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Abstract—A non-smooth (hybrid) 3D mathematical model of
a snake robot (without wheels) is developed and experimeritg ¢ 4
validated in this paper. The model is based on the framework
of non-smooth dynamics and convex analysis which allows us _
to easily and systematically incorporate unilateral contat forces v
(i.e. between the snake robot and the ground surface) and fttion ‘
forces based on Coulomb’s law of dry friction. Conventional
numerical solvers can not be employed directly due to set-Waed
force laws and possible instantaneous velocity changes. diefore, Fig. 1. The NTNU/SINTEF snake robot ‘Aiko’.
we show how to implement the model for numerical treatment
with a numerical integrator called the time-stepping methal.
This method helps to avoid explicit changes between equatie
during simulation even though the system is hybrid. Simulabn and the dynamics of snake robots have also been developed.
results for the serpentine motion pattern lateral undulation Purely kinematic 3D models have been presented in [6]-
and sidewinding are presented. In addition, experiments & 8] \here frictional contact between the snake robot and
performed with the snake robot ‘Aiko’ for locomotion by late ral ' . . .

the ground is not included in the model. Hence, contact

undulation and sidewinding, both with isotropic friction. For . 3
these cases, back-to-back comparisons between numericasults Petween the snake robot and the ground surface is either

and experimental results are given. modeled with frictionless passive wheels, or the parts ef th
Index Terms—Non-smooth dynamics, 3D snake robot, time- shake robot that touches the ground are defined as anchored
stepping method, kinematics. ' ' to the ground [9]. A model of the dynamics of motion is

needed to describe the friction forces a snake robot without
wheels is subjected to when moving over a surface. Most
|. INTRODUCTION mathematical models that describe the dynamics of snake

HEELED mechanisms constitute the backbone of mo&bot motion have been limited to planar (2D) motion [10]-
W ground-based means of transportation. Unfortunate[}?]- and 3D mathematical models of snake robots have only
rough terrain makes it hard, if not impossible, for sucFecently been developed [3], [7]. 3D models facilitate itegt
mechanisms to move. To be able to move in various terrai§ld development of 3D serpentine motion patterns such as
such as going through narrow passages and climb on ro@lﬂus-llftlpg and s_|deW|nd|ng. A de_scrlptlo_n of these roati
ground, the high-mobility property of snakes is recreated Patterns is found in e.g. [4]. A physics engine called theOpe
robots that look and move like snakes. Dynamics Engine (ODE) has been employed to simulate a 15-

Snake robots most often have a high number of degreesliBk Snake robot instead of deriving explicit expressiooisifs
freedom (DOF) and they are able to move forward withogtynamics in [14]. Such software makes it easy _to change the
using active wheels or legs. Due to the high number of DOgeOMetry of a snake robot if needed and the time needed to
it can be quite expensive and time-consuming to build aftjepare & working model is relatively short [15].
maintain a snake robot. This motivates the development ofOn @ flat surface, the ability of a snake robot to move
accurate mathematical models of snake robots. Such mod@Rvard is dependent on the friction between the ground

can be used for synthesis and testing of various serpentfyéface and the body of the snake robot. Hence, unilateral
motion patterns intended for serpentine locomotion. contact forces and friction forces are important parts @f th

The first working snake robot was built in 1972 [1]. Thidnathematical model of a snake robot. The friction forcesehav

robot was limited to planar motion, but snake robots capadi§ually been based on a Coulomb or viscous-like friction
of 3D motion have appeared more recently [2]-[6]. TogethéTPOdel [11], [12], and Coulomb friction has most often been

with the robots, mathematical models of both the kinematif0deled using a sign-function [12], [16]. Contact between
a shake robot and the ground surface can sometimes be
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of the sign-function can lead to an erroneous description of The paper is organised as follows. A short introduction to
sticking contacts or very stiff differential equations.sd] a the modeling procedure is given in Section Il. The kinensatic
mass-spring-damper model introduces a very stiff sprirgg thof the snake robot with the ground surface as a unilateral
leads to stiff differential equations. In addition, it istredear constraint is described in Section Ill. Then, the groundwor
how to determine the dissipation parameters of the contdot finding the friction and ground contact forces is laid
unambiguously when using a compliant model [19]. The Opém Section IV. The non-smooth dynamics is presented in
Dynamics Engine implements a form of rigid body contacdection V, while the serpentine motion patterns employed
(i.e. not compliant contact). However, the implementatidn in this paper are described in Section VI. The numerical
this engine trades off simulation accuracy in order to iasee treatment of the mathematical model is given in Section VII.
simulation speed and stability [15], [20]. Simulations and experimental validations are given in Sec-
In this paper, we develop a non-smooth (hybrid) 3D math&en VIII. Conclusions and suggestions for further resharc
matical model of a snake robot with cylindrical links witltouare presented in Section IX.
wheels.Set-valuedorce laws for the constitutive description
of unilateral contact forces and friction forces in a three-
dimensional setting are described in the framework of non-
smooth dynamics and convex analysis [19], [21], [22]. More- This section contains a brief outline of how to derive the
over, the model has a moving contact point on theface non-smooth mathematical model of the snake robot. This
of each link for contact with the ground surface instead @freliminary section is meant to motivate and ease the under-
just a fixed point for each link. The latter is an approacstanding of the forthcoming deduction of the system equatio
employed in prior publications on mathematical models of The snake robot model consistsrofinks connected by: —
3D snake robot motion. Stick-slip transitions (based onta sé two-degrees-of-freedom (DOF) cardan joints (i.e. rotaio
valued Coulomb friction law) and impacts with the groungbints). Letu € R®" be a vector containing the translational
are modeled as instantaneous transitions. This results inand rotational velocities of all the links of the snake rofibe
accurate model ofpatial Coulomb friction where both the structure of the snake robot together with the coordinates a
direction of the friction force and a true stick-phase areference frames are described further in Section IIl).thet
taken properly into account. For wheel-less snake robotsdifferential measureswand d be loosely described for now
is important to describe the frictional contact between tha&s a ‘possible differential change’ inand timet, respectively,
wheel-less snake robot and the ground in an accurate manmdle a more precise definition is given in Section V. The use
both with respect to stick-slip transitions and the dimti of differential measures allows for instantaneous chariges
of the friction force while sliding along the ground surfacevelocities which occurs for impacts between the snake robot
This latter property also distinguishes wheel-less snakets and the ground surface. The system equations for the snake
from e.g. legged mechanisms which most often try to ‘stiok’ trobot can now be written as
the ground rather than sliding along it. The dynamics of the
shake robot is described by an equality of measures, which
includes the Ngwton-EuIer eq.uations for the non-impglsi\(ﬁhich is called the equality of measures23], where
part_ of the mougn as well as |_mpact equqnons. A partlgzl_JI%r/I R6"%67 s the mass matrixh € RO consists
choice of coordinates results in an effective way of writinge o smooth forcesye € R contains all the joint

the system eq_uations. The _set_—valuedn(_ess of_ the force _laaY@uator torques, andRl € RS" accounts for the normal
allows us to wnt_e_each CO.nSt'tUt'Ve law with a single equrati contact forces/impulses from the ground, the Coulombidnict
and avoids e_x_pI|C|t switching between equations (for extampy, ces/impulses, and the bilateral constraint forceslisgs
when a colision between the _sngke robo_t and the groupfine joints. Note: We allow in this paper famstantaneous
surface occurs) even though this is a hybrid system. This ﬁanges in velocities usually associated with collisidtence,

ac_ivantageous since the S”"?‘ke robot links r_epeated_ly BS“I he (normal contact/friction/constrainfjrcesare not always
W'th the_grou_nd _surface during c.g. locomotion bY sidewin efined due to the infinite accelerations. In these cases we
Ing. A o_llscrenzatl_on of the equality of measures gives t<he Shaveimpulsesinstead of forces. The non-smooth equality of
called time-stepping method (see [22] and referencesithere, . s e (1) allows us to formulate in a uniform manner both

which we use for numerical S|muI§1t|op. The d_escrlpuon & e smooth and non-smooth phases of motion. This is achieved
model and the method for numerical integration are presen artly by representing the contact forcesfimpulses@stact
in this paper in such a way that people who are new R‘lrﬁulse measures

the field of non-smooth dynamics can use this paper as a substantial part of the beginning of this paper is devoted t

in.tr0(.1|uction to nor?-s.mooth mop!eling of robot manip.UIatoréeducting the force measurd?d Hence, let us briefly look at
with impacts an.d friction. In add|t|on_, We present experiraé hqw to derive the contribution of the normal contact impulse
results that validate the mathematical model. To the best asure between the ground and the first link, . det

our knowledge, this is the first time such a back-to-ba ., € R® be the sum of contact impulse measures that

comparison between simulation an_d experlmental_ resultsdlt?ectly affects link 1 (i.e the six top elements o)} then
presented for 3D snake robot motion. The experiments are

performed with the snake robot ‘Aiko’ in Fig. 1 built at the
NTNU/SINTEF Advanced Robotics Laboratory.

