere 
skalaavhengigheten til prediksjonane. 

4. For nokre få tidssteg vart global adveksjonsvektor samanlikna med fordelte vektorfelt estimert for 
same tidssteg for å vurdere representativiteten til romleg uniform adveksjon. 

 
 
Resultat og konklusjonar 
 
Generelt viser studien at ein kan oppnå gode varsel for utbreiing av kraftige nedbørepisodar ved bruk av 
radardata i nowcasting. Resultata viste at adveksjon (romleg bevegelse) er ein svært viktig faktor for å kunne 
prognosere hendingane korrekt. Dette stiller krav til kva slags modell som blir brukt. 
 
Euler-modellen for persistens (stabilitet) seier at forholda er stabile, anten som nivå eller som trend. Vêret 
om ein time blir altså varsla som anten det same som no, eller som at noverande utvikling fortsett. Det er 
ingen romleg bevegelse med i modellen, dvs at ei regnbye som flytter seg mellom to tidspunkt blir modellert 
som minkande nedbør ein stad og veksande nedbør ein annan. Langrange-modellen legg og vekt på 
persistens, men her er i tillegg romleg bevegelse med i modellen. Det vil seie at vêret om ein time kan 
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varslast som no, men flytta 12 km mot nordaust. Mange vêrsituasjonar kan skildrast enklare og betre med 
Lagrange-modellen enn med Euler-modellen. 
 
Resultata viser at metodar som inkluderer adveksjon (Lagrange-modellen) gjev signifikant betre simuleringar 
enn metodar som ikkje inkluderer romleg bevegelse (Euler-modellen).  Samtidig kan bruk av global 
adveksjonsvektor føre til feilaktige varsel for lengre leietider når nedbørepisoden har konvektive trekk med 
signifikant ulike bevegelsar internt, og bruk av fordelte vektorar i adveksjonsberekningane kan av og til gje 
urealistisk stor dispersjon i det varsla feltet. 
 
Dei to analyserte nedbørepisodane hadde ulik utviklingshastigheit og utbreiing i rommet, begge deler speler 
ei viktig rolle for kor godt ein kan varsle hendinga. For begge episodane og uavhengig av metode vil 
storleiken på verifiseringsområdet bety noko: når dette aukar frå eit enkeltpiksel (1 km2)  til opp mot ein 
region på 11 x 11 pikslar (121 km2) blir resultata gradvis betre. Derfor er det eit poeng at  storleiken på 
verifiseringsområdet blir sett basert på kva slags krav ein har til geografisk treff  for varsla.  
 
Kva slags terskelverdi ein bruker for minimumsrefleksiviteten er også viktig. Terskelverdiar på 7, 25, 30, 35 
og 40 dBZ (grovt tilsvarande 0.1, 1, 3, 6 og 12 mm/time) vart brukt, og generelt viser det seg at ein 
grenseverdi på 7 dBZ vil gje god prediktabilitet for utbreiinga av nedbørhendingane. Med høgare grenseverdi 
for minimumsrefleksiviteten minkar varslingstreffsikkerheiten for begge episodane. Dette viser at meir 
intense trekk ved nedbørfeltet har liten romleg utbreiing og derfor er vanskelege å predikere. Dette gjev 
konsekvensar for bruk av nowcasting/korttidsvarsling i urbane flaumvarslingssystem sidan det er dei mest 
intense hendingane som er viktigast i den samanhengen. 
 
Resultata vart vist fram og diskutert på ein todagars workshop med nowcasting- og nedbørekspertar frå 
Norge, England og Italia, og norske brukarar frå kommunar, vegvesen og Jernbaneverk. Workshopen viste at 
problemstillinga er høgrelevant også i Norge, og at problema rundt urban flaum, jordskred i små nedbørfelt 
som konsekvens av intensiv nedbør, og store snøfall i urbane områder, er aukande. For nedbør i form av regn 
har metodikken som kan brukast i varslingssystem kome lenger enn for snø, som er meir komplisert i 
radarsamanheng.   
 
Vidare arbeid 
 
I vidare arbeid er det fleire moment som bør undersøkast: 
-  Med lengre leietider er det data langt unna radaren som blir brukt, desse er også mest påverka av kjende 
feilkjelder.  
-  Både for datakvaliteten generelt og med lenger leietider spesielt vil det kunne vere fordelar å ved å bruke 
ein mosaikk av fleire radarar i staden for ein enkeltradar som i denne studien.  
-  Dei største urbane flaumane er vanlegvis generert av konvektive nedbørepisodar karakterisert ved høg 
intensitet og liten romleg utbreiing, dette er også dei episodane som er vanskelegast å varsle. Det vil derfor 
vere viktig å evaluere varslingsmetodar mot episodar av denne typen. 
-   Det vil vere nyttig å vite meir om kor lenge ein typisk småskala konvektiv episode varar, både for å setje 
grenser for ekstrapolering i tid og for å kunne modellere. 
-  Ved å inkludere fleire kjelder enn radardata vil ein kunne berekne den fordelte adveksjonsvektoren også i 
ruter utan nedbør og redusere usikkerheita. 
-  Ved bruk av både global og fordelt adveksjonsvektor blir varsel berekna med utgangspunkt i at vektorfeltet 
er stasjonært i tid, det bør undersøkast i kva slags situasjonar og i kor stor grad dette er riktig.  
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1 Introduction 
 
Quantitative precipitation forecasting (QPF) is an important area of research within hydrology where the 
major aim is to improve the accuracy and increase the useful lead time of flood and flash-flood warning 
systems. For the flood prediction of large catchments with areal extents in the order of several thousands of 
square kilometres and response times in the order of several hours to days, the large scale QPFs by 
Numerical Weather Prediction models are usually sufficient to at least assess general trends. However, their 
probability to fail gets higher when moving to prediction in small urban catchments. The smaller sizes of 
urban catchments combined with the fast and strong sensitivity of their responses to the variations of 
precipitation pose a challenge. A reasonable QPF in such catchments requires a precise estimation of the 
initial states which is normally only achieved by direct observation and high spatio-temporal forecast 
resolution. Even when this requirement is fulfilled, an acceptable QPF quality is achieved only for forecast 
lead times of a few hours (0-3 hours).Short-term forecasting procedures with such short lead times are 
termed as "nowcasting".  
 
