

RTO-MP-IST-101 14- 1

A Semi-automatic Transformation Approach for Semantic
Interoperability in MDE

Sixuan Wang1, Brice Morin2, Dumitru Roman2, and Arne J. Berre2
SINTEF ICT

 Forskningsveien 1, Oslo, Norway

1sam.wangsixuan@gmail.com 2{firstname.lastname}@sintef.no

ABSTRACT

As data exchange and model transformation become ubiquitous nowadays, it is a key requirement to
improve interoperability of enterprise systems at the semantic level. Many approaches in Model-driven
Architecture (MDA) and Model-driven Interoperability (MDI) emerge to fulfil the above requirement.
However, most of them still demand significant user inputs and provide a low degree of automation,
especially when it comes to finding the mappings. A generic approach that can easily handle both
semantic interoperability and automatic transformation is currently missing.

This paper presents AutoMapping, a semi-automatic model transformation architecture. This approach
focuses on two aspects: 1) semi-automatic mapping between data models expressed as class diagrams by
involving minimal user interactions at design-time; 2) generation of executable mappings. Particularly at
design-time, a semantic engine that solves various kinds of semantic attribute mismatches is devised, such
as type, scale, synonym, homonym, granularity, etc. Furthermore, a heuristic-based similarity analysis
between each pair of classes is proposed, which takes all relations of classes into account, such as
inheritance, reference, etc. Finally, a method is given to match fragments and then generate mappings
specification that conforms the proposed mapping metamodel for solving existing semantic mismatches.

The main contribution of this paper is to create a generic platform-independent approach for semi-
automatic model transformation towards semantic interoperability, with tool-based implementation and
motivating case experiment, showing the feasibility of using MDA and MDI techniques for semantic
interoperability.

Keywords: data exchange, model transformation, Model-driven Architecture (MDA), semantic
interoperability, semi-automatic mapping

1. INTRODUCTION

Nowadays, demands of integration between enterprise systems have changed from data exchange and
model transformation, to interoperability among enterprise systems, especially when it comes to various
semantic issues. Besides, improving the level of automation of data exchange between B2B systems is
widely regarded as a key enabler for agile interoperability and scalability in B2B collaborations [1]. A
generic approach that can easily handle both semantic interoperability and automatic model transformation
is currently missing. In this paper we propose a generic and semi-automatic model transformation
architecture towards semantic interoperability (called AutoMapping). Before we give a brief overview of
AutoMapping, let us define the data exchange problem in more details.

Figure 1 provides an overview of the elements involved in a typical data exchange between two
companies X and Y (adapted from [2]). The main challenge is how to transform data manipulated in
Source Instance by Company X (conforming to Source Metamodel) to data manipulated in Target Instance
by Company Y (conforming to Target Metamodel). A Transformation Layer is usually designed to address

A Semi-automatic Transformation Approach for Semantic Interoperability

164 - 2 RTO-MP-IST-101

this challenge by providing means to map the Source Schema to the Target Schema at design-time, and by
providing an environment that implements the schema mappings at run-time when the Source Instance
needs to be transformed to Target Instance.

Figure 1: General design-time and run-time data exchange

When addressing the above problem of data exchange, interoperability issues arise due to the lack of
consensus on the common standards to conform to and the shortage of proper approaches and supporting
tools. Among these issues, semantic mismatches identified in [3], such as type, scale, precision, synonym,
homonym, granularity and overage, are typical conflicts appearing during data exchanging. In this paper,
these semantic mismatches are described with certain modification in table 1, with examples from a
common supplier/seller scenario in Enterprise Resource Planning (ERP) systems. Therefore it is a key
requirement to improve interoperability by solving these semantic mismatches when data exchanging.

Table 1: Semantic Interoperability Mismatches

Company Y

Target
Instance

Target
MM

Transformation
Layer

MMs
Transformation

Instances
Transformation

Company X

Source
Instance

Source
MM

Design-Time
Run-Time

A Semi-automatic Transformation Approach for Semantic Interoperability

RTO-MP-IST-101 16 - 3

Many approaches to model transformation and mapping in Model-driven Engineering (MDE) and
semantic annotation with ontology techniques are emerging to address the aforementioned requirement.
However, most of them still demand significant user inputs and efforts, and lack automation, so the need
for automatic model transformation is much high, especially in the following aspects:

1. Mappings Finding. The source and target metamodels share common concepts but might propose
different ways to represent these concepts. At design-time, most of the mappings should thus be as
much as possible automatically identified and not written by hand (time consuming, error-prone).