Il. SUMMARY OF THE MATHEMATICAL MODEL

Mdu — hdt — dR = Todt, (1)

dR, = wy dPy + { friction and joint constralnt} @

impulse measures



where Py € R is the normal contact impulse measure from
the ground on link 1, andvy € R® is the corresponding
generalised force direction, i.e. a Jacobian (subscriptard

‘1" are omitted for brevity).

Let gv € R be a function giving the shortest distance
between the rear part of link 1 and the ground. Such a
function is called agap function[24]. The gap function is
the starting point for the systematic approach of finding the
impulse measures. The ground and the rear part of the link
are separated ify > 0, are in contact ifgy = 0, and are
penetrating each other if;y < 0. Now, the relative velocity Fig. 2. Reference frames.
between link 1 and the ground along the shortest line between
the two objects can be defined as

v = whu, 3) The_p_osition and orienta_ltion of link are described by the
non-minimal absoluteoordinates [25]

wherew; is the velocity of link 1, andvy = dgn/Jq is the

generalised force direction used in (2). It holds that= g q; = {ITGI’] eR7, (4)

for almost allt. The normal contact impulse measur&yd i

is related to the r_elative velocityy through aset-valued where jrg. = [xz " Zl}T € R? is the position of the

force law(see Section V-B1). The set-valuedness of the force o o T

laws allows us to write each constitutive law (force law§ENe gf gravity of linki and the vectop, = [e;, €[],

with a single equation and avoids explicit switching betawedVheree; = e ein ei], contains the four Euler parame-

equations (for example when a collision occurs). In additioters l_Jsed to de_.\scrlbe the rqtanon. The Eu_ler parametens for

this formulation provides an accurate description of trenpt a unit quaternion vector with the constrajpfp; = 1. The

Coulomb friction (see Section V-B2). In the following thregoordinates aremon-minimalbecause each link is described

sections, we will elaborate on how to derive the elemen\fvéth 6 coordinates, andibsolutebecause the position and

that constitute (1), that is the various gap functions,treda orient_ation pf "r,”.“ is_ given directly relative to framé. The

velocities, and finally the forces/impulses which appeahin velocity of link i is given by

equality of measures. v — [ g,
i =

€ RS, 5
BiwIBi} ®)

1. KINEMATICS . . ) .
. . ) ) .where jvg, is the translational velocity of the CG of link
The kinematics describes the geometrical aspect of motiQhyi-h is ve = 1t when it exists (i.e. for impact free

From the geometry of the snake robot, we develp qiion). Moreover,s,w;p, is the angular velocity of frame

functionsfor ground contact det_ectu_)n. These functions argi relative to framel, given in frameB;. The transformation
also needed for calculating the directions of the contacefe. . _ RJ, 5 can be performed with the rotation matrix

This section will first give an overview of the coordinateé{z — H.H' where
used to describe the position and orientation of the sndk@mtro ~* o
Subsequently, the gap functions will be presented. H,=[-e é&+e,0, Hi=[e —&+eyd, (6)

and the superscriptdenotes the skew-symmetric form of a

A. Coordinates and Reference Frames vector throughout this paper, i.e.

The snake robot model consists mfcylindrical links that

are connected by — 1 cardan joints, each having two degrees } 0 —ei ey
of freedom (DOF). The distancé, between two adjacent e=| e 0 —e - (7
cardan joints equals the length of link and the radius of —Ciy €4y 0

each link is Lsc,. Each link is modelled as a cylinder ofthe time-derivative of the rotation matrix is found from [26
length2L¢ g, with two spheres of radiu s, attached to the ¢

gnds the I|_nk. _Llnkz with parts of its two adjacent links are RI = RIBi B@IB = @18, RIBi' 8)
illustrated in Fig. 2.

We denote an earth-fixed coordinate frame = The coordinates (positions and orientation) and velcitie
(0,el,el, eg)_, see Fig._ 2, as an approximation to an inertialll links are gathered in the vectogs= [q] - qIJT and
frame where its centr@ is fixed to the ground surface and the,, _ [wl - uT]T

nl

el-axis is pointing in the opposite direction of the accelerat

of gravity vectorg = 10 0 —g]T. We denote a body-fixed
frameB; = (G;, el, e, el), whereG; is the centre of gravity
of link 7 (which coincides with the geometric centre of the Gap functions for the unilateral constraints (i.e. the gichu

link-cylinder) ande! points along the centre line of link surface) give the minimal distance between the floor and the

toward link ¢ + 1. front and rear part of each link. The contact surfaces baiwee

B. Gap Functions for Unilateral Constraints



A. Unilateral Contact: Ground Contact

Contact between the snake robot and the ground involves
(vertical) normal forces, which guarantee the unilatéyaif
the contact, and (horizontal) tangential contact forcdsichv
are due to friction and are dependent on the normal contact
forces and the relative sliding velocities.

1) Relative Velocities Along!: The relative velocities
Fig. 3. Surfaces (solid-drawn circles) on snake robot tmatstitute the between the front and rear part of linkand the ground along
contact between the robot and the ground. the ei—axis are defined asy,, := gnp, and YN, = GNg,
(when they exist), respectively, and they are used later to
ﬂgg the normal contact forces. Before we proceed, note that
YNz; (Or vn,,) should not be found directly by taking the
time-derivative of the expression fagy,., (or gn,,) in (9).

a link and the ground are modeled as two spheres at the e
of the link as illustrated for a three-link robot in Fig. 3.
We denote the distance between the centre of the t

spheres that belong to linkby 2L¢s, and the radius of the is is the case since the expressions (9) have already been

h b Th i £ h tre of the front dfsimplified due to the fact that expressions have been irgserte
spheres byl.sc,. The position of the centre o e front anG, . ihe various body-fixed vectors which constitute the gap
rear spheres are denoted by,., andrg,,,, respectively. The f

. ; nctions. Instead, for the relative velocities, we musisider
shortest distance between the ground and the points on EE'

front and rear spheres closest to the ground are denotedtbg velocity of abody-fixedpoint Pr; which at time-instant

and respectivelv. The distances are found from oincides with a pointCr; on the front sphere closest to
YN INri» P Y- the ground (the same principle applies for the rear part ef th

INp; = (Tspi)T ei —Lsc,, gNm, = (TsRi)T ei — Lsc,, (9) link). Note _that the position vectors fdPEI. and C’F will be
the same instantaneously. However, tii#ferentialswill be

— 31 — B7, . . . . . .
wherers,, = rg, + Las. ;s Tsp;, = Ta, — Las, e different. This is shown in the following. Lef'»; be a point
The gap functions are gathered in the vector on the front sphere that moves on the sphere such that the poin
T is always closest to the ground surface. Then the position of
= e . 10
an [gNFl 9Npn Y9Nr1 gNRn] ( ) this point is
C. Gap Functions for Bilateral Constraints TCp; = TG +TGiSp; T TSpiCps- (14)
Each 2 DOF cardan joint introduces four bilateral corpefine the skew-symmetric matrixra,cp, = 17G,5p; +
straints, which will be described by gap functions. ITspCri- The velocity of the pointCp; is obtained by