In current operational nowcasting systems, extrapolation of radar echoes is one of the primary mechanisms 
that are used to generate forecasts in the 0-3 hours time frame. As summarized in Ruzanski et al. (2011), 
strictly radar-based nowcasting methods belong to one of the following four categories (or a combination 
thereof): area-based, object-based, statistical, and probabilistic approaches. Area-based nowcasting 
approaches estimate a motion vector field over the entire radar coverage domain and have shown 
effectiveness in estimating the translation of a variety of precipitation pattern types (Germann and Zawadzki 
2002). Object-based nowcasting schemes attempt to identify areas of high reflectivity in radar fields and 
track the size, shape, and translation of coherent features in time across successive fields (Han et al. 2009). In 
order to incorporate knowledge of atmospheric dynamics, the statistical nowcasting methods represent 
atmospheric evolution by statistical models (Fox and Wikle 2005). Driven by the need for better description 
of uncertainty, the probabilistic approaches estimate the probability of encountering a precipitation rate 
above a certain threshold at each point in prediction domain (Dance et al. 2010). 
 
A radar –based nowcasting technique which can be grouped under area-based methods has been investigated 
in this study. The main objective of the investigation is two fold: (1) to do a preliminary assessment of the 
potential of using such a method for short-term forecasting of precipitation over Trondheim, and (2) to 
identify key issues which should be investigated further in order to fully exploit this potential. The technique 
is based on Lagrangian persistence and has been tested on two precipitation events which occurred on 13 
August 2007 and 28 June 2010.  
 
The report is organized as follows. The forecasting technique is briefly described in section 2. Section 3 
gives an overview of the data used, the prediction domain and the selected events. The various performance 
measures applied for evaluation of the forecasts are described in section 4. Results from the application of 
the technique on the two events are presented in section 5. In section 6, a summary is given and some 
conclusions are drawn based on the application on the events. Finally some issues for further research are 
identified and listed under section 6. 
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2 Forecasting technique 

2.1 Formulation 
 
Most of the radar-based QPF procedures may be described using the following two-dimensional 
conservation equation 
 

𝑑𝑍
𝑑𝑡

=
𝜕𝑍
𝜕𝑡

+
𝜕𝑢𝑍
𝜕𝑥

+
𝜕𝑣𝑍
𝜕𝑦

                                                                    (1) 

 
where 𝑍(𝑥,𝑦) is the radar reflectivity at the point (𝑥,𝑦), and 𝑢, 𝑣 are the velocity components of the 
reflectivity field. When the compressibility term 𝑍(𝜕𝑢 𝜕𝑥⁄ + 𝜕𝑣 𝜕𝑦⁄ ) is neglected, Eq. (1) reduces to 
 

𝑑𝑍
𝑑𝑡

=
𝜕𝑍
𝜕𝑡

+ 𝑢
𝜕𝑍
𝜕𝑥

+ 𝑣
𝜕𝑍
𝜕𝑦

                                                             (2) 

 
One of the simplest forecasting methods is to set the local rate of change (𝜕𝑍 𝜕𝑡⁄ ) to zero. This is equivalent 
to keeping the most recent observation frozen and taking it as the prediction. This approach is usually termed 
as Eulerian persistence and can be expressed as 
 

�̂�(𝑡0 + 𝜏, 𝑥,𝑦) = 𝑍(𝑡𝑜, 𝑥,𝑦)                                                            (3) 
 
where 𝑍 is the observed reflectivity field, 𝑡0 is the start time of the forecast, τ is the lead time, and �̂�(𝑡0 +
𝜏, 𝑥𝑦) is the forecasted reflectivity at time 𝑡0 + 𝜏 and position (𝑥,𝑦). 
Another popular forecasting approach, called Lagrangian persistence, is to set the source-sink term to zero 
 

0 =
𝜕𝑍
𝜕𝑡

+ 𝑢
𝜕𝑍
𝜕𝑥

+ 𝑣
𝜕𝑍
𝜕𝑦

                                                               (4) 

 
and advect 𝑍 following the motion of precitation parcels. Therefore, for a displacement vector (∆𝑥,∆𝑦), a 
forecast is generated using 
 

�̂�(𝑡0 + 𝜏, 𝑥𝑦) = 𝑍(𝑡𝑜, 𝑥 − ∆𝑥,𝑦 − ∆𝑦)                                                  (5) 
 
Lagrangian persistence can be extended by introducing a source-sink term 𝑆𝑍 = 𝑑𝑍 𝑑𝑡⁄ , which allows for 
growth and dissipation of precipitation. Then Eq. (5) becomes 
 

�̂�(𝑡0 + 𝜏, 𝑥,𝑦) = 𝑍(𝑡𝑜, 𝑥,𝑦 − 𝛼) + 𝑆𝑍(𝑡𝑜, 𝑥,𝑦 − 𝛼)                                    (6)  
    

