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Abstract

While the PC just a few years ago included only one single-core
CPU and a fixed functionality graphics card, the current commod-
ity PC is a heterogeneous system, equipped with both a multi-core
CPU and a fully programmable graphics processing unit (GPU).
This change has given the commodity PC one to two orders of
magnitude increase in computational performance compared with
a few years ago [Brodtkorb et al. 2010; Owens et al. 2008]. We
will in this paper address the potential of exploiting such a paral-
lel computational capacity for the calculation of intersections and
self-intersections of spline represented surfaces. The focus will be
on massive parallel spline space refinement by knot insertion, an
approach much better adapted to parallel implementations than the
knot insertion used in traditional recursive subdivision based inter-
section algorithms. Rather than presenting a complete algorithm
we address the most resource demanding sub-algorithms of surface
intersection and self-intersection algorithms and their relative per-
formance on multi-core processors and GPUs for different levels of
refinement. Our results show the efficiency of the sub-algorithms
on the two types of processors and how this can be used to improve
the overall performance on this heterogeneous system.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric Algorithms, Languages,
and Systems; I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Splines

Keywords: Intersections, splines, GPU, multi-core, OpenMP,
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1 Introduction

In CAD-systems sculptured surfaces are represented as paramet-
ric tensor product rational B-spline surfaces, most often denoted
NURBS (Non-Uniform Rational B-Spline). As a spline is a piece-
wise polynomial, a NURBS surface can be decomposed into a set
of rational parametric tensor product surfaces (Rational Bézier Sur-
faces). A rational surface p(s, t) of bi-degree (d1,d2) can by elim-
ination of the parametric variables (s, t) be represented as an alge-
braic surface q(x,y,z) = 0 of total degree 2d1d2. So the intersec-
tion of a bicubic surface p(s, t) with the algebraic representation
q(x,y,z) = 0 of total degree 18, and the bicubic surface r(u,v), can
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be rewritten to q(r(u,v)) = 0, which is a real algebraic curve of bi-
degree (54,54), or total degree 108. It would be nice to know how
many branches such a real algebraic curve can have, and which
topological structures are possible.

The classification of non-singular plane projective algebraic curves
has only been solved for degrees d ≤ 7 [Viro 2008]. Further-
more the number of connected components (curves) of a plane
projective real algebraic curve of degree d is less than or equal
to (d − 1)(d − 2)/2 + 1. Using this we can limit the number of
intersection branches in projective space of two bicubic rational
surfaces by 107 ∗ 106/2 + 1 = 5672. When projecting back to the
affine spaces some branches can split and further increase the num-
ber of branches. In practice intersections of NURBS-surfaces in
CAD most often result in one or a few intersection branches. How-
ever, when the normal fields of two intersecting surfaces overlap,
the number of intersection branches is often experienced to be nu-
merous as the result above indicates.

When current CAD-systems perform intersection of NURBS-
surfaces they try to find a sufficiently good solution to a prob-
lem where knowledge of the topological complexity is incomplete.
To achieve this CAD-systems renounce quality to achieve perfor-
mance. Approaches employed over the years to find intersection
branches include [Dokken and Skytt 2007]:

• Tessellation: Triangulate the surfaces to be intersected, and
intersect the triangulations. This works well for transversal
intersections, but not for near singular intersections, where
the surfaces are near parallel in the area containing the inter-
section.

• Lattice evaluation: Extract a grid of curves from one surface
and intersect with the other surface, and vice versa. Use the
detected points to trace out intersection curves. However, this
approach can miss intersection branches.

• Recursive subdivision: Recursively subdivide the surfaces to
smaller surfaces [Dokken 1985; Sinha et al. 1985]. For each
pair of subdivided surfaces check for the possibility of spatial
overlap. The nature of the possible intersection is found by
analyzing the relation between the normal fields of the sur-
faces to detect the possibility of internal intersection loops. If
internal loops are possible continue the subdivision. As an in-
tersection loop can be infinitesimally the recursion can go on
forever unless stopped. In the case where the surfaces inter-
sect tangentially this criteria for detection of loop free inter-
section will not work.