To find the translational ‘gap’ in the joints, we need to relatdifferentiation of (14):
the position of the joint between linkandi+ 1 to both links. _ s s ]
Let the position of the joint between linkandi + 1 be written ~ 1VCri =I1VG, — 17G:Cri R, B,wW1B, + R, BT spiCris (1)
asry., = ra,+3Lirel, o =1, —3Li relitt,
The gap functions can now be found from

IVPR;
where we now can use that

-
9Jix = (ITJFi - IrJRi+1) Ieia (11)

TSpcr = —Lsc,el, (16)
fori=1,...,n—1, andx = z,y, 2. Hence, and we have employed (8) and.7q.s,, = 0, together
9 = (I"“Gi _ I"“GH])Tlei (12) with the identities; &g, 17¢,5-;, = — 1wWIB, ITG,sp; and

1 T 1@1B; ITSpCpi = —IWIB; I1TSpCp; - We see from (_15) an
+5 (LiRIBi B,eli + LZ-HRIBI,+1 Bmef?‘“) rel  expression for the velocityvp,., of the body-fixed pointg;
which at time-instance coincides with the poinCp;. This
fori=1,....n-1. _ _ _ velocity will be employed to find both the relative velocitie
The next gap function provides a ‘gap’ in rotation aroungionge! and the tangential relative velocities. The equivalent

the axis that a cardan joint is not able to rotate arounde!fet velocity ;v p,,, on the rear part of the sphere is found similarly

ande’ be the axes of rota%ion for the cardan joint betwee ;v .. in (15) by replacingF’i by Ri in (15)-(16).
link i and linki+1, then(e’") eZ*1 = 0. Hence, a measure  Now, the relative velocities along! for the front and rear
for the rotational ‘gap’ can be defined from the equality abowpart of link i can be found as

as the gap function

. YNo: = (1€0)T 1vpy, = Yngs = (Wiy,) Tus, (17)
— 1 B; 1 B;
050 = (RE, pel) (Rb,, pone? ). (1) iere
_ T NT = 117
IV. CONTACT CONSTRAINTS ONVELOCITY LEVEL wy,, = [(1e))" —(ed)iFacoRE ], (18)
In this section we calculate relative velocities betweem tior Q = F, R with rg,s,, = Las, el and rg, s,

snake robot and the ground from the gap functions. TheLgs, eZ:. The motivation to use the form (17) is tharty,,
relative velocities are needed to set up the set-valuedacbntgives the generalised direction of the contact force betwee
forces for the closed contacts [27]. the ground and the front and rear part of lihk



A vector gathering allyn,., and~yy,, is

vy = Whu, (19)
:
where vy = [YNp - WNe. INmi VNl s
Wy = [WNF WNR} S RGHXQH, and
WhNo;  Osx1 O6x1
Wy, = | % | |, (o)
. 06><1
Ogx1 Opx1 WNeG,
for Q = F,R.

2) Tangential Relative VelocitiesEriction forces between

a link and the ground depend on the relative velocities in the
ei)-plane between the snake robot links and the ground.

(ez,
These velocities are termed tangential relative velazifiérst,
the relative velocities between the front part of lihknd the
ground along theel- and e]-axis, v}, and Vg, » Will be

deducted. Subsequently, the relative velocities for thetfpart

of link 7 along the projection of the longitudinal axis of the link

onto the(el, e!

> €y)-planeyr,., and transversal to the link.,  ,

will be deducted fromy;, andy’TFiy respectively. The same

type of notation applies for the rear part of liftky; ., VITM’

YTw:. @Ndyr,,,. The tangential relative velocities are foundy;

much in the same way as faty,, andyy,,. Consequently,
we find the velocities of the point®z; and Pg; along the

el- and e]-axis. Hence, by looking at (17), we see that th

tangential relative velocities of the contact points on filomt
part of the link can be found as

Vrpse = (1€0) T 10Pp; = V. = (W, )Tus, (21)
for ¢ = x,y, where
~ T
w/TFig = [(Ieé)-r _(Ieé)TITGiCFiRIBi] . (22)

The relative velocities between the rear part of the link and

the ground are found by exchangipgp,., with ;v p,, in (21):

'Y’,/Z"Rig = (Ieé)TlvPRi = ’Y',/ng = (w/TRiC )Tuiv (23)
for ( = x,y, where
_ T
w/TRig = [(Ieé)T _(Ieé)TITGiCF'LRIBi] . (24)

The tangential relative velocities for the front and reant jo&
the link ¢+ are combined in vectors:

whereA,, = diag([1, 1, 0]). Hence, it holds that

Rli = [[egi 167511' Iegﬂ .

(28)

Notice that;e]l" = rel’ andre} = rel* when linki is lying
flat on the ground withe[’: = ;el. Since only the motion in
the (el, e])-plane is of interest, we define
.
10 0] (29)

Rf =D'R{ D, D:[O Lo

Since we now have thayy,, = R V7, Q = F, R, the
relative velocity between the floor and the front part of link

with respect to framél;, can be found from (25) as

T ! R/
wherevyr,, = Vg V7o) » Wro, = Wi, Rip,, for

Q=F,R.
A vector that gathers aly,. and~, . is found from
Yp = W}u, (32)
where
T
Yr = [V Yien  Vimi Vimn] » (32)

r=[Wr, Wrg,]| € R 4" andWr,, W, are found
similarly to (20) by replacing the zero-vectors wilg«> and
replacing the vectorsvy,.,, wy,, with the matricesWr,,,
.., respectively.

3) Relative Rolling VelocitiesUp until now, we have only
considered translational relative motion of the snake tobo
links. However, we also need to consider rotational redativ
motion to add a damping effect on the rotational motion in the
form of rotational friction. In order to do this, we introdei@
relative rolling velocity as

Vi = D' (1mCois0: X 1W1B,) (33)
for @ = F,R, where ~y,, [Woie WQW]T and
ITCqi50: = Lsc; rel is the vector pointing (upwards) from
the body-fixed pointC, on the link end-sphere momentarily
closest to the ground, towards the cenfig, of the end-
sphere. By employing the identity

(34)

. I
ITCoiSq: X IWIB; = ITCo: 80 RB, BiWIB;,

we find that the relative rolling velocity can be written

Vrg = Wiy, i, (25) .
, , T MWoi = WVQZ» Ui, (35)
for @ = F, R, wherev;,,. = Vg Vros,] and A
/ / / 6x2 where T ~
o = [Wron Wiy, € RV (26) W1, = [O2xs DTricgs0.RE ], (36)
Until now the relative velocities have been given in the dire ¢, Q=FR
. I I 1~H1 ’ ’ . . "
tions along _thez_z ande, axes. In order to c_:alculate the friction  \ye gather all the relative rolling velocities as
forces longitudinal and transversal to a link, we need toskno
the corresponding relative velocities in these directiams Yv = Wyu, (37)
the (eZ, e} )-plane. To calculate these velocities we introduce, T T T T }T
for each link a framell; with axes (e, el e!l), where Vo= ey e Ve TV A
IeHi i Ie[ and i (em 1€y €2 ) Wy = [WVF WVRj c R6n><4p;z' and WVF! WVR are
z z found similarly to (20) by replacing the zero-vectors with
Lelli — Ay, el el — rel x relli 27) Osx2 and replacing the vectoms y,.,, wn,, With the matrices
T AL, ref )] Yo | rel x el Wy,.., Wy,,, respectively.