In this study Lagrangian persistence with no source-sink term has been employed as the main forecasting 
technique and Eulerian perisitence has been used as the reference forecast with which the skill of the 
Lagrangian persistence is compared. Therefore Eq. (5) is the general equation of the forecasting technique 
used here. 
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2.2 Advection vector estimation 
 
The first step in the forecasting procedure is the estimation of the advection vectors which describe the storm 
motion. Two different methods were used to generate global (spatially uniform) and spatially distributed 
vectors. The global advection vector estimation is based on a well known maximum cross-correlation 
technique (Li et al., 1995). The technique starts by taking the first map from two successive maps and 
extracting a rectangular domain for which advection velocity and direction is to be determined. Then the two 
dimensional array constituting this domain is horizontally shifted in all directions within a given radius and 
compared with the corresponding array from the consecutive map. The comparison is made by computing 
the correlation coefficient between each array-pair. Finally the location of the array in the second map for 
which the correlation is maximum is selected as the endpoint of the translation vector.  
 
Though the cross-correlation technique is robust and relatively accurate, it becomes computationally 
intensive when applied for estimating spatially distributed vectors. The estimation of distributed vectors is 
based on the optical flow algorithm developed by Farnebäck (2003). In computer vision, optical flow is one 
of the standard techniques used for motion vector estimation from two subsequent images. At the heart of 
optical flow methods is Eq. (4), which is commonly referred to as the optical flow equation in computer 
science. The underlying idea is to explain the discrete temporal (∆𝑍 ∆𝑡⁄ ) and spatial derivatives 
(∆𝑍 ∆𝑥 ⁄ 𝑎𝑛𝑑 ∆𝑍 ∆𝑦 ⁄ ) with a continuous motion field. It is assumed that that precipitation objects remain 
constant in intensity and only change in shape: 𝑑𝑍 𝑑𝑡 = 0 ⁄ . 𝑑𝑍 𝑑𝑡 ⁄ is seen in the coordinates of the flowing 
data (Lagrangian framework). This implies that all changes in intensity are explained by motion. Then the 
only two unknowns in Eq. (4), 𝑢 and 𝑣, are solved for using additional constraining equations. Although the 
constant intensity assumption is not strictly obeyed by precipitation, previous application of optical flow 
algorithms have produced sensible flow patterns that resemble the actual motion of precipitation well 
(Bowler et al. 2004, Pfaff and Bárdossy 2011).  
 

2.3 Advection of radar reflectivity 
 
After the advection vector field has been estimated an advection scheme is used to calculate the forecasts at 
different lead times. When using global advection vector, all the pixels in the observed image are displaced 
equally over the forecast interval. This results in a moving precipitation field that preserves its spatial pattern 
since translation is applied equally to each pixel. While the use of a single advection vector is a gross 
approximation for forecasting at synoptic scales, it is still a useful approach when working on domains with 
limited spatial extent, such as the coverage of a single radar. For the advection with distributed vectors, a 
forward scheme is used where each pixel is assigned a displacement vector which is kept constant over the 
entire forecast period. In other words, the displacement vector is advected together with the precipitation. 
When the displacement vector assigned to a given pixel is a non-integer number of pixels (spatial resolution 
of the image) per time step, an advected precipitation pixel will not be aligned with the pixel borders. The 
value from such a pixel is redistributed to the neighbouring pixels according to the proportion of the 
intersecting area. The forward scheme has the advantage of being mass conservative. In addition, embedded 
features may be appropriately advected since the scheme allows independent advection of two area of 
precipitation (Bowler et al. 2004). 
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2.4 Growth and dissipation of precipitation 
 
The source-sink term in Eq. (6) has been set to zero and Eq. (5) is used as the main equation in the 
forecasting technique investigated here. The persistence of growth or dissipation of precipitation is low for 
convection at the storm-scale and other factors such as daytime and synoptic forcing may dominate over 
advection. While radar precipitation accumulation procedures have benefited from the interpolation of 
intensities between successive radar observations, extrapolating changes in intensity and size have yielded 
little if any improvement to forecasting procedures at the storm-scale (Tsonis and Austin 1981; Wilson et al. 
1998).  
 

2.5 Choice of reflectivity as the variable for the analysis 
 
Eqs. (1)-(6) may be formulated in terms of precipitation rate (𝑅) as well. In fact, the main variable of interest 
when applying precipitation forecasting for flood warning is precipitation rate. However, it was decided to 
use logarithmic reflectivity (𝑑𝐵𝑍 = 10𝑙𝑜𝑔𝑍) throughout this study because of the following reasons: 

• If the advection vector estimation is applied to linear 𝑅 or linear 𝑍, the motion of a few pixels with 
high intensity will dominate the result. The differential motion of such pixels can be chaotic with 
very low persistence. The advection vectors resulting from such motion might improve only the 
forecasts for the shortest lead time while spoiling the forecasts beyond the shortest lead time. The 
use of logarithmic scale significantly reduces this influence from high intensity pixels.  

• Both the maximum cross-correlation and optical flow methods generally perform better on images 
with smoother variation in intensity (lower intensity gradients). 𝑑𝐵𝑍 images are smoother than 
images of linear 𝑍 or 𝑅. 

• The uncertainties in 𝑍 − 𝑅 relationships used for converting 𝑍 to 𝑅 may introduce erroneous spatial 
patterns of precipitation. A very good example where this is especially true is when one uses 
spatially constant 𝑍 − 𝑅 parameters for inhomogeneous precipitation field with both stratiform and 
convective precipitation.  

• The evaluation of the forecasts can be made by comparing them with observed reflectivity fields and 
not precipitation rates on the ground (Section 4). 