2. Transformation Execution. For the identified mappings specification to be usable at run-time for
instance model transformation, executable transformations need to be automatically generated and
executed.

3. Semi-automatic Transformation. Because of specific standards and formats between enterprise
systems, the fully automatic transformation is unrealistic; therefore, user interaction is needed to
customize and control the mapping process, and semi-automatic transformation is such a solution in
which necessary user interaction is kept at a minimum.

The remaining of this paper is organized as follow: Section 2 presents a motivating case derived from a
practical industrial scenario. Section 3 details our semi-automatic model transformation architecture.
Section 4 presents our AutoMapping approach that is based on the proposed architecture towards semantic
interoperability. Section 5 introduces current implementation and some experiments of the proposed
AutoMapping. Section 6 concludes this paper, together with some relevant related work and potential
extensions.

Name Description Example Functionality Need
Type different data

types
Salary in source is Float.
Salary in target is Integer.

Conversions between
different data types require
type casting.

Scale different
measurements

Currency in source is euro.
Currency in target is dollar.

An agreement between
sources and targets, and
conversions.

Precision different
accuracies

Amount in source is 2 decimals.
Amount in target is 3 decimals.

An agreement between
sources and targets, and
conversions.

Synonym different names Abbreviate in source
Short Name in target

Rename to same shared
name.

Homonym different
contents

Note in source means supplier
descriptions. Note
in target means remark of supplier
companies.

Rename to distinguished
different names.

Granularity different
structures

Address information in source has
three elements: Address, Province,
and Place.
Address information in target has a
single element.

Rename using a agreement
structure, to merge, split, etc.

Coverage different ranges
and
intersections

Supplier Information in source has
name, group, note, location, and
code.
Supplier Information in target
contains less information: name,
group, and code.

An agreement between
sources and targets.
Conversions using the
intersection of sources and
targets.

A Semi-automatic Transformation Approach for Semantic Interoperability

164 - 4 RTO-MP-IST-101

2. MOTIVATING CASE

This section presents a case scenario for model transformation between two companies where invoices are
sent from a source system to a target system. This example is derived from a practical industrial example
of REMICS project (see http://www.remics.eu/), and it covers most semantic interoperability mismatches
mentioned in table 1, and also requires high automation level for the specification and transformation of
mappings. The rest work in the paper is based on this case, to show how AutoMapping approach works to
solve the above requirements.

Both company invoice schemas are abstracted as ECore metamodel (see
http://www.eclipse.org/modeling/emf/), which provides concepts like classes, attributes, inherence,
relations, etc. The source company metamodel is depicted in figure 2. Company contains some
Department (with title), and Departement has some Invoice (with InvoiceNumber). Invoice can be either
SimpleInvoice (with data_year, data_month, city, zip, street) or CompositeInvoice. SimpleInvoice contains
zero or one Statement (with price, discount, note) and a single reference of Contact (with phone), while
CompositeInvoice contains at least one Invoice (SimpleInvoice or CompositeInvoice). Particularly in
Statement, price is Integer with Euro unit, and discount is Float with 3 decimal precision. For the target
company metamodel, it is depicted in figure 2-5. Company also contains some Dept (with title), and Dept
has some Invoice (with IN and date). Invoice contains some Statement (with price, deduction, note) and
DeliveryAddress (with City, postcode, streetNum, houseNo, receiver, note), Particularly in Statement,
price is Float with USD unit, and deduction is Float with 2 decimal precision.

 Source Company MM

Target Company MM

Figure 2: Source Metamodel and Target Metamodel

The two companies want to exchange invoice data and improve the interoperability between them.
Though the two metamodels are very aligned (e.g. title in Department of Source metamodel and title in
Dept of Target metamodel), they have some semantic mismatches showed in table 2. The first challenge of
this case is how to identify these semantic mismatches and solve them in certain automation level.