B. Bilateral Constraints: Joints A. The Equality of Measures

Bilateral constraints introduced by the cardan joint betwe An equality of measures describes the dynamics of the snake
two adjacent links prohibit relative motion between thekdin robot within the context of non-smooth dynamics. Velocity
in four DOF. The relative velocities between the links alongmps, usually associated with impacts, are modeled toroccu
these DOF need to be found in order to calculate the bilateia$tantaneously. Hence, the time-derivative of a velodigs
constraint forces in the joints. These relative velocittes not always exist. By considering the generalised veloditige
found from the gap functions (12) and (13). a functiont — w(t) of locally bounded variation on a time-

Relative velocities for the translational gap between linkinterval I = [t4,tg] [23], the functionw(t) admits a right
and linki+1 are defined as; := gy, fori=1,...,n—1 um and leftw~ limit for all ¢+ € I, and its time-derivative

wherey = z,y, z. By employing (12), we find that u exists for almost al € I. To be able to obtainu from
integration we need to use the differential measurendhere

Vi = w}ix [uu;] ’ (38) it is assumed that the measure can be decomposed into

(3

where du = 4dt + (ut —u™)dy, (44)
(rel) where d denotes the Lebesgue measure andddnotes the

X -B atomic measure Wherg dn = 1. The total increment ofs

((re) "5 R, 5 t subi ttl} f I is found
T i) . (39) over acompact subintervih, t,] of 7, is found as
T
~ ((e)TE R, el ) /[ =t — e () (45)
1,02
A relative velocity for the rotational gap is defined agnd is due to a continuous change (i.e. impact free motion)

Vs = 9us fOri=1,....,n—1. Hence, stemming fromi: as well as possible discontinuities indue
w to impacts within the time-intervdky, t2]. Equation (45) is

Viiy = w,TIm [uilj (40) also valid when the time-interval reduces to a singlefor,

and if a velocity jump occurs fot = ¢; then (45) gives a

where nonzero result.
51 From the notation above, the !\levvt_on—EuIer equations as an
_BAT B, equality of measures can be written in a general form as
- (]':{IB1 Biefl) (RIBi+1 Biy1€x Hl)
wy,, = 031 . (41) M (q,t)du — h(q,u,t)dt — dR = 70, (46)
- (RIBT,,+1 Bméfi“)T (RE, B.el') where the mass matrikI (g, ¢), the vector of smooth forces

h(q,u,t), the force measure of possibly atomic impact im-

Lety, = [Wm Vi Vi WM}T, then we can gather all puIsiqns (R and the \{ector of applied torques: will be
the relative velocities concerned with the bilateral coaists described in the following.
in one vector For our choice of coordinates, the mass matrixisgonal

v, = W}% (42) and constant
M 0
e S S !
Where'YJ - [7J1 7Jn71} ’ M(q,t) =M= c Rﬁnxﬁn’ (47)
T
W}1 Osx6 - O4x6 0 M,
W, = 046 Wy : € ROmxA(n=1), where
: 046 M, — {mi13x3 033 } (48)
Oixe - O4x6 W}n—l 033 50®c]’
43) . . . .

o lox4 27 with 5, ®¢g, = diag([©1; ©1 Os]), m; is the mass
?ndwh _1 (Wi, ws, wr. wr,] €R fori ="t Jink i, and ©; and O3 are its moments of iner-
AR L tia. The smooth forces, here consisting of gravity and

gyroscopic accelerations, are described byq,u,t) =
V. NON-SMOOTH DYNAMICS h(u) = [hI(m) h,TL(un)]T € RS, where
The starting point for describing the dynamics of the snakte (u;) = [0 0 —mig — (@15, B,Oc, BiwIBi)T]T.

robot is theequality of measureas introduced in [23]. The The force measure® accounts for all the contact forces
equality of measures includes equations of motion for irhpa&nd impulses. The contact efforts that constituie are found
free motion as well as impact equations. The impact equsiticinom the force-laws given in Section V-B. L&t be the set of
give rise to impulsive behaviour [24]. In this section, wall active contacts with the ground

employ the results from Section Il and 1V in order to find

the equality of measures for the snake robot. Z(t) = {algn. (q(t)) = 0} € {1,2,...,2n}, (49)



wheregy, is thea-th element of the vectag,; in (10). Now, In the following we express all force laws for closed contact
the force measure is written as velocity level, while all forces vanish for open contactben,
by employing concepts of convex analysis, the relationship
dR =W, dP Wy, dP . .
JOEs+ Z( N) Ne between the relative velocity and the Lebesgue measurable
normal contact force (not an impulse) may be written for a
+ Z ((Wr)2-10dPr,, + (Wr)2 dPr,, ) (50) closed contacyy = 0 as an inclusion on velocity level
a€’l
+ Z (Wv)2a—1dPy,, + (Wy)2adPy,, ), —N € Ny (An), (53)
ac€’l

a€l

where the convex sefy = {Ax | Ay > 0} = R" is the set

where dy, is the normal contact impulse measure betwegjj admissible contact forces, ad,, is the normal cone to

the ground and a link, B, and d°r,, are the tangential ¢ [22]. The inclusion (53) is equivalent to the condition
contact impulse measures (friction) between the floor and a

link, longitudinal and transversal to the link (i.e. alomg&.!: - YN >0, AN >0, ynAny =0, (54)
ande,-axis), respectively, By, and dPy, are the rotational o
contact impulse measures (friction) between the floor and@d @ closed contacyy = 0. Before explaining the above
link, along thee! -axis andei—axis, respectively, B is the force law (5_3_), let us flrs_t mention tha’; this force law delses
contact impulse measure due to the bilateral constrairttsein impenetrability of sustained contact, igv = 0 andyy = 0,
joints (these constraints are always active), and the loase @S Well as detachment,y > 0 = Ay = 0. However, (53)
subscripts on théW-matrices indicate which column of thedoes not cover impacts (where we have impulses instead of
matrix is used. The position of the elements of the vectof@'ces). For impacts we need a simiiarpact law described
dPy, dP;, dPr, and dPy corresponds to the position of thedt the end of this subsection.
elements in their respective vector of relative veloegjty, 7, From the definition [22], [28] of a normal con€q(x) to a
~7, andvyy. Hence, looking at for example the expression (38pnvex seC at the pointz € R", we have thaiVe(z) = {0}
for v,, we see that e.g. Br,,, = [dPr,,, . dPT(nﬂ)y]T for z € int ¢, and N (z) = {0} for = ¢ C. If @ is on trle
corresponds oy, ., and we know from this that By, ., is boundaryof C, then No(x) is the set of all vecJtrorg eR
the tangential contact impulse measure between the grodfi@t @r¢ normal tae. For example, forCy = R™ we have
and the rear part of link 1. New(0) =R™andNey (2) =0.

The contact impulse measures can be decomposed in thg_he force law (53) only covers f|n|te—va!L!ed contact efforts
same way as for. Let us take the normal contact impu|séjur|ng impulse free motion, i.e. all velocities are absalyt

measure as an example. The measure can be written as continuous in time. When a collision occurs in a rigid-body
setting, then the velocities will be locally discontinuoins

dPy, = An,dt + A, dn, (51) order to prevent penetration. The velocity jump is accorigzhn
by an impact impulsé y, for which we will set up an impact
‘Ljﬂ,Yv. The relative velocity admits, similarly to the veloeg u,

arightv;; and a lefty limit. The impact law for a completely
inelastic impact at a closed contact can now be written as

where Ay, is the Lebesgue-measurable force ang, is the
purely atomic impact impulse. The same decomposition ¢
also be performed for the three other impulse measures.
The control torques ¢ are described in Section V-C below.
—’77\_/ ENCN(AN), CN:{AN |AN 20}:R+, (55)
B. Constitutive Laws for the Contact Forces o . -
In this section, we will introduce set-valued force IawgvhICh is equivalent to the condition
for normal contact and Coulomb friction. These laws will v >0, Ay >0, YAy =0. (56)
all be formulated on velocity level using the relative catta
velocities~ given by (19) and (31). Subsequently, the seiNotice that the force law (53) and impact law (55) is on the
valued force laws are formulated as equalities in Sectid¥V- same form. We have earlier stated that there is no need for
using the so-called ‘proximal point function’ in order toan explicit switch between equations when e.g. and impact
include the force laws in the numerical simulation [22]. occurs. This becomes evident in Section VII with the in-
1) Normal Contact Force:The normal contact between atroduction of the contact impulse (that includes both ferce
link and the floor is described by the unilateral constraint and possible impulses) for the discretization of the system
dynamics.
gn 20, An 20, gnAv =0, (52)  “The force law for normal contact given in this section can
which is known as Signorini’s law [22]. Her@ is the normal also be employed to describe normal contact with obstacles.
contact force angy is the gap function. Subscripf®: and This is described in [29].
Fi are temporarily removed for simplicity. This set-valued 2) Coulomb Friction Force:ln this section, we describe the
force law states that the contact is impenetralgle, > 0, friction force between the snake robot and the ground when
the contact can only transmit pressure forces > 0 and the snake robot slides along the ground surface as setevalue
the contact force\y does not produce workyAxy = 0. Coulomb friction. Similarly to the force law (53) for normal
The force law can be expressed on different kinematic levetontact, we describe the constitutive description fortifsic
displacement level (52), velocity level, and acceleratevel. using an inclusion on a normal cone. The friction forke,



Ar,

Y inserting A instead ofA both in (57) and in the convex set

Cr in (58).