• In the context of forecasting, relative errors are of more importance than absolute errors. An error of, 
for instance, 4 mm/hr is large for a forecasted value of 5mm/hr while it is insignificant for values 
beyond 50 mm/hr. Working in logarithmic domain is one way of considering relative errors.  

• And finally, reflectivity is the quantity directly measured by the radar. 
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3 Setup of the experiment 
 

3.1 Prediction domain 
 
The prediction domain used in this study is a 200x200 km rectangular area centred on the Rissa radar (Figure 
1). Ideally, the prediction domain should be limited to the boundary of the Trondheim municipality or even 
the region in the municipality which is prone to flooding. However, the type of events which are of interest 
here have limited spatial extent and move relatively fast. Combined with the 15min scanning interval of the 
Rissa radar, this will give too little data to work with. The extension of the prediction domain to the 200x200 
km box gives sufficient data to carry out evaluation of forecasts even when considering a few separated 
events as has been done in this study. It is assumed that the precipitation occurring outside Trondheim has 
the same probability of occurring inside Trondheim as well. The upped limit of the extent of the prediction 
domain is dependent on the longest lead time and the average velocity of the storm to forecast. 
 

 
Figure 1. Map showing the location of Rissa radar (red cross), administrative boundary of Trondheim 
municipality (yellow polygon), extent of the prediction domain (square box) and the maximum radar 
coverage (circle).  
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3.2 Data 
 
Radar reflectivity data from the Rissa Radar were obtained from the Norwegian Meteorologic Institute 
(MET) for use in this study. The radar is located in Olsøyheia in the municipality of Rissa and is situated at 
an elevation of 616m above sea level. It is a C-band Doppler radar with a half-power beam width of 1 
degree. The raw radar data obtained consist of volume scans of radar reflectivity collected in polar 
coordinates in the form of plan position indicators (PPIs). Stationary echoes in the lowest PPIs are removed 
during data acquisition by using a Doppler filter. The temporal resolution of the radar data is 15min. The 
azimuthal and radial resolutions of the lowest PPI used are 1degree and 250m respectively. The polar 
reflectivity maps were projected to the ground level assuming standard atmospheric refraction of the radar 
beam and converted to cartesian maps with 1x1 km resolution through area-weighted interpolation. These 
cartesian reflectivity maps are used both as input to the forecasting procedure and for evaluating the 
forecasts. For the analysis in this study, a lower reflectivity threshold of 7dBZ is used. This corresponds to a 
precipitation rate of 0.1mm/hr using Marshall-Palmer Z-R relation with parameters 𝑎 = 200 and 𝑏 = 1.6 
(Marshall and Palmer 1948). Pixels with measurements below this threshold are considered as "no 
precipitation" pixels. 
 
The reflectivity data has not been corrected for errors due to the vertical profile of reflectivity, visibility, 
attenuation and others. This reduces the quality of the data in terms of quantitative precipitation estimation. 
But the significance of these errors is much less in the context of short-term forecasting for flood warning 
purposes in urban areas. It is the exceedances over given thresholds which are important and not the precise 
quantities in the forecasts. One type of error which cannot be neglected is the contamination by ground 
clutter. The residual clutter remaining after doppler-filtering will directly affect the advection vector 
estimation and spoil the forecasts. In order to avoid this, a clutter mask was generated using a combination of 
a static map with simulated clutter and a map with pixels with too high frequency of occurrence. The pixels 
falling within this mask were excluded from the entire process. 
Rainfall measurements on the ground were available from six tipping-bucket rain gauges situated in 
Trondheim. These measurements were used to calculate return periods of the candidate events which passed 
over Trondheim.   
 

3.3 Selected events 
 
Two events which occurred on 13 August 2013 and 28 June 2010 were selected for the analysis based on the 
following criteria: 

• The event should have passed over Trondheim. 
• The return period should be at least 20 years as calculated from ground observations in Trondheim. 
• The event should contain convective elements either as embedded convection or as isolated cells. 
• There should not be significant portions of two separate events coexisting in the prediction domain at 

the same time. 
The characteristics of each event are summarized in Table 1. The event of 28 June 2010 was selected even if 
it had a return period of 2 years since the proportion of its precipitation are with high intensity was 
equivalent to that of the 13 August 2007 event. The event of 13 August 2007 caused overloading of the 
urban drainage system and the resulting flood caused large damages (Risholt 2009; Thorolfsson et al. 2008). 
The beginning of each event is defined as the first time step when a part of the precipitation envelop entered 
the prediction domain and the end is defined as the time step just before it cleared out of the domain. The 
synoptic situations during the two events are shown in Figure 2 and Figure 3. Both events are associated with 
the passage of a trough. The time series of radar images scanned during the passage of the storms are shown 
in Figure 4 and Figure 5.  
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Table 1. Statistics of the two events used in this study. The extent is defined as the precipitation area falling 
inside the 100x100km prediction domain and with precipitation rates higher than 7dBZ (0.1mm/hr). The last 
four columns give the fraction of that area with rates higher than the indicated reflectivity values 
(precipitation rates). The fractions are averages over the entire period. For instance, the proportion of the 
area with reflectivity values (precipitation rates) higher than 40dBZ (11.5mm/hr) over the 6-hr duration of 
the August 2007 event was 2.4%. 