While tessellation and lattice evaluation will miss considerably
more intersections than recursive subdivision, the computation time
will be related to the complexity of the intersections found. Recur-
sive subdivision will deliver considerably more complete intersec-
tions than the two other approaches, but the computation times can
be very long especially in the case of near tangential intersections.
Consequently the performance offered by parallel heterogeneous
computational resources has a potential to significantly increase
the performance and quality of subdivision based intersection al-
gorithms.



Figure 1: A self-intersecting surface.

In this paper we propose to exploit the computational performance
of multi-core processors and GPUs to determine the complexity of
the topology of the intersection and self-intersection of NURBS
surfaces. The idea is to identify the regions of intersection or self-
intersection in the surfaces and classify these. When the classi-
fication states that the regions intersect transversally as shown in
Figure 3, the actual intersection curve can be traced out by march-
ing or refinement algorithms. For regions where no conclusion
can be reached more complex approaches can be employed such
as recursive subdivision combined with approximate implicitization
[Dokken and Thomassen 2003; Bloomenthal and Wyvill 1997].

For the intersection of two surfaces the classifications will be:

• No intersection occurs.

• All intersections are transversal, points on all branches and
loops are identified as shown in Figure 3.

• A region with possible loops, singular or near singular inter-
sections as shown in Figure 4.

For the self-intersection of a surface the classification will be:

• No self-intersection occurs.

• Transversal self-intersection of two parts of the surface.

• Possible singular self-intersection of two parts of the surface.

• Possible locally vanishing surface normal - seed point for sur-
face self-penetration as shown in Figure 1 and 2.

The massive subdivision of the NURBS surfaces is well suited for
parallelization. This parallelization can either be on a homoge-
neous multi-core processor, or in a heterogeneous processor envi-
ronment combining homogeneous multi-core processors and data
stream processors such as GPUs. We will in this paper compare
how the massive subdivision and region classification performs on
current processors for different levels of subdivision. The idea is
to better provide the basis for a future efficient approach for classi-
fying the intersection topology to guarantee quality and direct the
recursive intersection algorithms to the challenging regions of the
intersection problem.

Figure 2: A surface containing a singularity.

Until now there has been limited focus on the use of GPUs for CAD
type geometry interrogations such as intersections. In [Hoff et al.
2001] collision detection of two 2D objects was addressed, while
in [Agarwal et al. 2004] collision detection of polytopes was ad-
dressed. Practical algorithms for accelerating geometric queries
on models made of NURBS surfaces were addressed in [Krishna-
murthy et al. 2009]. [Briseid et al. 2006] showed a method for
speeding up surface intersections using a GPU. The results showed
a good speedup when compared with a single-core CPU. In this pa-
per we update the method to use the modern programming model
for a GPU. We also extend the method to a heterogeneous system
by including a multi-core CPU. Additionally we add a module for
analyzing the intersection topology.

The paper consists of six sections. In section 2 we describe the
programming model we use to instruct the computational resources.
In section 3 the intersection problem is described. In section 4 we
define the intersection modules to be accelerated. Section 5 gives
some results. The concluding remarks are given in section 6.

2 Heterogeneous Programming Model

In our heterogeneous system we use the standard APIs OpenMP
and CUDA.

The multi-core CPU is addressed using OpenMP [Chapman et al.
2007]. OpenMP is an API for multi-platform shared memory multi-
processing, supporting C/C++ and Fortran. It was released in 1997,
and has gained wide interest since then. The parallelization follows
from inserting compiler pragmas into the source code, telling the
compiler which code blocks that may be run in parallel. The syntax
is easy, giving a low learning threshold for the programmer.

In 2007 NVIDIA released the CUDA (Compute Unified Device Ar-
chitecture) programming environment [Kirk and Hwu 2010]. Prior
to CUDA the classical GPGPU (General Programming on the GPU)
approach was to use OpenGL. Although the interface allowed for
an extensive use of the GPU, the programming model was limited
by the origin of the toolkit. Centered around displaying graphics on
a screen the model required the programmer to understand a lot of



Figure 3: Two surfaces with a transversal intersection.

concepts not connected to the computational problem. With CUDA,
NVIDIA removed many of these abstract layers, allowing the pro-
grammer more easily to run programs using the GPU. The CUDA
programming model is on a higher abstraction layer and resembles
C++. The programmer writes small programs to be run on the GPU,
called kernels, which are quite similar to function calls carried out
on the CPU. This does not mean that any task may be ported to
CUDA with little effort and great success. There still are quite a
few architectural issues to consider to make for an efficient GPU
implementation. But it has become a lot easier to get a program to
run on the GPU, even for novice GPU programmers.