3) Rolling Friction: The snake robot modeled in this paper

AT has cylindrical links which means that it may roll sideways.
i The spatial Coulomb friction described in the previousisact

>‘Tm arises from translational motion. In addition, there isoads
OT force that resists the rolling motion of the snake robot. We
model this force as a ‘rolling friction\y € R? (additional
subscripts omitted for simplicity) in this paper by empluyi
the same set-valued force law as for the tangential Coulomb
friction force At in Section V-B2. However, we consider the
rolling friction to be isotropic and therefore we find thelird

Fig. 4. Relationship between tangential relative veloeihd friction force.
The setCr is in grey.

friction as
—Yv € Noy (Av), (59)
in the two-dimensional tangent plane to the contact pot, \jyhere
modeled with an anisotropic Coulomb friction law Cy = {Av | |Av] < pvant, (60)
—v7 € Nor (A7), (57) andpy > 0 is the friction coefficient.

The general form of the force law (59) is also valid for
impact impulsesAy in the same way as for the tangential
Coulomb friction described in Section V-B2. Subsequently,

A2 A2 the impact impulse is found by exchangifg with v, and

Cr = {AT | :; g+ —2 < 1}, (58) Ay with Ay in (59)-(60). v v

(kr.Aw) (“Ty /\N) 4) Constitutive Laws as Projectiongin inclusion can not
is the set of admissible friction forces, wherkr = be directly employed in numerical calculations. Hence, we
[Ar, )\Ty]T, andgur, , pr, > 0 are directional friction coeffi- transform the force laws (53), (57), and (59) which have been
cients along theg-andeg-axis from (27), respectively. Fig. 4 stated as an inclusion to a normal cone, into an equality.
depicts the setCr (in grey), together with the relationshipThis is achieved through the so-called proximal point figrct
between the tangential relative velocities and the fricfirce  prox.(x), which equalse if « € C' and equals the closest
when it is on the boundary af'r. point in C to x if ¢ C. The setC must be convex. Using

The force law (57) distinguishes between two cases: if tltee proximal point function we transform the force laws into
friction force is in the interior ofCy or on its boundary. If implicit equalities (see [22])

Ar € int Cp, then it holds thatNe..(Ar) = 0 from which
we conclude thaty; = 0. ObviousI)T/,(this) corresponds to the % € New(As) = A = ProXe, (As = rx3x), - (61)
stick phase of the friction law. If the friction force is oneth wherer,, > 0 for k = N, T, V.

boundary ofCr, then the normal con&/c,.(Ar) consists of

the outward normal ray on the ellipge, at the pointhr. C. Joint Actuators

The advantage to formulate the friction law as the inclu- go-h cardan joint has 2 DOF that are controlled by two

sion (57) now becomes apparent. First of all, note that (88, j5int actuators. The actuators are modeled as controlregiés
spatialfriction law. Such a spatial friction law can not properlyapp”ed around the axes of rotation for the joint. Fig. 5

be described by a set-valued sign-function. Some authOis [1j,strates how the direction of positive rotation is define
[12] model the spatial contact with two sign-functions fopefine for fink; a positive control torque,, to give a positive

the _two compqnents of the relative sliding velocity using W, iational velocity arouné”** and a positive control torque
friction coefficientsur, and pur,. Others smoothen the (set-

. . ) . . 71, tO give a positive rotational velocity arouraxfi, both with
valued) sign fun(;t|on W'.th a smoqthenlng function, e.g. 6o espect to linki. The total torquer, € R? applied to link:
arctangent function. This results in a very steep slope ef t !
friction curve near zero relative velocity. Such an apphoac
is very cumbersome for two reasons. First of all, stiction ca
not properly be described: an object on a slope will with a 0 B, 0 B, To; Togi—1)
smoothened friction law always slide. Secondly, the veeggt 7 Ci— | Thi “Rp._,|Tha [FRE | 0| =] O (62)
slope of the friction curve causes the differential equetio 0 0 0
of motion to become numerically stiff. Summarising, we sefer i = 1,...,n, where the relative rotation matrix is
that (57) describes spatial Coulomb friction taking stioti , T
properly into account. Rgiﬂ = (RIBi) Rj (63)

While the force law (57) only describes the Coulomiynd Thy = Tey = Th, = Tv, = 0. The vector of the torques
friction during impulse free motion, we also need a force lawpplied to all linksT¢ € R%" is
for impact impulses\ 1. These are found from the exact same T T _
form as (57) by replacingy, with its right limit v and To=[01s 7L, Os T, 0 Ons TG, (64)

where~, is a relative sliding velocityNc, is the normal
cone to the sef’r, and the ellipse

i+1’



fori =1,...,n -1 where K;,, K,, K,,, and K, are
positive constants and equal for all

B. Motion Pattern and Reference Angles

A general expression for defining some of the most common
motion patterns for snake robots is given by

. = Apsin (wpt + (i — 1)8p,) + ¢n (70)
Oy r = Ay sin (wyt + (i — 1)y, + o) + o, (71)

fori=1,...,n—1 whereay, , anda,, , are the reference
angles foray,, and «,,, and Ay, A, are the amplitude of
(b) oscillation, wy, w, are the angular frequencies,, 4, are
the phase offsets, andy,, v, are the angle offsets, for
Fig. 5. Control Torques for (a) side-view and (b) top-view. the horizontal and vertical wave, respectively [3]. Theseff
between the vertical and horizontal wave is givendpy

Two motion patterns that biological snakes use have been
employed in this paper. The first motion pattern is called
Yateral undulation’ (also denoted ‘serpentine crawlinghere
locomotion is obtained by propagating horizontal wavesnfro
the front to the rear of the snake body while exploiting rough
T ) ) ness in the terrain and digging its body into the ground. €hes

The joint angles are not directly accessible from the nofyyer two properties are the motivation for our anisotedpic-
minimal Coor_dlnat%s, but can be calculated f)rBom the redatiYion model. The second motion pattern is called ‘sidewigtin
rotation matriceR 5 | in (63). Assume thaRp  is CON- ang js mainly used by biological snakes moving on uniform
structed_ from successive rotationsB (Euler angles withethe  grfaces [30]. Parts of the snake are lying relatively staiy
convention)a.,, an,, and a,,: Rp' = Ra.,Ra,,Ra,i-  on the ground while the rest of the body is lited and moved

Since we have cardan joints, IR, = I3x3 be the rotation foward resulting in a looping movement during locomotion.
around theeZi-axis, and letR,,, and R,,, describe the

rotation aroundefi and eZi*', respectively. Henceq,,
describes the DOF of the cardan joint between firdnd link VII. NUMERICAL ALGORITHM - TIME-STEPPING
i+ 1 that moves linki andi + 1 from side to side, and,,

describes the lifting and lowering of the links. The rotatio  The numerical solution of the equality of measures is found
angles can now be found from the relative rotation matrigiih an algorithm introduced in [23] (see also [22], [24])

VI. MOTION PATTERN AND JOINT CONTROL

In this chapter, we will define the joint angles and sho
how to control them for snake robot locomotion.