 
Date 

 

 
Start 

(UTC) 

 
Duration 

(hr) 

 
Return 

period (yr) 

 
Extent 

(103 km2) 

>25dBZ 
(1.3mm/hr) 

(%) 

>30dBZ 
(2.7mm/hr) 

(%) 

>35dBZ 
(5.6mm/hr) 

(%) 

>40dBZ 
(11.5mm/hr) 

(%) 
 

13 Aug 2007 
 

15:30 
 

6 
 

>100 
 

7.5 
 

37 
 

22 
 

9.0 
 

2.4 
28 Jun 2010 14:15 7 2 8.5 45 29 12 2.4 

 
 
 

 
 
 
 
 
 

 

Figure 2. Synoptic situation during the event of 13 August 2007 (Source: MET). 
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Figure 4. A time series of radar images at 1 hour interval for the event of 13 August 2007. 

 

 

Figure 3. Synoptic situation during the event of 28 June 2010 (Source: MET). 
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Figure 5. A time series of radar images at 1 hour interval for the event of 28 June 2010. 

 
 

3.4 Summary of the steps in the experiment 
 
The following steps were carried out for each selected event: 

1. Determine the advection vector field between successive reflectivity images 
2. Generate forecasts for lead time of up to 2hours with 15min interval by advecting the radar 

reflectivity using the global advection vector. 
3. Repeat step 2 using Eulerian persistence as the forecasting model 
4. Calculate performance measures by comparing the forecasted and observed radar images 
5. Repeat step 4 for higher reflectivity thresholds (25, 30, 35 and 40dBZ)  and larger verification areas 

(3x3, 5x5, 7x7, 9x9 and 11x11 km) to analyse the scale dependence of predictability 
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4 Evaluation criteria 
 
The following six performance measures were used to evaluate the forecasting procedure: correlation 
coefficient (CORR), probability of detection (POD), false alarm ratio (FAR), critical success index (CSI), 
equitable threat score (ETS) and the conditional mean absolute error (CMAE). They measure the agreement 
between the forecasts (F) and the observations (O) based on a pixel-to-pixel comparison. The correlation 
coefficient CORR is defined as: 
 

𝐶𝑂𝑅𝑅 =
∑ (𝑂𝑖 − 𝑂�)(𝐹𝑖 − 𝐹�)𝑁
𝑖=1

�∑ (𝑂𝑖 − 𝑂�)2𝑁
𝑖=1 �

0.5
�∑ (𝐹𝑖 − 𝐹�)2𝑁

𝑖=1 �
0.5                            (7) 

 
where the bar represents the spatial average values and N is the number of pixels in the prediction domain. 
The correlation coefficient is not a sufficient measure of agreement since it is not sensitive to proportional 
differences between the observation and forecasts. 
POD, FAR, ETS and CSI are categorical scores which describe the skill of predicting the occurrence of 
precipitation above a given threshold. They are based on a 2 x 2 contingency table  as given in Table 2 and 
are defined as follows: 
 

𝑃𝑂𝐷 =
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠
                                                                         (8) 

 

𝐹𝐴𝑅 =
𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

ℎ𝑖𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠
                                                               (9) 

 

𝐶𝑆𝐼 =
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠
                                              (10) 

       
        and 
 

𝐸𝑇𝑆 =
ℎ𝑖𝑡𝑠 − ℎ𝑖𝑡𝑠𝑟𝑎𝑛𝑑𝑜𝑚

ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠 − ℎ𝑖𝑡𝑠𝑟𝑎𝑛𝑑𝑜𝑚
                  (11) 

 
where  ℎ𝑖𝑡𝑠𝑟𝑎𝑛𝑑𝑜𝑚 = (ℎ𝑖𝑡𝑠+𝑚𝑖𝑠𝑠𝑒𝑠)(ℎ𝑖𝑡𝑠+𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠)

ℎ𝑖𝑡𝑠+𝑚𝑖𝑠𝑠𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠+𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
               (12) 

 
 
 

Table 2. A general 2x2 contingency table used in the calculation of skill scores for a given threshold value T. 

  Forecasts 
  F > T F <= T 

Observations O > T Hits Misses 
O <= T False alarms Correct negatives 
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The CSI, also known as threat score, ranges from 0 to 1 where 0 indicates no skill and 1 is a perfect score. It 
measures the fraction of the observed and/or forecasted precipitation that was correctly predicted. Unlike the 
POD and the FAR, it takes into account both false alarms and misses, and is therefore a more balanced score. 
The ETS, also known as Gilbert skill score, is similar to CSI but accounts for hits associated with random 
chance. It ranges from -1/3 to 1 where 0 indicates no skill and 1 is a perfect score.  
 
Neither the correlation coefficient nor the categorical skill scores provide a direct measure of how accurate 
the forecasted quantities are. This is the main reason for including the conditional mean absolute error 
(CMAE) which is defined as follows: 
 

𝐶𝑀𝐴𝐸 =
1
ℎ𝑖𝑡𝑠

�|𝑂𝑖 − 𝐹𝑖|
ℎ𝑖𝑡𝑠

𝑖=1

                                                                     (13) 

 
Owing to the nature of the Z-R relation, CMAE value in logarithmic reflectivity can be expressed as a factor 
in terms of linear precipitation rates. Therefore, CMAE in dBZ corresponds to a relative error in mm/hr. For 
example, for an exponent of 1.6 in the Z-R relation (Marshall and Palmer 1948), a CMAE of 9.5dBZ 
corresponds to a factor of 4 for precipitation rates. As CMAE is computed over only the hits and not the 
entire domain, it should be combined with POD values. A POD of 40% and CMAE of 9.5dBZ indicate that 
the occurrence of precipitation has been correctly predicted for 40% of the precipitation area and that the 
average error for this area is a factor of 4 in terms of precipitation rates. 
 