3 Spline Surface Intersections

Traditional recursive intersection algorithms will be a potential bot-
tleneck, as these will imply offloading an operation to only one
processing core. A natural approach is then to analyze the tradi-
tional algorithm and isolate tasks with a high degree of parallelism.
These tasks are put into separate modules, giving a good flexibility
towards using multiple processing elements.

In our system we test for intersections on tensor product spline sur-
faces. We are thus given a spline surface of bi-degree (d1,d2),

S(u,v) =
m−1

∑
j=0

n−1

∑
i=0

ci, jBi,d1(u)B j,d2(v), (1)

where Bi,d1(u) and B j,d2(v) are the B-spline functions and ci, j are
the 3-dimensional control points. Our intersection modules will
essentially only be working on the control points, with the spline
space used for setting up the system.

Central to our approach is a massive subdivision. The subdivision
of a spline surface is done by multiplying the coefficient matrix by
a refinement matrix, where the former is given by the control points
ci, j in equation 1 and the latter constitutes the transition from the
original spline space to the refined spline space [Farin 2002]. By
using this subdivision strategy we break the problem up into smaller
parts which are easier to handle. More than looking for intersecting

Figure 4: Two surfaces with a tangential intersection.

parts, we enlarge the area which is guaranteed not to self-intersect
or contain an intersection. For a trivial example with no intersec-
tions we will only need to use a low subdivision level. Surfaces
with a complex intersection topology will naturally be more de-
manding, requiring a closer look. When given an area which may
contain an intersection, we use the subdivision to zoom in. Once
we have reached a level where any intersection curve is guaranteed
to be simple, we are done. Tracing out the intersection curves may
then be efficiently performed on the CPU.

In this paper we use single precision rather than double precision in
the algorithms. This is not critical as the NURBS algorithms used
are extremely stable numerically, and the ambition is to classify the
topology of surface intersections and self-intersections, and provide
starting points for tracing out intersection curves. Central parts of
the classification will be based on the calculation of bounding boxes
based on Bézier sub-patches of the surface or its corresponding nor-
mal surface. Using single precision gives a relative error of the ex-
tent of the bounding boxes of 10−6, while double precision gives a
relative error of the extent of the bounding boxes of 10−15. Should
double precision be needed, this is supported at half single preci-
sion speed by state-of-the-art GPUs. However, in most cases using
single precision will have little influence on the classification result.

4 The Intersection Modules

To allow for the various parts of the intersection analysis to be run in
parallel, we split the problem into separate modules. The flowchart
in Figure 5 shows the dependency of the intersection modules. Our
approach consists of two main branches which are totally indepen-
dent. Additionally, the second branch is split into two branches fur-
ther down in the pipeline. This indicates a potential for an efficient
usage of our heterogeneous system by letting multiple processing
elements run independent modules simultaneously. Furthermore,
the independence of the branches in the flowchart allows us to use
different subdivision levels. This may be in the form of increasing
the subdivision level by iterating on specific modules.



Figure 5: Pipelines of intersection modules.

4.1 Module 1: Surface Refinement

The input surface is refined to a chosen subdivision level n, corre-
sponding to a grid of 2n× 2n Bézier sub-patches. This is done by
performing a matrix-matrix multiplication on the control polygon
of the surface, highly suitable for massive parallelization. We first
refine in one of the parameter directions, followed by refinement in
the other parameter direction. When given a bicubic Bézier surface
as input, and subdividing to level n = 8, for each dimension this cor-
responds to multiplying a 4× 4 matrix by a 4× 1024 matrix, then
multiplying a 1024×4 matrix by a 4×1024 matrix. The (compu-
tational) order of the module is O(22n), where n is the subdivision
level.