Table 2: Corresponding Semantic Mismatches

Name Corresponding in the case
Type  Data type of price in Statement of source is Integer,

 Data type of price in Statement of target is Float.
Scale  Unit of price in Statement of source is Euro,

 Unit of price in Statement of target is USD.

A Semi-automatic Transformation Approach for Semantic Interoperability

RTO-MP-IST-101 16 - 5

Precision  discount in Statement of source is calculated in 3 decimals,
 reduction in Statement of target is calculated in 2 decimals.

Synonym  title in Department of source, title in Dept of target.
 price in Statement of source, price in Statement of target.
 invoiceNumber in Invoice of source, IN in Invoice of target.
 city in SimpleInvoice of source, City in DeliveryAddress of target.
 note in Statement of source, note in Statement. of target.

Homonym  note in Statement of source,
 note in DeliverAddress of target.

Granularity  Merge: date_year and date_month in SimpleInvoice of source;
date in Invoice of target.

 Split: street in SimpleInvoice of source;
steetNum and houseNo in DeliveryAddress of target.

Coverage  contect in Simpleinvoice of source.
 receiver in Invoice of target

To improve the level of automation, the second challenge of this case is how to find the similarity of each
class pair of source metamodel and target metamodel. And then find possible fragments (various
combination patterns, initial mappings) and mappings specification of them. Besides, for the semi-
automatic transformation, user interaction would be involved in the specification and execution of
mappings but should be kept at a minimum.

3. GENERIC ARCHITECTURE OF SEMI-AUTOMATIC TRANSFORMATION

The ultimate goal is to create a generic approach of semantic mapping and similarity analysis at a
platform-independent level for solving semantic mismatches and generating mapping rules with minimal
user involvement. To achieve this goal, we present a generic semi-automatic model transformation
architecture, which is evolved from ExchangeMap [4]. Figure 3 shows its architecture. The shadowed box
in the center of the figure (which refers as AutoMapping Framework), is the core part of the architecture,
where all the semantic engine, mappings specification and transformations take place at the platform-
independent level. AutoMapping focuses on semi-automatically generating mappings between class
diagrams by involving minimal user interactions at design-time, and then running executable mapping
rules on concrete instances (such as XML files) at run-time. This approach provides a detailed solution for
solving semantic mismatches and improving automation of transformation by using similarity analysis and
mapping fragments discovering. The detailed design of AutoMapping Framework is described in section 4.
The elements outside the shadowed box (source and target schemas, their transformation, the source
instance, and the generated target instance) represent platform-specific models and transformations.

A Semi-automatic Transformation Approach for Semantic Interoperability

164 - 6 RTO-MP-IST-101

Figure 3: Generic Architecture of Semi-automatic Transformation

Another way of looking at the architecture is through its design-time and run-time elements. The
following process takes place when using the architecture for model transformation:

At design-time:

1. The platform-specific source and target schemas are abstracted into platform-independent source and
target metamodels through a given transformation (PSM2PIM) specific to the concrete technologies
used at the platform-specific level.

2. By using AutoMapping, the mappings between the source and target metamodels are found and
specified, based on Semantic Engine, Similarity Analysis, Fragments Matching and Mappings
Specification.

3. Executable mappings are generated from the mappings specified in the previous step, and will be
used during the run-time data exchange.

At run-time:

4. The platform-specific source instance is abstracted into a source model through a given
transformation (PSM2PIM) specific to the concrete technologies used at the platform-specific level.

5. The executable mapping rules from step 2 are executed for the source model and a target model
corresponding to the source model is generated.

6. The target model is serialized into a platform-specific instance target through a given transformation
(PIM2PSM) specific to the concrete technologies used at the platform-specific level.

4. AUTOMAPPING APPROACH

The focus of this paper is to design and implement AutoMapping (the core part of Generic Architecture of

A Semi-automatic Transformation Approach for Semantic Interoperability

RTO-MP-IST-101 16 - 7

Semi-automatic Transformation proposed in figure 3.