Not all the performance measures described here have been referred to in the discussions (Section 5). The 
motivation behind presenting all the performance measures in the results is to give a fuller picture of the 
performance to readers with different perspectives. 
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5 Results and discussions 
 

5.1 Predictability of precipitation 
 
The performance measures computed for the event of 13 August 2007 and 28 June 2010 are shown in Figure 
6 and Figure 7 respectively. A degradation of performance with lead time is obvious from the figures and is 
expected. The Lagrangian persistence model performs significantly better than the simple Eulerian 
persistence for both events. This indicates that advection is a very important factor for successfully 
predicting the events. The comparison between the performance measures of the two events (Figure 8) shows 
that the event of 28 June 2010 has better predictability. This difference in predictability can be attributed to 
the difference in the rates at which the precipitation patterns in the two cases evolve with time. The event of 
13 August 2007 had faster temporal evolution with its precipitation envelop significantly deforming in shape 
between the 15 min scanning interval and its convective region showing differential motion. The effect of 
this evolution was also evident from the global advection vector estimation results where the average of the 
maximum cross-correlation between successive images was lower for the event of 13 August 2007. This 
result is in line with the general finding in previous studies that storms with smaller spatial scale have less 
predictability than large scale storms (German and Zawadski 2002; Turner et al. 2004). The event of 28 June 
2010 had a much larger spatial extent (Figure 5). 
 
Assigning an absolute number to the predictability of a single event is difficult since this depends on the 
performance measure used, how it was calculated and what is considered acceptable or important by the user 
of the forecasts. In order to fairly compare results from different studies, the conditions under which the 
studies were carried out should be similar. These include, among others, type of precipitation events 
considered, extent of the prediction domain, spatial resolution of the forecasts, type of variable used 
(reflectivity or precipitation rate) and minimum threshold used to define 'no precipitation' pixels. One 
predictability measure used in previous studies (Zawaski et al. 1994; Grecu and Krajewski 2000) is the 
decorrelation time; defined arbitrarily as the moment the correlation becomes less than 0.5. Using the same 
definition here, the predictability of the 13 August 2007 event becomes slightly over one hour while that of 
the 28 June 2010 event extends up to almost two hours. The CSI can also be a useful reference as the 
measure of predictability since it is a score frequently used in large forecast evaluation projects (Ebert et al 
2004, Wang et al. 2009; Wilson et al. 2010). CSI values obtained for the two events generally indicate good 
predictability when compared with values obtained in other studies (Berenguer et al. 2011) for similar type 
of events. 
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Figure 6. Performance measures calculated for the event of 13 August 2007. 
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Figure 7. Performance measures calculated for the event of 28 June 2010. 
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Figure 8. Performance measures calculated for the two selected events. 

 

5.2 Scale dependence of predictability 
 
The results presented in the previous section are all based on a single reflectivity threshold of 7dBZ, which is 
used as the minimum reflectivity below which pixels are considered as 'no precipitation'. While these results 
indicate the predictability of the storm envelope, they do not give information on the scale dependence of 
predictability. A simple method of scale decomposition is to convert the observations and forecasts into 
'precipitation' and 'no-precipitation' binary maps using various intensity thresholds and then compare these 
maps using the categorical skill scores described in section 4 (German and Zawadski 2002, Van Horne et al. 
2006). This is possible due to the intensity-size relationship evident in precipitation fields. Following this 
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method, the CSI was calculated for four reflectivity thresholds higher than the 'no precipitation' threshold 
(Figure 9). These are 25, 30, 35 and 40dBZ corresponding to1.3, 2.7, 5.6 and 11.5 mm/hr respectively 
according to the Marshall Palmer Z-R relation (Marshall and Palmer 1948). The CSI was chosen here due to 
its wide application and because it synthesizes the information contained in POD and FAR. 
 
The plots in Figure 9 clearly reveal the effect of intensity threshold on the forecasting skill for the two 
events. The forecast skill decreases for both events as the threshold gets higher. A reduction in CSI for 
higher intensities and small scale features had been reported in previous studies. In the Beijing 2008 
Olympics’ Forecast Demonstration Project, where eight nowcasting systems participated, Wang et al. (2009) 
showed that the maximum CSI for forecasts of hourly precipitation accumulation greater than 1 mm/h 
increased from 0.2 in 2000 to 0.45 in 2008, although the maximum CSI for rain greater than 10 mm/h was 
still only 0.15. Berenguer et al. (2011) report a CSI for 60 minute forecasts of reflectivity (dBZ) at 1 km 
resolution of approximately 0.5 for widespread rainfall, and in the range of 0.1 to 0.3 for isolated convection. 
Lee et al. (2009) found that the CSI decreased with increasing rain rate and forecast lead time: the CSI for 60 
minute rainfall forecasts decreased from 0.60 for 0.1 mm/h to 0.2 for 10 mm/h rain rates. Ebert et al. (2004) 
reported that the CSI for rain greater than 20 mm/h is essentially zero. Precipitation features at scales of few 
kilometres typically evolve relatively faster, have shorter lifetimes and show differential motion. Such 
features significantly contribute to the decorrelation of Lagrangian persistence. Unfortunately, the type of 
precipitation which is of interest in urban flooding, convective precipitation, is exhibits one or all of the 
above characteristics. Considering the typical intensities of convective precipitation, this implies that more 
intense features in a precipitation field are typically of small spatial scale and thus less predictable.  
    