On the GPU we use CUBLAS, which is a BLAS (Basic Linear
Algebra Subprograms) implementation using CUDA. The library
is very efficient, typically giving a speedup compared to a single-
core CPU version of one order of magnitude.

4.2 Module 2: Bounding Box Construction

When module 1 has completed the surface refinement, we create an
axis-aligned bounding box for each Bézier sub-patch, as shown in
figure Figure 6. Since a spline surface lies inside the convex hull
of its control point polygon, this is a fast and straightforward oper-
ation. By choosing the appropriate data structure, giving good data
locality, this is well suited for OpenMP. The data locality ensures
good cache efficiency, crucial to a method with such a low com-
pute intensity. The order of the module is O(22n), where n is the
subdivision level.

On the GPU we use an all-reduce method to extract the minimal and
maximal coordinate values from each of the Bézier sub-patches.
We do this by comparing pairs of coefficients, for each dimension
storing the minimal/maximal value. This reduction process is car-
ried out until we are left with the global minimal/maximal value. It
is highly parallel, very well suited for the GPU.

4.3 Module 3: Bounding Box Overlap Test

Once we have created the bounding boxes for all the Bézier sub-
patches, we check if pairs of bounding boxes overlap, as shown

Figure 6: Axis-aligned bounding box enclosing the control point
polygon of a spline surface.

in Figure 7. For the self-intersection-test this is performed on all
the sub-patches in the surface. Adjacent patches are excluded as
the shared border trivially gives an overlap. That particular case is
handled by module 6, where we look at the normal cone of the sub-
patches and the sum of the normal cones of adjacent sub-patches.
If we are testing for intersections between two surfaces, we expect
both surfaces to already have been analyzed for self-intersections,
hence the pair is constructed from both surfaces. If we encounter
a pair with overlapping bounding boxes the patches may intersect.
Otherwise we know that no such intersection can exist and there
is no need for further subdivision. In general we need to check
(m− 1)(m− 1)/2 pairs, where m = 22n is the number of Bézier
sub-patches. The test itself is very lightweight as it, for each pair,
consists of comparing up to 3 pairs of floating point numbers. How-
ever, the order of the module is O(24n), where n is the subdivision
level. We should expect this to rapidly become a dominating mod-
ule for larger n.

4.4 Module 4: Normal Surface Refinement

The module is essentially the same as module 1 (surface refine-
ment). For a surface with bi-degree (d1,d2), the bi-degree of the
normal surface is (2d1−1,2d2−1). When given a biquintic Bézier
normal surface as input, and subdividing to level n = 8, for each di-
mension the refinement operation corresponds to first multiplying
a 6× 6 matrix by a 6× 1536 matrix, then multiplying a 1536× 6
matrix by a 6× 1536 matrix. The order of the module is O(22n),
where n is the subdivision level.

Similar to the surface refinement module we use CUBLAS for the
matrix-matrix multiplications on the GPU.

4.5 Module 5: Degeneracy Test

To identify singular parts of the surface we locate the degenerate
parts in the normal surface. By using the refined normal surface
we check if any of the Bézier normal sub-patches contain or lie



Figure 7: Two overlapping bounding boxes.

close to the origin. This is done by creating the bounding boxes
from the refined normal surface and then calculating the distance to
the origin. We should subdivide until this distance is greater than
the intersection tolerance or the size of the boxes are smaller than
the intersection tolerance. This module is not run when we test
for intersection between two surfaces as we then expect the input
surfaces to already have been analyzed for self-intersections. The
order of the module is O(22n), where n is the subdivision level.

On the GPU this is a two-step procedure. We first use an all-reduce
method to generate the bounding boxes for the refined normal sur-
face. We then run through these boxes to check for degeneracy.