Figure 4: Framework of AutoMapping

Figure 4 illustrates the framework of AutoMapping. In AutoMapping, source and target metamodels (e.g.
XSDs, database schemas, etc.) are abstracted as platform-independent ECore models (Source MM and
Target MM in the figure). ECore provides powerful object-oriented mechanisms to data modeling, such as
inheritance and composition; at the same time, it is much easier to be transformed to/from platform-
dependent metamodel due to its widely applicability and coverage. Similarly, the source instance model
that conforms to Source MM is abstracted to platform-independent model (Source Model in the figure),
which could be processed by the generated executable mappings code at run-time to generate a
corresponding platform-independent target model (Target Model in the figure). In the current version of
AutoMapping, the instance models are represented as XML files, but they can also be other format as long
as conforming to metamodels.

The main steps of AutoMapping are the following five steps:

1. Semantic Engine: based on its algorithm and informal external information from user, can identify
most semantic mismatches between the attributes of metamodels, and then provides solution
suggestions by adding new information or renaming operations.

2. Similarity Analysis: uses modified heuristic bi-similarity algorithm to analyze similarity matrix of
each class pair, then get the class pairs with higher similarities.

3. Fragments Matching: finds possible fragments based on analyzed information of above two steps by
refactoring inheritances and references.

4. Mappings Specification: using the fragments analyzed above, it generates a concrete mapping model
that conforms to the proposed mapping metamodel and executable mappings for run-time
transformation.

5. Run-time Transformation: based on executable mappings generated from Mapping Specification,

A Semi-automatic Transformation Approach for Semantic Interoperability

164 - 8 RTO-MP-IST-101

source model instance is transformed to target model instance.

Figure 5: Mapping Metamodel

Before introducing the detailed design of each step, let us see the devised mapping metamodel that
AutoMapping relies on. At design-time, the purpose is to find the mappings that conform to the mapping
metamodel. Though mappings are mainly generated in the step of mapping specification, its concepts and
elements are used in the other previous steps. The mapping metamodel, depicted in figure 5, is inspired by
graph-based approaches [5] and Aspect-Oriented Modeling approaches [6]. This mapping metamodel is
simplified and expended for AutoMapping purpose.

The basic idea is to describe mappings between metamodels, each mapping has a Left-Hand-Side (LHS,
represented classes fragment of the Source MM) and a Right-Hand-Side (RHS, represented classes
fragment of the Target MM). Also, each mapping has a set of mapping Adaptations, which represents the
mapping attributes behaviors of LHS and RHS. In the current version of this mapping metamodel, it
contains six concrete Adaptations which are to be applied in Semantic Engine and Fragment Matching,
including CopyAttribute, PrecisionApprox, ScaleExchange, TypeCast, MergeAttribute, and SplitAttribute.
The mapping metamodel is easily extensible and users can customize it as needed (e.g. add new
adaptation). Since the LHS can match multiple times, instantiation strategies are added that introduced in
[6]. This allows that to control the way the elements of the RHS should be instantiated: every time the LHS
matches, once, etc. By default, all the elements of the RHS are instantiated every time the LHS matches.
More details on these strategies can be found in [6].

Figure 6 illustrates a simple example to show how the mapping would be like when using the mapping
metamodel. As discussed above, the mappings should be the combination of FirstName and LastName of
Company X corresponds name of Company Y, and salary of Company X corresponds salary of Company Y.
In figure 6, here is actually only one mapping (Mapping1). Its LHS are Employee and FullName, RHS is
Person, which means if found Employee and FullName structure in the LHS, then generates Person in
RHS. In this mapping, there are two adaptations: 1) MergeAttribute with default linking token “ ” from
firstName and lastName in FullName to name in Person; 2) ScaleExchange with default exchangeRate 1.4
(from € to $) from salary of Company X to salary of Company Y. Finally, at run-time, the instance model
transformation executes according to the mapping, which is shown in the Instance Models part.

A Semi-automatic Transformation Approach for Semantic Interoperability

RTO-MP-IST-101 16 - 9

Figure 6: Simple Example of Mapping Metamodel

4.1 Semantic Engine

The first step of AutoMapping is Semantic Engine, it focuses on finding and giving solutions for semantic
mismatches of metamodels on the attributes level, by using alignment and conversion semantic operations,
generating new metamodels (MM’) as well as maintaining related traceability links and attribute
candidates.