A. Accessing and Control of Joint Angles

(63) as called the time-stepping-method described in the follgwin
(p, = tan~! [(Rgiﬂ)w/(RgL)%} (65) The methods applied in Section VI_I—A and VI!—B are based
P on [27], except for the direct calculation of the bilaterahtact
ap, = —sin” (Rg!, a1, (66) impulsions which we have introduced.
fori=1,...,n—1 where (Rgfﬂ) is the element of the
K 32
matrix Rg? in row 3 column 2, etc. A. Time Discretization

The rotational velocities of the joints are found directigrh
the rotational velocities of the links. We define the rotaéib  Let #; denote the time at time-step= 1,2,3,... where

velocity for sideways motion asy,, = d;wh and lifting the step size i\t = ;41 — t;. Consider the (usually very
motion asw,,, = d{w,;i for the joint between link and: +1, short) time intervall = [t4,tg], and lett4 = t;. Define
whered{ = [1 0 0],d]=1[0 1 0], and g4 = q(ta), ua = u(t,) which are admissible with respect
T to both the unilateral and bilateral constraints, and thi& un
WJ; = B WIB 1 — (RBjH) B,WIB;- (67) norm constraint on the Euler parameters. Our goal is now to

find g5 = q(tg). We use the states of the system at thiel-
pointiy =ta + %At of the time-intervall to decide which
contact points are active (i.e. which links are touching the
ground). The coordinates (positions and orientations),at
are found from

Let the desired values af;,, and«,, be ay, , and oy, r,
respectively. In addition, the reference values for thentjoi
velocitieswy,,, w,, are given byay, , andd,,, », respectively.
Then, PD-controllers for the joints are

Th; = Kn, (n, — an, ) + Kny (Wn; — &y ) (68)

) At
Ty, = Kvp (ay, — aU'L;T) + Ky (W, — O‘vi,,r) ) (69) dy =qu + TF(QM)UAa (72)
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where we have used the equaljty= 1H' 5w, [26], B. Solving for the Contact Impulsions

In this section, we show how to calculate the contact
. impulsions Py,, Pr,, Py,, and Py in (76) for a € Z.
F(qy,) O7x6 Fm, - : (73) The numerical int(_agration aIgori_thm used in th?s paper is
: called a time-stepping method which allows for a simultarseo

[Fru, O7x6 -+ Orxe

Orvs - Onye %7;6 treatment of both impulsive and non-impulsive forces dgirin

y " a time-step. The frictional contact problem, defined by {75)
Fy, = Ly ?35.? e R7*6, (74) (82) and findingP ;, needs to be solved for each time-step

[Oaxs zH; A Modified Newton Algorithm [31] has been chosen to solve

and H; is found from (6) by inserting the orientation of linkthe nonlinear problem iteratively because of its simpliditet
i at timet,,. The approximation of the matricé&’=, where the superscript®) denote the current iteration of the Modified

2= N,T,J,V, on the time-interval is given asWz,, := Newton Algorithm, and initialize all contact impulsionso(f

Wz=(q,,). The same applies fohy; := h(q,,us). A active contacts) with the value they had the last time their

numerical approximation of the equality of measures (4@yovcorresponding contact point was active. Let those thete

the time-intervall can now be written as active be initialized with their previous values. Now, the
algorithm may be written as

M (ug —ua) —hyAt—8S — Wiy Py =T1cAt, (75) 1) Solve

where PF]k) = (WEIMM_lWEI\l)_l (84)
S:Z(WNM)a PN, +[(Wrar)2a—1 (Wrar)2d) Pr, . o ®
=~ 76 : {W(,Mu A— WM (hMAt + 8% 4 TcAt)}
+ Z[(WVM)QaA (Wvar)24] Py, where
a€l k k
and Py, Py, Py, and P; are the contact impulsions S =2 (W Py
during the time-intervall. They consist of forces\ acting et *)
during I, and possible impulse& actingin the time-interval + Z [(Wrar)2a-1 (Wra)2a] P (85)
1. The subscript, denotes which link the contact impulsions a€l
are acting on, and is employed the same way as for the +Z[(WVM)2U’_1 (W ar)2d] sz).
contact impulse measures in (50). To find the positions and a€l

orientationsq; at the end of the time-interval, we need to
solve (75) forug and the contact impulsions. The contact
impulsions associated with ground contact are found usintg/[ (u(k+1)_u )—h At—S® W P®—r At (86
the prox-functions described in Section V-B4 for the set o B A)M My =T (86)
active contact pointg. Hence, the constitutive laws (61) for 3) Solve fora € 7

the ground contact impulsions may now be written

2) Solveu'f ™" from

pltD) — Prox. (P(k) — rN'y(kH)) , (87)
Py, = prox.,, (Pn, = "NYNE,) ; (77) J(Vk“ﬂ) " ](Vk) Zjn
Py, = prox., (Pr, —rrvrg,) (78) Py = prox., (PTa —TTY7g, ) ; (88)
PVa = pI’OXCV (PVa - TVVVEG) ; (79) PSZ'H) = proxcv (PSZ) — Tv’)’gfgal)) , (89)
wherery,rp,ry > 0, a € Z, yvg, is the a-th element where
of the vectoryy g, andvy7p, , vy, are the vectors of the
(2a—1)—th and2a-th elements ofy;, and~y, , respectively, AT — Wl (90)
and
. 7%;1) = WIFM“%H)a (91)
YNe =N (@ up) = WTNM UE, (80) 78“;1) = WI,Mu%Hl). (92)
Yre = Yr @y uE) = Wrp ug, (81) .
T Repeat steps 1. to 3. until
Yve =y @y uE) = Wy ug. (82)
o . . ”P(kJrl) _ P(k)H n HP(kJrl) _ P(k)H
The constitutive laws (77)-(82) are valid for completely in N . N i T T (93)
elastic impact. +PYY - PP <,
The constraints on the joints are bilateral and it therefom,] ; ;
eree > 0 is a user-defined tolerance. Subsequenily,
holds thatvy;; = ~,(qp,us) = Wl up = 0Vt ¢ querngly

is, calculated from (83) and the calculation of the time-
a&%p is finished. Usually, a higher value of the parameters
rn, T, ry Yyields a faster convergence rate at the risk of
divergence. However, a general convergence result for the
83) Modified Newton Algorithm does not exist. The constitutive
laws (87)-(92) used to describe the contact impulses aengiv

This allows us to directly compute the associated cont
impulsions P; by solving (75) for P; with ug = 0. By
solving for P; and solving (75)-(81), we find that

At
g =4q) + TF(QM)'U/E-
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on velocity level This means that the bilateral constraints
on position level, and the unit norm constraint on the Euler —
parameters are in general not satisfied. A solution to these .

problems is suggested in the following. 0.5- 8
0 ; .
) . 0 5 . 10 15
C. Constraint Violation (a) time [s]
After the Modified Newton Algorithm has converged and .
qr has been found from (83), the unit-norm constréipf| = .05 o
L is satisfied fromp* = pg, /||pg,|| fori =1,...,n where é@ e, S
" >

P, is the quaternion describing the orientation of linkrhe

new guaternions should now be inserted igte. ‘ ‘
The links have to be projected so that the bilateral con- ™ 5 _ 10 15

straints (12), (13) are satisfied. This is done in a two-step p (o) time [<]

cess while keeping the position and orientation of link 1dixe Fig. 6. Simulation results (solid line) of the positiéag, ys) of the centre of

First, the orientation of the positions of the remainindkirare gravity of link 6 in the (e, el )-plane during lateral undulation. The model

altered so thag,, = 0 is satisfied fori = 1,...,n—1. In this s simulated with orthotropic friction.

process, all thezﬁ‘ -axes are kept fixed, while thel* ande’

are changed if necessary. Subsequently, the remainingdirek

translated so thag,;, = 0 is satisfied fori = 1,....,n — 1, given together with the presentation of the simulationgesin

X = z,y,2. The new positions of the links should now beye have not employed the same friction coefficients for all
inserted intogy. Now, the positionsg; and velocitiesug  simulations.

can be used as the initial states for the next time-step

_0.5, 4

VIIl. SIMULATIONS AND EXPERIMENTAL VALIDATION B. Lateral Undulation: Simulation Results

In this section, we present simulations of the mathematical!™ thiS section, we let the snake robot move by the motion
model together with experiments with a real snake robdtattern lateral undulation (see Section VI). We includes thi
First, we present the model and simulation parametersr@ecdnotion pattern since it is commonly used for snake robots
simulation results of the motion pattern lateral undulatoe (see e.g. [1], [10], [12], [1_3]' [32]-{34]) and_we_therefgre
given with orthotropic friction. Finally, the latter thraections Want to show that the desired (forward) motion is obtained
present the experimental setup together with simulaticsh a_fpr our model. We do not provide an experimental validation

experimental results of the motion patterns lateral urtihria in this section since our snake robot Aiko does not have the
and sidewinding with isotropic friction. orthotropic friction property necessary for efficient locotion

by lateral undulation on a flat surface. However, we compare
simulation and experimental results for lateral undutatigth
A. Model and Simulation Parameters isotropic friction in Section VIII-D.