4.6 Module 6: Normal Cone Construction

The normal cone for a surface represents an upper bound for the
span of the normal surface. It consists of a direction and an an-
gle describing the width of the cone. It is used to check for self-
intersections in a surface, as well as when classifying whether an
intersection may be of a transversal type or a tangential type. The
classification test is handled by the next module, the cone overlap
module. Assuming that we are looking for self-intersections, we
check if the normal cone angle of the sub-patches is greater than π ,
which allows the sub-patch to contain a self-intersection. We also
check whether the span of the normal cones for two adjacent sub-
patches is greater than π . This is a solution to the problem in the box
overlap module where the shared border between adjacent patches
gives a trivial overlap. If any of these tests are positive we should
subdivide further to remove the possibility of self-intersecting sub-
patches. We focus on speed when we construct the cones, giving us
a slightly wider cone. For some cases this may result in the need of
a higher subdivision level to rule out self-intersections, but overall
our approximation approach gives an increased speed. The order of
the module is O(22n), where n is the subdivision level.

On the CPU our approach is linked with the next module, the nor-
mal cone overlap test. The number of pairs to check grows rapidly
as the subdivision level n increases. Instead of storing the an-
gle of the normal cone, we store the sine and cosine values of
the angle. We then use the trigonometric identity cos(a + b) =

cos(a)cos(b)− sin(a)sin(b) when testing for overlapping cones,
where a and b denote the cone angles in the two normal cones. On
the CPU this is a lot faster than computing the angle between the
cone centers and then comparing the angle with the cone widths.

On the GPU this module consists of a two-step procedure. We first
use an all-reduce method to compute the average value of the con-
trol points in the refined normal surface, corresponding to the av-
erage normals in the refined input surface. For each Bézier normal
sub-patch we then find an upper bound for the distance to the con-
trol points. Together with the average direction this defines our
approximation of the normal cone. Again, the convex hull property
of the spline surface ensures us that this cone encloses the normal
cone. On the GPU we may choose between the standard inverse co-
sine evaluation and a hardware implemented version. The latter is
extremely fast at the cost of a slightly lower accuracy. Since we are
interested in whether the angle is smaller than π and we thus only
need an approximation, the lower accuracy is a fair price to pay for
greater speed. This approach, as opposed to the similar CPU ver-
sion of the module, gave a better GPU speed on both this module
and the normal cone overlap module.

4.7 Module 7: Normal Cone Overlap Test

We run through all pairs of normal cones to check if they over-
lap. When we are testing for intersections between two surfaces we
assume that the input surfaces have already been checked for self-
intersections, hence each pair is constructed from both surfaces. If
the overlap test is false, we are guaranteed that any intersection is
of a transversal type. This means that an intersection curve in that
area can easily be traced out on the CPU. If the normal cones do
overlap, and the result from module 3 shows that the corresponding
Bézier patches overlap, the Bézier patches may contain a tangen-
tial intersection. We should then subdivide further. Do note that
when testing for self-intersections on a surface, the normal cone of
adjacent patches will trivially overlap. This was handled in mod-
ule 6 (normal cone construction), where we tested whether the two
sub-patches when viewed as a single surface could include a self-
intersection. The order of the module is O(24n), where n is the
subdivision level. This is a very dominating module for larger n.

5 Results

Our test system consists of a PC equipped with 6 GB of RAM. The
multi-core CPU is a 2.67 GHz quad-core CPU (Core i7 920) and
the GPU is a GeForce GTX 470 with 1.25 GB of RAM.

We have tested the intersection modules on a cubic Bézier surface,
using subdivision levels from n = 1 up to n = 10. Since the subdi-
vision is performed uniformly on the input surface, the results are
independent of the geometry of the input. The results from running
the modules on an intersection case with two surfaces will be very
similar, with module 5 (degeneracy) removed from the system.

The benchmarks were performed without timing the communica-
tion between the CPU and the GPU. This potential bottleneck will
become less of an issue with modern designs, which will decrease
the data transfer overhead between the CPU and the GPU. It should
be further noted that the tests were performed without timing the
overhead in the form of setting up the system. This will imply some
additional punishment to a low subdivision level.