Another factor which adds to the overall reduction of CSI values in this study is the high spatial resolution of 
the forecasts. The calculation of all the performance measures is based on pixel-to-pixel comparisons at the 
resolution of 1 km. The results in stricter evaluation with lower tolerance to errors made due to misplacement 
of predicted features. If a forecast at pixel level does not compare well with the available observation, it does 
not mean that the performance is poor. This is why some studies employ other evaluation methods, such as 
object-based methods, in addition the pixel-to-pixel verification (Zahraei et al. 2012). In order to analyse the 
effect of increasing tolerance to error due to misplacement, the CSI was calculated for an extended 
verification area surrounding a forecasted pixel. The verification areas are square regions with side lengths 
ranging from 3 to 11 pixels. When evaluation over an extended grid, each individual pixel is compared 
against all of the pixels located in the square region surrounding that pixel. For example, a 'hit' is registered if 
the forecast at the pixel of interest and the observation in one of the surrounding pixels both exceed the 
specified threshold. Such an approach had been used by Van Horne et al. (2006). 
 
The results of the performance for larger verification area are presented in Figure 10 and Figure 11 for the 13 
August 2007 and 28 June 2010 events respectively. Both figures illustrate the increase in forecast skill, as 
quantified by the CSI, as the verification area is increased from a single pixel (1 km2) up to an 11 x 11 pixel 
region (121 km2). CSI values for the smallest verification area correspond to the results shown in Figure9. 
Though the forecast skill improves for both events, the rate of improvement varies between the events. This 
suggests that errors due to misplacements are dependent on storm structure and scale. While there are 
improvements in forecast skill score at all reflectivity thresholds, the improvements are greater for higher 
thresholds in the case of both events. This is likely due to the fact that features which are smaller than the 
size of the verification area are usually intense features with higher probability for misplacement. It can also 
be observed that the rate of improvement reduces with lead time. This is probably due to the initiation of new 
features occurring after the time of forecast, the death of features observed at the time of forecast or the fast 
temporal evolution of existing features in the precipitation field. Increasing the verification area does not 
have an effect in such cases since Lagrangian persistence with a global advection vector involves the 
translation of a frozen precipitation field. 
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Figure 9. CSI at several reflectivity thresholds versus forecast lead time for the two events. 
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Figure 10. CSI at several reflectivity thresholds versus forecast verification area for the event of 13 August 
2007. 
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Figure 11. CSI at several reflectivity thresholds versus forecast verification area for the event of 28 June 
2010. 

 

5.3 Representativeness of a global advection vector 
 
The forecasts evaluated in this study were generated using a global advection vector. This assumption of 
spatially uniform advection introduces errors in the forecasts when there are changes in the relative location 
of storm features. Various studies have documented that differential motions exist within a storm and are 
commonly observed in the case of embedded convective cells (Bellon and Zawadski 1994; German and 
Zawadski 2002). Both the events analysed in this study have convective features either as embedded cells or 
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with a trailing stratiform region. Figure 12 presents an example from the event of 13 August 2007 where 
differential motion of convective features has resulted in erroneous forecasts at longer lead times. It can be 
observed that the convective region has been misplaced for lead times beyond 60min. At a first glance, it 
seems that the whole precipitation area should have been advected more to the east. This implies a wrong 
global advection vector. However, a closer look at the time series of observed images revealed that the global 
advection vector estimated before each forecast was representative of the motion of the majority of the 
pixels. The change in morphology of the main storm envelop makes it difficult to see this representativeness 
from the eight images in Figure 12. But it can be easily observed that the smaller features south of the main 
storm envelop have been forecasted to the same location for all the lead times. The ellipse marked at the 
same position in all the images encloses these features in all the forecasts for all lead times. The main reason 
for the failure of forecasting the position of the convective region at the longer lead times is that this region 
actually had a larger advection component to the east than was indicated by the global advection vector. This 
difference is shown in Figure 13 where both the global and distributed advection vectors have been plotted 
over two successive observed images. The distributed advection vector estimation shows how the motion 
direction of the convection region deviates towards the east as compared to the global vector which shows 
very little advection component to the east. 
 
The results (not presented here) from the few attempts made in this study to use the distributed vectors in the 
forecasting of the 13 August 2007 event revealed a shortcoming of the forward advection scheme described 
in Section 2.3. In this scheme the vector obtained for each pixel is kept constant throughout the forecast 
period when advecting the precipitation from that pixel. For advection vectors which point away from each 
other, as the ones shown in Figure 13, this results in unrealistic divergence of the storm area at longer lead 
times. This divergence creates a 'banded' structure in the forecasted field. And it also results in intensification 
of intensity in the case of converging vectors. Therefore, a backward advection scheme as described by 
German and Zawaski (2002) may be a better approach.  
 
It is not always the case that using spatially distributed advection vectors will yield better forecasts. The 
small scale features inside a storm may have differential advection velocities. Combined with the growth and 
decay process within the storm, such features may have shorter predictability. The storm envelop, on the 
other hand, usually has a higher degree of predictability as the envelop motion will remain relatively stable 
over longer lead times. In such situations, it is advantageous to not let the motions of the small features affect 
the forecasts for lead times which are beyond the lifetime of these features. In view of this, various 
techniques have been proposed for smoothing the precipitation field to separate or filter out the small and 
perishable features from the large-scale motion (Seed 2003). The event of 28 June 2010 had several dynamic 
small scale features within the storm while the large scale feature had relatively higher degree of 
predictability. The forecasts for this event were not significantly affected by the differential motions of the 
small scale features since the maximum cross-correlation method of estimating global vector is not sensitive 
to the presence of such features. Samples from the forecasts of this event are shown in Figure 14. The 
position of the storm envelop has been well predicted. In Figure 15 both the global and distributed advection 
vectors have been plotted over two successive observed images from this event. 
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Figure 12. Observed radar image for 13 August 2007 18:45 and forecasted images generated for the same 
time at different lead times.  For a perfect forecast all the images should be identical. The ellipse is located 
at the same position in all the images. 
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Figure 13. Global and distributed advection vectors estimated between observed images at 18:00 and 18:15 
on 13 August 2010. 