The snake robot Aiko in Fig. 1 was used as a basis for theThe Coulomb friction coefficientg.;, = 0.1 (along the
parameters in the mathematical model. The model parametgnake robot body) angi;, = 0.5 (transversal to the body)
are fori = 1,...,n: Aiko hasn = 11 links. The lengthL;, = are employed for the simulation of lateral undulation insthi
0.122 m and radiusLsc, = 0.0525 m of each link is found section. Hence, orthotropic friction is obtained. The moti
by measuring one of the links used on Aiko. Moreover, Aikpattern is implemented using the joint reference anglesrgiv
weighs 7.5 kg and we therefore assume that each link weighs (70)-(71) with the parameterd;, = 307/180 rad, wy, =
m; = 7.5/11kg ~ 0.682 kg since all links are approximately807 /180 rad/s,d, = —507/180 rad, A, = 6, = 1, = ¢p, =
equal. The distance from the centre of gravity of a link to th& = 0 rad, andw, = 0 rad/s. We let the snake robot start in
centre of the spheres used for contact with the ground in thecurved posture with its centre line approximately alorgy th
model is calculated to b&gs, = 0.0393 m by assuming a 45 el-axis and with its initial joint angles given by, (0) and
degree maximum joint deflection and that the cylindricatpara,,, (0), respectively.
of the model should not come into each other for a maximumFig. 6 shows the position of the centre of gravity of the
joint angle. The moments of inert@,; = 9.63x10~* kg m?, middle link (i = 6) of the snake robot. We see that the snake
O3, = 2.35 x 10~* kg m? are calculated by assuming eachobot behaves as expected: The snake robot starts moving
link to be a cylinder of lengthl; and radiusLsc, with a steadily forward mainly along the’ -axis. The forward motion

uniform mass distribution. would not have been the result for an isotropic friction mode
The controller parameters ards;,, = 40 Nm, (i.e. ur, = p1,). In that case, the snake robot would have

Kp, = 0.2Nms, K,, = 800Nm, andK,, = 0.2 Nm-s. moved slowly backward as we will see in Section VIII-D.

The acceleration of gravity ig = 9.81 m/s?.. The sim- In order to increase the velocity of a snake robot, even with

ulation parameters are as followsyy = 0.1, rp = 0.01, isotropic friction, the snake robot may push against exern
ry = 0.05, tstan = 0 S, tsiop = 15 S, At = ts‘%ts‘a" s, and objects to move forward. Such an approach is elaborated on
N = 4000(tstop— tstar). The Coulomb friction coefficients arein e.g. [35], [36].
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C. The Experimental Setup

The snake robot Aiko (Fig. 1) used in the experiments E | = <
was built in 2006 at the NTNU/SINTEF Advanced Robotics <2 \

Laboratory in Trondheim, Norway. Aiko has te? DOF 0.2t 1
cardan joints and 1 links. The lengthZ; and massm; of 0 s 10 15
the links are the same as given for the mathematical model in (a) time [s]

Section VIII-A. The metal sphere used as a ‘face’ in Fig. 1

was removed in the experiments to obtain a uniform weight 0.2 N N AN
distribution along the snake robot. The friction coeffit&eim £ 0 ‘ / C

the model were calculated from the measurements obtained >° _,, -~
by dragging Aiko from a scale along the particle board. The -0.2- .
friction coefficients were found to b@r, = ur, = 0.2 0 5 10 15
and these values will be employed in the simulations in the (b) time [s]

remainder of this paper. , B _ _ o S

Each2 DOF cardan joint was actuated by twow DC- E. T Peston o i g fterl unuiton wit souepc rton o
motors. The two motors were controlled by a controller
with dynamic feedback (see [37]) implemented on an Atmel
ATmegal28 microcontroller. The snake robot joint refesenc
angles were sent with a frequency of 10 Hz from a PC, via(while still keeping isotropic friction), but this did noesm
CAN-bus to the microcontrollers. The position of the cemtie 0 have a noticeable effect on the simulation results. The
the middle link (link6) was tracked using a Vicon MX Motion difference in distance travelled may come as a consequence
Capture System with 4 cameras (MX3) together with Matla®f that the model of the snake robot is able to control its
Simulink. The Vicon programme (Vicon iQ 2.0) ran on doints more accurately and thus is able to reach the maximum
computer with 4 Intel Xeon 3 GHz processors and 2 GB RAMiMPlitude when it is required to do so. Also, this suggesis th
The logging of motion data was synchronized in time throughe friction contact between the snake robot and the ground
a TCP-connection between the PC that controlled Aiko aifyrface is even more complex than what has been accounted
the Vicon-computer at the start-up of the transmission ef thor in the model. A more elaborate list of possible sources of
desired snake robot joint angles. Data logging was perfdrm@(Tors is given in Section VIII-F.
at20 Hz. We have chosen to let the position of lilkepresent ~ We note from these simulation and experimental results
the position of the snake robot, because then we filter aﬂ’&ﬂt the direction of locomotion by lateral undulation with
transient behaviour of the snake robot that might occursat iotropic friction is the same as the direction of the waves
ends and it is thus easier to focus on the general motion of thét is propagated along the body of the snake robot. This is
snake robot. The centre of gravity of the whole snake robg@herent with results found in [38] where this phenomenon is
(instead of a specific link) can also be advantageous to ik u§taborated on.
to represent the position of the snake robot. However, sach a
approach is cumbersome to realize with our Vicon system.g - sigewinding: Simulation and Experimental Results

Particle boards were used as the ground surface. _ ) . .
In this section, we present and compare the simulation

results and the experimental results for the motion pattern
D. Lateral Undulation: Simulation and Experimental result sidewinding. The joint reference angles are found from{70)

In this section, we compare simulation and experimef1) with the parametersl, = 307/180, w), = 807/1804,
tal results for lateral undulation with isotropic frictioThe 0n = —507/180, A, = 10m/180, wy = wp, 6y = On,
reference joint angles are calculated from (70)-(71) withy = 907/180, and ¢, = ¢, = 0, for both the simulation.
the parametersi, = 407/180 rad, w, = 80x/180 rad/s, and the experiment. We employ a_‘so_ft_s_tart’ approach during
5, = —50m/180 rad, A, = 8, = 6y = 0 rad, w, = 0 start-up of the snake robot from its initial (straight) post
rad/s, andy, = v, = 0, for both the simulation and thet© avoid large steps in the reference signal. To this end, we
experiment. We let the snake robot start in a curved post¥éerride the expressions (70)-(71) and sgf(¢) = 0 rad until
with its centre line approximately along tleé-axis and with the reference signal is withifwy, (¢)] < 37/180 rad for the
its initial joint angles given byy,, (0) anda, (0). Fig. 7 shows first time after start-up. The same applies &qr. The shape of
both the position of links calculated from the mathematicalthe snake robot during start-up with the ‘soft-start’ agmto
model in the simulation and the position logged from this illustrated in Fig. 8 for sidewinding.
experiment with Aiko. We see that the snake robot movesFig. 9 illustrates how Aiko and the model move during the
slowly backward along the!-axis. From Fig. 7 we see that thel® second simulation of sidewinding locomotion. Since all the
3D model display the same trend in motion as observed in thighulations have now been performed, a note on the computa-
experiment. However, the distance travelled is greatehén ttional cost is appropriate. All simulations were perfornued

simulation and we have tried varying the friction coeffitien & Pentium-M 1.8 GHz computer running Matlab R2006a. For
20 seconds simulations it took on average about 7.1 minates t

Lhitp://www.sintef.com/snakerobots simulate 1 second of sidewinding motion and only 1.3 minutes
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Fig. 8. Top-down view of snake robot postures during sinfadf start-up
with the ‘soft-start’ approach for sidewinding.