As shown in Table 1 and illustrated in Figure 8, the CPU benefits
from using more cores at all subdivision levels. But the advantage,
measured as the speedup factor compared to the single-core CPU,



Level 1 core 2 cores 3 cores 4 cores GPU
3 1.61e–04 9.70e–05 7.38e–05 6.48e–05 3.21e–04
4 8.08e–04 4.84e–04 3.76e–04 3.50e–04 3.62e–04
5 5.99e–03 3.86e–03 3.14e–03 2.78e–03 7.64e–04
6 6.64e–02 4.50e–02 3.79e–02 3.42e–02 6.12e–03
7 9.36e–01 6.76e–01 5.81e–01 5.34e–01 8.91e–02
8 1.43e+01 1.03e+01 8.85e+00 8.17e+00 1.41e+00

Table 1: Total timings in seconds for all modules using subdivision
levels n = 3 up to n = 8.

Figure 8: Total speedups for all modules using subdivision levels
n = 3 up to n = 8.

declines as the subdivision level increases. At level n = 8, the ad-
vantage gained from increasing the number of active CPU cores
from 3 to 4 is almost gone. On the GPU the result is quite the op-
posite. A low subdivision level implies an inefficient GPU due to
many idle cores. From subdivision level n = 6 and up the task is
large enough for the GPU to utilize most of its cores, resulting in a
good speedup compared to the single-core CPU.

5.1 Subdivision Level

An important aspect of the setup is choosing an appropriate subdi-
vision level. In our test system we may use a subdivision level up
to n = 10, limited by the memory on the GPU. Even higher levels
are possible, requiring us to use an iterative approach, running the
overlap modules in multiple steps on a sub-grid. We do not want
to use a high subdivision level on a trivial case as it would imply
wasting clock cycles. But if the problem is an intersection with
a complex topology, we are better off using a higher subdivision
level. We would otherwise have to iterate on the solution, resulting
in a lower efficiency due to added overhead from transferring data
from the GPU for each step. Still, to achieve good data locality
which is vital for an efficient cache usage, it may be beneficial to
use a lower initial subdivision level, and then iterate on the solution
without wasting time by checking the intermediate results.

In theory, assuming a perfect scalability of the multi-core CPU and
the GPU with respect to the problem size, an increased subdivision
level should give an increase in run-time for each of the modules
according to their respective computational order. To evaluate the
efficiency of the modules for the different subdivision levels, we
divided the module execution time by 22n for the modules of order
O(22n), and divided by 24n for the modules of order O(24n). This
gives the sub-patch execution time at the various subdivision lev-
els, which indicates whether an iterative strategy on the subdivision

Figure 9: 4-core CPU efficiency at various subdivision levels, mea-
sured as a percentage of sub-patch execution time at level n = 3.

Figure 10: GPU efficiency at various subdivision levels, measured
as a percentage of sub-patch execution time at level n = 3.

levels may be a good idea. Figure 9 and Figure 10 show the effi-
ciency ratios with respect to level n = 3. On the CPU, using four
cores, there was clearly a benefit from increasing the subdivision
level from n = 3 up to n = 5, as can be seen in Figure 9. With
module 3 and 7 being the most time-consuming modules there is a
small advantage in using an even higher subdivision level. Figure
10 confirms the poor GPU performance on low subdivision levels
which was shown in Figure 8. From level n = 6 and up to n = 8
the efficiency is almost the same. There was no additional benefit
in further increasing the subdivision level.

5.2 The Intersection Modules

We take a closer look at each of the intersection modules, to see how
they perform on the two computational resources. In accordance
with the analysis in the previous section we have used subdivision
level n = 8.

As illustrated in Figure 11, the surface refinement module scales
nicely on the CPU. The input data are on a well-ordered layout,
allowing an efficient OpenMP implementation. The GPU version
of the module gives a very good speedup.

The bounding box module scales well on the CPU. Each Bézier
sub-patch is treated by a separate core. With the sub-patch data
stored in a continuous stream, we allow for OpenMP to achieve



Module 1 core 2 cores 3 cores 4 cores GPU
1 1.16e–02 5.80e–03 3.88e–03 2.91e–03 6.87e–04
2 8.23e–03 4.15e–03 2.82e–03 2.15e–03 6.78e–04
3 6.09e+00 6.09e+00 6.10e+00 6.10e+00 6.61e–01
4 4.16e–02 2.08e–02 1.39e–02 1.04e–02 1.42e–03
5 2.38e–02 1.20e–02 8.06e–03 6.06e–03 2.91e–03
6 1.12e–01 5.75e–02 3.86e–02 3.04e–02 3.08e–03
7 7.98e+00 4.11e+00 2.69e+00 2.02e+00 7.36e–01
Sum 1.43e+01 1.03e+01 8.85e+00 8.17e+00 1.41e+00

Table 2: Timings in seconds for the modules using subdivision level
n = 8.

