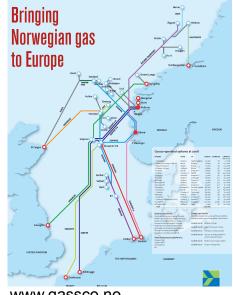
Robust pipeline localization for an AUV using stereo vision and echo sounder data

Gøril M. Breivik*, Sigurd A. Fjerdingen, Øystein Skotheim

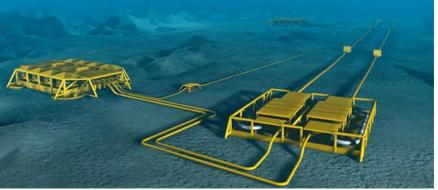
SINTEF, Norway

*gbre@sintef.no

Submarine pipeline shutdowns are costly


- Submarine pipelines
 - important network for oil/gas
 - connect offshore to onshore

Example:


- Gas field Ormen Lange meets 20 percent of UK's gas requirements
- Pipeline Langeled of length 1,200 km connects the gas field to UK

Pipes need to be inspected:

- processing stops are costly and should be avoided
- environmental harm should be prevented

www.gassco.no

www.hydro.com

Inspection can reveal pipe defects

Possible pipeline defects:

- corrosion
- cracking
- stress
- bending
- denting
- movements
- free spans
- partial burial of the pipe

www.jee.co.uk

www.neptunems.com

Submarine pipe inspection is cost and time consuming

- Inspection using remotely operated vehicles (ROV)
 - includes a manned support vessel
 - limited operating range
 - Iimited weather conditions
 - relatively slow speed

www.km.kongsberg.com

AUV is the solution to many cost issues

- Autonomous underwater vehicles (AUV):
 - unmanned
 - untethered
 - no support vessel
 - operate autonomously

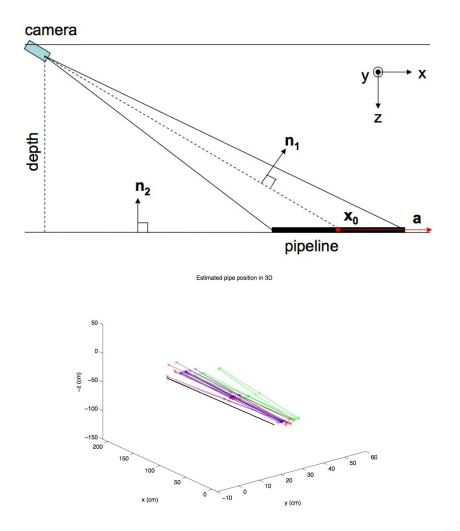
www.ntnu.no/gemini/

Pipeline tracking is essential to AUVs

SINTEFs AUV

- developed for research
- several sensors:
 - two underwater cameras
 - echo sounder
 - sonar
 - IMU
 - GPS (for use in surface)

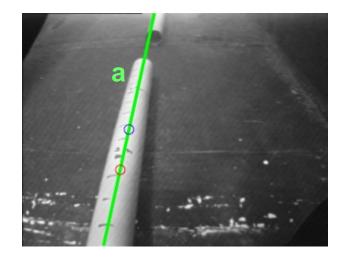
Autonomous navigation:

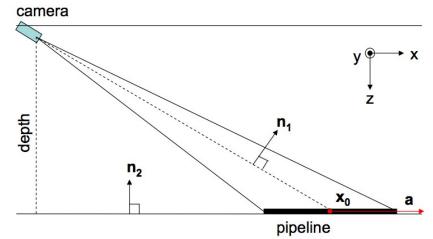

- how to localize pipeline relative to AUV?
- how to robustly track pipeline position?

Three sensors ensure more continuous pipeline tracking in 3D

- Two sensor combinations:
 - one camera and echo sounder
 - stereo camera
- Recordings show that:
 - accuracy is equal for both sensor combinations
 - accuracy is good enough for our needs
 - using both combinations ensures more continuous pipe localization over time

- 3D localization using one camera and echo sounder
- 3D localization using stereo cameras
- Experiments and results
- Conclusions

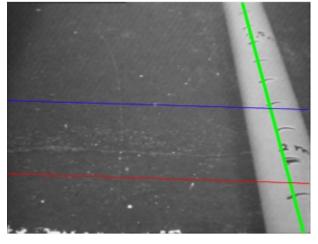

3D localization using one camera and echo sounder


- 3D localization using stereo cameras
- Experiments and results
- Conclusions

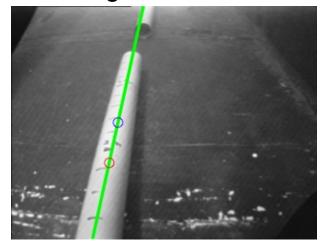
3D pipe position found using one camera

Principle of algorithm:

- pipe is a line in camera image
- this line spans a plane in 3D when seen from the camera
- sea floor is a second plane in 3D, given by depth measurements from the echo sounder
- pipe position is found as the intersection line of the two planes in 3D
- Assumption:
 - the sea floor is assumed horizontal in the area of interest

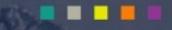

3D localization using one camera and echo sounder
 3D localization using stereo cameras
 Experiments and results

Conclusions



Epipolar lines give point pairs for stereo triangulation

left camera

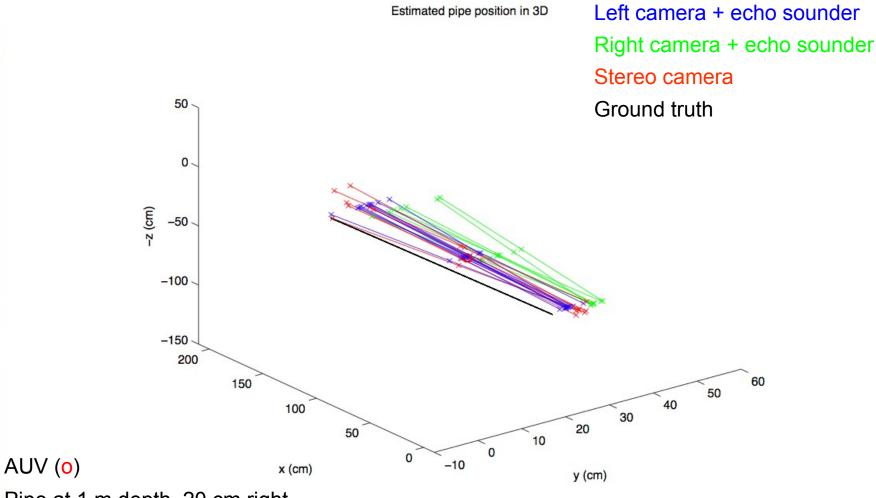

right camera

Principle of algorithm:

- points correspond to epipolar lines
- pick two points on pipe in right image (o and o)
- epipolar lines (- and -) cross pipe in corresponding points
- conventional stereo triangulation is used to find position in 3D
- pipe position is defined as a straight line through the two 3D points

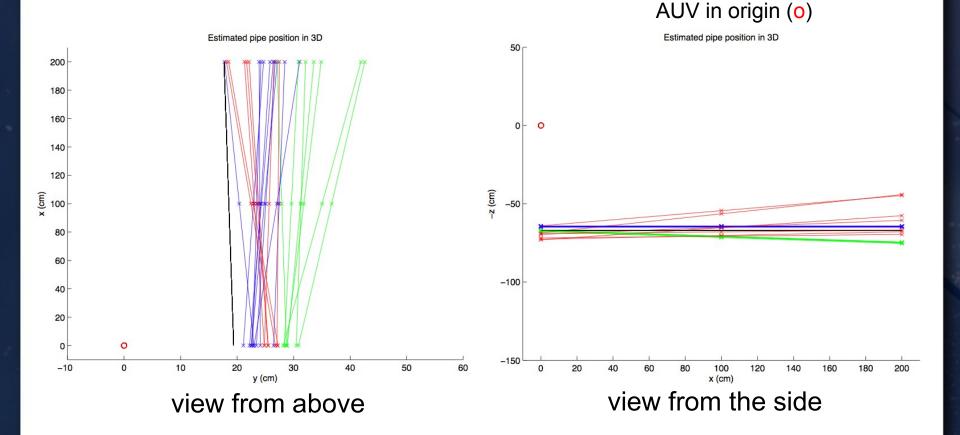
3D localization using one camera and echo sounder
3D localization using stereo cameras
Experiments and results
Conclusions

Pool experiments enable ground truth comparison


- Experiments from a pool
 - AUV kept stable in four positions relative to pipe
 - Sensor data recorded
 - Ground truth measured using a tape measure

Three sensor combinations give three pipe positions:

- Left camera + echo sounder
- Right camera + echo sounder
- Stereo camera


Estimated pipe positions lie close to ground truth

Pipe at 1 m depth, 20 cm right

() SINTEF

Echo sounder approach gives pure horizontal pipe positions

16

Stereo camera

Ground truth

3D localization using one camera and echo sounder
3D localization using stereo cameras
Experiments and results
Conclusions

Conclusions

Equal accuracy for both algorithms:

- mean: 8-17 cm (position) and 1°-3° (angle)
- standard deviation: 3-16 cm (position) and 0°-9° (angle)
- good enough for our needs

More robust pipe tracking using both algorithms:

- Echo sounder performs 2x better than stereo (true positives)
- Stereo camera assumes pipe segmentation from two images
- Echo sounder assumes horizontal sea floor

Final comments

- Measuring ground truth is challenging
- Adjusting for vehicle movement using intertial measurement unit data can improve results

Thank you!

www.sintef.com/omd