 

PROJECT NO. 
12X846 

REPORT NO. 
TR A7379 
 
 

VERSION 
1 
 
 

28 of 33 

 

 
Figure 14. Observed radar image for 28 June 2010 16:15 and forecasted images generated for the same 
time at different lead times.  For a perfect forecast all the images should be identical. 



 

PROJECT NO. 
12X846 

REPORT NO. 
TR A7379 
 
 

VERSION 
1 
 
 

29 of 33 

 

 
Figure 15. Global and distributed advection vectors estimated between observed images at 17:00 and 17:15 
on 28 June 2010. 
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6 Summary and conclusions 
 
In this study, a nowcasting technique based on advection of radar images has been tested on two events over 
central Norway. Both events, which occurred on 13 August 2007 and 28 June 2010, had convective features 
with high precipitation intensity. The following steps were carried out to generate forecasts for both events 
and evaluate the potential of the technique:  

• The advection vector between successive reflectivity images was estimated. The global advection 
vector was estimated using a maximum cross-correlation technique while the estimation of 
distributed advection vectors was accomplished using an optical flow algorithm. 

• Forecasts were generated for lead times of up to 2 hours with 15 min interval by advecting the radar 
reflectivity using the global advection vector. The extent of prediction domain is a 200x200 km2 
square region centred on the location of Rissa radar and the spatial resolution of the forecasts is 1x1 
km2. 

• Six performance measures were calculated by comparing the forecasted and observed radar images. 
This calculation was done for several reflectivity thresholds (7, 25, 30, 35 and 40 dBZ) and 
verification areas (1x1, 3x3, 5x5, 7x7, 9x9 and 11x11 km2) to analyse the scale dependence of 
predictability. 

• For a few time steps, the global advection vectors were compared to the distributed advection vector 
field estimated for the same time interval in order to assess the representativeness of a spatially 
uniform advection. 

 
The results from the above experiment indicate the following: 

• The Lagrangian persistence model performs significantly better than the simple Eulerian persistence 
for both events indicating that advection is a very important factor for successfully predicting the 
events. 

• The different performance obtained for the two events implies that storm characteristics such as rate 
of temporal evolution and spatial scale play a role in determining the degree of predictability. 

• The performance measures calculated for the minimum reflectivity threshold of 7dBZ generally 
indicate good predictability of the storm envelope when compared with the same measures obtained 
in other studies. 

• The forecast skill decreases for both events as the reflectivity threshold gets higher. This shows that 
more intense features in the precipitation fields are of small spatial scale and thus less predictable. 
This has greater implications for the application of nowcasting in urban flood warning systems since 
it is intense precipitation features which matter the most in such applications. 

• The forecast skill improves for both events as the verification area is increased from a single pixel (1 
km2) up to an 11 x 11 pixel region (121 km2). This incremental improvement is evident at all 
thresholds but gets higher for higher thresholds. Therefore, the extent of the verification area should 
be determined based what precision is required in terms of positioning of the intense features storm. 

• The use of global advection vector could lead to erroneous forecasts at longer lead times when there 
are convective features with significant differential motion.  

• Application of the forward advection scheme using the distributed vectors results in forecasted fields 
which show unrealistic dispersion in the case of divergence and intensification in the case of 
convergence.   
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7 Further research 
 
The following issues need further research and can potentially lead to improved results through the efficient 
utilization of radar data in nowcasting: 

• The radar data used in this study had not been corrected for errors due to non-uniform vertical profile 
of reflectivity, incomplete beam filling and attenuation. For generating forecasts with longer lead 
times, one has to advect the precipitation observed at longer distance from the radar. But it is the 
observations at longer distance which suffer the most from the above error sources. It is, therefore, 
important to check the degree to which such errors introduce 'misses' due to underestimation of 
reflectivity or 'false alarms' due to overestimation.    

• When using images from a single-radar, the lead time of useful forecasts obtained by extrapolation 
of radar reflectivity is strongly limited by the maximum range of the radar. There is benefit to be 
gained both in terms of increased lead time and improved radar data quality when mosaics from a 
network of radars are used instead.  

• The types of precipitation features which are of greater importance in urban flood prediction are 
convective features which are usually characterized by higher intensity and smaller spatial scale. 
According to the results obtained here and in other studies, it is such features which are more 
difficult to predict. It is, therefore, important to focus the evaluation of forecasting procedures 
against events with such features.   

• Determining the typical life times of small scale convective features through studying their life cycle 
will help to set a limit beyond which such features should not be extrapolated. Moreover, such a 
study may provide knowledge on how the initiation, growth and death of these features can be used 
to build a model which can be included as a component in a nowcasting framework. 

• The semi-Lagrangian backward advection scheme for forecasting using distributed vectors as 
described in German and Zawaski (2002) may be a better approach than the forward advection 
scheme. This scheme allows for rotation, it is almost conservative in mass and it limits the loss of 
power at small scales that results from interpolation. 

• The distributed advection vector estimation method used in this study assigns vectors only to the 
pixels with precipitation. Refining the method to retrieve the vectors for all the pixels in the domain 
has several advantages. The main advantage is that uncertainty can be avoided by avoiding the 
assignment of a constant vector to each pixel for the entire period of the forecast. The refinement of 
the methods may be achieved by incorporating other source of meteorological information. 

• In the use of either the global or distributed vectors, forecasts are generated by assuming that the 
advection vector field is stationary in time. It should be investigate to what extent and for which 
cases this assumption is valid. 
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