Fig. 9. Aiko (bottom) and simulated snake robot (top) dursidewinding.
The images show the snake robottat= 0 s (straight posture)t = 5 s,
t=10s, andt = 15 s.

13

Fig. 10 and Fig. 11 display the position of link 6 for the
3D model and Aiko during sidewinding. We observe from
the figures that the model almost follows thé—axis, while
Aiko steadily turns somewhat to the right. In addition, the
model covers a greater distance than Aiko. We see from
Fig. 10 and Fig. 11 (b) that the simulation results have the
same trend and approximate frequency as the experimental
results along theeé-axis. The variance in trend is more
noticeable along the’-axis due to the turning motion of Aiko.
Moreover, a slight initial difference between the orieimat
of Aiko and the model may contribute to the discrepancy in
heading. We discuss in Section VIII-F various reasons fer th
differences between the simulation and experimental tesul
For sidewinding, we believe that one of the most important
differences between the 3D model and Aiko is that Aiko is not
able to control its joints accurately. This is particulahyg case
for vertical (lifting) motion which is needed for sidewinmdj.

By inspecting Aiko closely during the experiment, we natice
that a large part of its body was touching the ground at the
same time. This was not the case in the simulation where the
shake robot joints were accurately controlled which resllt

in that most if its body was lifted from the ground during
locomotion.

We observe from Fig. 10 and Fig. 11 (b) that Aiko some-
times slides a little backward (at~ 5 s,t ~ 9 s andt ~ 14
s). We have tried to reproduce this phenomenon in the 3D
model by lowering and increasing the friction coefficiente W
have also tried a variety of anisotropic friction propestibut
without any luck. The backward motion might be a result
of Aiko not being able to lift its links properly. The links
that are supposed to be lifted and moved forward are instead
sometimes dragged along the particle board. This results in
a friction force which acts in the opposite direction of the
desired motion of the snake robot. This friction force might
result in that some of the parts that are supposed to be lying
stationary on the ground are instead pushed slightly backwa

to simulate 1 second of lateral undulation. The difference
in simulation speed arises from that the 3D motion during
sidewinding is more complex than planar motion by lateral
undulation. The simulation speed can be greatly increaged b
instead implementing the model in for example C++. However,

we have chosen to first implement the model in Matlab in ord€ig. 10.

to keep the time it takes to implement the model relative&
short.

0,

-14 -1.2

Position of link6é during sidewinding on a flat plane: simulation
ashed line) and experimental (solid line) results. Trangle and the circle
ark the end of the paths.

-1 -0.8 -0.6 -04 -0.2
X, [m]

0
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uniform mass distribution.

_ o5 i The list of possible errors is long and it is difficult to
é@ ot 1 determine what issues are the most important in order to ex-
x i plain the differences between the simulation and experiaten
' - T results. Also, the main factors may vary depending on which
o 5 10 15 motion pattern is tested. To this end, we believe that farédt

undulation 1) and 2) are the most important reasons for the
differences since the snake robot is always lying flat on the
ground. Moreover, for sidewinding locomotion, 1) - 5) affec
the comparison the most.

Even though there are several sources of error, we see from
the plots that compare the simulation and experimentalteesu
that the model gives a satisfactory qualitative descniptibthe
shake robot dynamics. The model is not accurate enough to
Fig. 11. Position of link6 during sidewinding on a flat plane: simulation precisely predict the quantitative motion of the snake tolat
(dashed line) and experimental (solid line) results. it should be possible to improve the accuracy of the model by
taking into account the various sources of errors listedrabo
However, at its current state the model gives a clear inidicat
of how the snhake robot will move during sidewinding and
) ] _ _lateral undulation with isotropic friction and extendiniet

We see from Fig. 10 and Fig. 11 that the simulatiomodel will require a considerable amount of work in tailgrin
and experimental results compare fairly well. However, thge model to the specific snake robot Aiko. Hence, the process
differences between the two results need to be addresggfl have to be repeated for new snake robot designs. Instead
and we list the most important possible sources of errors g presenting a model with such a very close resemblance to
the followi_ng. These effects have not been included in thgko we present a model for synthesis and testing of new
mathematical model. 3D motion patterns. Moreover, the comparisons between the

1) Aiko has a noticeable free play in the joints of abButs  simulation and experimental results suggest that our misdel
degrees. This results in that the control of the joint antdes g for this purpose.

not completely accurate and a joint angle might not be able
to reach its desired angle.

2) The dynamics of the actuators are not modelled. Hence,
the actuators in the models are extremely strong and fadt, anin this paper, we present a 3D non-smooth mathematical
we are able to accurately control the actual angle of each jomodel that enables synthesis and testing of 3D snake robot
to its desired position. This is not the case for Aiko whem thmotion patterns. Experiments show that the models describe
joint motors sometimes saturate and are unable to track thea realistic manner how a real snake robot will behave durin
desired joint movement precisely. This particularly theecalocomotion.
for vertical motion where larger joint torques are required  The model of the snake robot is developed based on the

3) The exoskeleton of Aiko is not modelled precisely sinckamework of non-smooth dynamics and convex analysis. This
this would require a great deal of consideration of the geomigamework allows us to easily incorporate the contact ferce
try of the snake robot and this would severely complicate theth the ground, together with an accurate description ef th
expressions for contact with the environment. spatial Coulomb friction. In addition, even though we enyplo

4) For each cardan joint, there is in fact a 2.2 cm distaneehybrid model, there is no need for an explicit switch betwee
between the rotational axes for the yaw and pitch motiogystem equations (when for example an impact occurs) since
However, to simplify the kinematics, we have assumed thlabth the non-impulsive forces and the impact impulses are
the axes intersect. covered by the same force law together with that we use

5) The Stribeck effect (see e.g. [22]) is not included in thiéne time-stepping method for numerical treatment. The use
model of friction. The Stribeck effect states, roughly 9peg, of non-minimal absolute coordinates results in a constadt a
that friction forces acting on a body is reduced just aftés it diagonal mass matrix and an effective way of writing the
set in motion. system equations. Such a constant mass matrix is beneficial

6) The varnish on the underside of the snake robot has beéerthe numerical treatment since it needs only to be inverted
worn down. This has resulted in that the snake robot linksice and not in each time-step during simulation.
slide easier when rolled slightly to one of the sides wheee th Simulations of the snake robot during the serpentine motion
varnish is still present. pattern lateral undulation is performed. The simulatiosute

7) There was a time-delay between the start-up of the snadteows that the orthotropic friction model based on Coulamb’
robot and the start-up of the logging of position data. Thiaw of dry friction is reasonable since the snake robot moves
delay ranged betwees0 and 150 ms. forward.

8) The physical parameters of the snake robot may beExperiments are performed with the snake robot Aiko in
slightly incorrect, partly since we assume that each link &da Fig. 1 for the serpentine motion patterns lateral undufedind

(b) time [s]

F. Discussion of the Experimental Validation

IX. CONCLUSIONS ANDFURTHER WORK



sidewinding with isotropic friction. Back-to-back comjsms
between simulation results and experimental results Witise
motion patterns are given to validate the mathematical rlnodﬁ6
The simulation and experimental results compare sat@sfact

The simulation results together with the experimental v L
idation show that the mathematical model presented in this
paper gives a satisfactory description of how our snaketrobo
moves in the real world. The model cannot be employétfl
directly (as e.g. a state estimator) to predict the exacionaif
our snake robot. However, the comparisons with experinhenta
results show that the model is suitable for developing afztg]
testing motion patterns in order to see how a real snake ro 01!
will move for a given motion pattern. [21]

We show in this paper how to develop a 3D mathematical
model of a snake robot on a flat ground surface. Furthgg,
work will consist of extending the model to include other
ground shapes such as stairs. Also, the model will be use%
to develop and test new 3D motion patterns for snake robo[tzs.
Moreover, optimization of non-smooth systems is a growing
field of research and the 3D model presented in this pa %{]
may one day be employed to optimize gaits with respect 1o,
for example, speed or energy efficiency.

It is hoped that this paper can inspire other communiti&!
working on robot manipulators to try out the powerful mod-
eling techniques available in the framework of non-smooth
dynamics and convex analysis. 26]

[15]
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