Figure 11: Module speedups using subdivision level n = 8, where
the numbering is as follows: 1) Surface refinement, 2) Bounding
box construction, 3) Bounding box overlap test, 4) Normal surface
refinement, 5) Degeneracy test, 6) Normal cone construction, 7)
Normal cone overlap test.

good cache efficiency. The number of arithmetic operations is too
low for the GPU to utilize all of its computational power. A large
part of the speedup is due to the faster GDDR5 RAM on the GPU.

In the box overlap test we noticed an interesting result on the CPU,
with no speedup using more cores. The reason for this is that there
are too few arithmetic operations carried out. As a result the mem-
ory bandwidth is the limiting factor. Due to OpenMP overhead the
inclusion of more cores actually leads to a small speed decline. Al-
though there are not enough computations to exploit the GPU, we
still get a significant speedup due to the faster GDDR5 RAM.

Since the module for refining the normal surface is essentially the
same as the one for refining the input surface, one should expect it
to have the same speedup characteristics. The larger matrix system
means that the number of arithmetic operations is higher, resulting
in a slightly better GPU speedup when comparing to module 1.

The degeneracy test scales well on the CPU. The GPU is not that
much faster. Although the size of the computational grid is large
enough to utilize all the GPU cores, the number of arithmetic oper-
ations are too few to exploit the parallelity of each GPU core.

When generating the normal cone for each Bézier sub-patch, we
perform quite many arithmetic operations. This scales well on the
CPU, efficiently distributed using OpenMP. This module is per-
fectly suited for the GPU, giving a very good speedup. The number
of GPU cores involved is high, with each core given enough arith-
metic operations to utilize its parallelity. It is a well balanced GPU
kernel, where all the sub-patches involves the same number of arith-

metic operations.

The normal cone overlap test consists of only a few floating point
operations for each pair of cones. Although a low number of op-
erations, it is still high enough for the memory bandwidth not to
become a limiting factor. This scales well on the CPU. Again the
GPU benefits from the much faster GDDR5 RAM. In our first CPU
implementation, where we for each normal cone stored the cone an-
gle as opposed to storing the sine and cosine values of the angle, we
had to compute the angle between each pair of cones. The slow in-
verse cosine operation performed on the CPU gave a GPU speedup
of approximately 45. By locating the bottleneck in the CPU version
and rethinking the mathematics this factor was drastically reduced.
A necessary criteria for the cone overlap test to be of any interest is
that the corresponding bounding boxes overlap. For most intersec-
tion cases the majority of the bounding box pairs will not overlap.
Hence only a minority of cone pairs need to be checked for overlap.
As a result the computational grid will be unbalanced, reducing the
efficiency of the highly parallel GPU. For this reason it is rarely a
good idea to run this module massively on all cone pairs. Usually
the multi-core CPU will be the natural choice for this module.

5.3 Potential for Heterogeneous Speedup

Even though we must use one thread to control the heterogeneous
system and one thread to control the GPU, the Core i7 CPU sup-
ports hyper-threading which lets us use all four CPU cores for ac-
celerating the modules.

The speedup factors in Figure 11 show that the multi-core CPU is a
good candidate for running module 2 (bounding box construction),
module 5 (degeneracy test) and module 7 (cone overlap test). From
the flowchart in Figure 5 we see that the GPU may run other mod-
ules at the same time. This shows a potential for a good speedup on
the heterogeneous system. But if the total run-time is dominated by
one or a few of the modules, there may not be much benefit from
such an approach.

From Table 2 we see that module 3 and 7 (the overlap tests) are
dominating the total run-time. By looking at the computational or-
der of the modules this is to be expected. This means that using
the multi-core CPU to run modules 2 and 5 will only give a small
speedup. Even though the CPU scales well on module 7, it is evi-
dent from Table 2 that it is faster to let the GPU handle that module.
By letting the CPU run modules 2 and 5 using all four cores, and
let the remaining 5 modules run on the GPU, Table 2 yields a cor-
responding theoretical speedup of 10.2. Compared to 10.1 on the
GPU alone, and taking into account some overhead cost, it is evi-
dent that this is not a good solution.

The approach which will give a significantly better speedup is to
let the multi-core CPU contribute to the last module, the cone over-
lap test. That module consists of looking up values in two tables
containing the normal cones corresponding to the refined normal
surface and then check for overlap. These calculations are totally
independent and are well suited to be split among different compu-
tational resources. The total heterogeneous system will then consist
of the GPU running most of the modules. The multi-core CPU is set
to handle module 5 (degeneracy test) and module 7 (cone overlap
test), with the GPU joining in on module 7 as soon as it has com-
pleted the other modules. From Table 2, this will allow the CPU
to complete approximately 33 % of module 7 before the GPU joins
in. The combined speedup of the multi-core CPU and the GPU on
module 7 is 14.8. The last 67 % of the module should then be done
in 0.363 seconds. The theoretical total run-time is 1.03 seconds,
with a corresponding heterogeneous speedup of 13.9. This speedup



is a bit optimistic since we in a real test case will not achieve a per-
fect load balancing on module 7, but the well-organized structure
of the data should allow us to come quite close. Since the CPU has
to wait for the output from module 4 we do not accomplish to let all
the computational resources be active at all times, but the CPU idle
time will only constitute a small fraction of the total run-time.

It should be noted that this heterogeneous speedup is referring to a
synthetic test where module 7 was run with overlap testing on all the
cone pairs. Since this will seldom be necessary the actual speedup
will usually be smaller. Still, for those cases the multi-core CPU is
even more competitive compared to the GPU for executing module
7.

6 Conclusions and Future Work

An essential part of a heterogeneous system is to analyze the
strengths of the different computational elements. One should not
only look for ways to split the problem into parallel modules, the
modules should also have a good parallelity, preferably allowing
them to be shared among multiple processing elements. In order to
maximize the total computational power it is important to distribute
each module to the architecture which is the most suited, or send
tasks to a resource which will otherwise be idle. The results show
that this heterogeneous system is well suited for this type of prob-
lem. The chosen architectures show a good scalability on most of
the modules, with the parallel pipelines allowing an efficient usage
of the available resources.

There is a clear trend towards an increased parallelity in modern
commodity computers. An interesting concept, backed by AMD
through their Fusion project, consists of a multi-core CPU and a
GPU on the same chip. Such heterogeneous systems are expected
to become increasingly more common in the future, allowing for a
wide variety of computational problems to benefit from the diver-
sity in the architecture. As an additional benefit there is a wider
communication bus between the separate resources, reducing the
overhead. The Cell Broadband Engine is another heterogeneous
system. It has shown a great speedup for various tasks. It is used in
the IBM Roadrunner supercomputer, which was the first computer
to reach 1.0 petaflops.

Although chips with a heterogeneous architecture are gaining at-
tention, there will still be room for specialized entities. Recently
NVIDIA announced the Fermi GPU. With that a lot of interesting
opportunities have opening up. The GPU is no longer restricted to
running only one kernel at a time. It may run up to 16 simultane-
ous kernels. For our heterogeneous intersection approach this can
have a huge impact. As visualized in the flowchart in Figure 5 this
will allow the Fermi GPU to execute multiple intersection modules
at the same time, possibly operating at different subdivision levels.
This will imply an increased GPU efficiency, which may otherwise
be restricted by the relatively small size of the intersection problem.

We are planning to set up a heterogeneous intersection system us-
ing this acceleration of sub-algorithms in combination with our re-
cursive intersection algorithm. It seems like a good idea to do a
fast preprocessing on the CPU using a low subdivision level, and
then use the accelerated intersection modules on computationally
demanding problems. The results shown in this paper are promis-
ing with respect to a good total speedup of the complete intersection
algorithm.
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