Figure 7: Semantic Engine Process

As depicted in figure 7, Semantic Engine has the following four main sub-steps:

1) Load Metamodels: This step is to load metamodels using available API in ECore.

2) Alignement: Alignment is one of semantic mismatches operations. The purpose is to analyze the
attribute candidates for identical (exactly the same), synonym (same meaning but different names),
homonym (same name but different meaning), granularity (need merge/split). Three methods are devised
for finding possible attribute candidates for alignment:

• Program analysis: program uses itself algorithm to automatically align the possible attribute
candidates, (e.g. identical, capital, abbreviation, substring, etc).

• External information: since some companies maybe have their own specific standard between the
metamodels, user can simply input his informal external information file (e.g. xls, xml, database,
ect.) to enable the program know particular agreements between the metamodels (e.g. synonym
list, granularity list, etc).

• Web service API: several on-line web services support user to access available resources to
support semantic interoperability, e.g. Big Huge Thesaurus of Princeton University (see
http://words.bighugelabs.com/about.php/), Abbreviations (see http://www.abbreviations.com/)

A Semi-automatic Transformation Approach for Semantic Interoperability

164 - 10 RTO-MP-IST-101

and Acronym Finder (see http://www.acronymfinder.com/).

3) Conversion: conversion is one of semantic mismatches operations. The purpose is to identify the
attribute candidates with specify semantic type for type, scale, and precision of semantic mismatches.
Additionally, the semantic type would be attached with some information to indicate the conversion detail.
For example, the semantic type for scale conversion from Euro to USD would be specified to
type_euro2usd, similarly type_Integer2Float for type and precision_3Dto2D for precision.

4) Save new metamodels: the last step of semantic engine is to save the aligned and converted attributes
in new metamodels (Source MM’ and Target MM’) for supporting the following other steps in
AutoMapping.

For the motivating case, after above alignment and conversion operation, the possible attribute candidates
are found, with attribute name, owner class, new aligned name, and semantic type. The example result of
this part is illustrated in figure 8. For the clarity purpose, this figure show both of attribute candidates with
semantic type and the traceability links (original attribute and its aligned attribute) each row.

Figure 8: Example of Alignment and Conversion after Semantic Engine

4.2 Similarity Analysis

After getting new metamodels with aligned attribute names from semantic engine, most semantic
mismatches are identified and given possible solutions. However, the semantic engine cannot answer the
coverage mismatch, which should be analyzed in class level rather than attribute level. For automation
requirement, it is necessary to find their similarity degrees of pairs of classes, by combining the similarity
percentage of Static 1-to-1 Similarity Analysis (which focuses on single classes with their names of
attributes) and Relational Iteration Analysis (which focuses on bi-similarity of the relations of subclass,
super class, composition, etc.), so that by filtering with certain threshold, the pairs of classes with higher
similarity can be used for following fragment matching for solving coverage mismatch.

A Semi-automatic Transformation Approach for Semantic Interoperability

RTO-MP-IST-101 16 - 11

Figure 9. Similarity Analysis Process

As illustrated in figure 9, Similarity Analysis has the following four main sub-steps:

1) Static 1-to-1 analysis: to calculate the similarity degree of each class pair-to-pair, and then save them
in a Matrix S (represents each class pair similarity value between 0 and 1). Besides, static 1-to-1 does not
only consider attribute name, but also take class name and reference name into account. Static 1-to-1
analysis devises the following formula:

S(,)=

• Xi or Yj represents one class in source MM’ or target MM’. S(Xi,Yj) is similarity value of class pair
Xi and Yj.

• set(Xi) or set(Yj) is the set of names of Xi or Yj, which includes class name, attributes (including
inherited attributes) and reference class names, without the reduplicate names.

• |set(Xi)|+|set(Yj)| is the size of the set of names.

• |set(Xi) U set(Yj)| is the size of the intersection with the same names (or one is substring of the
other) of the two sets.

2) Relational iteration similarity: this paper applies a variation of the bi-similarity heuristic algorithm
described in [7], which includes new heuristic algorithm for analyzing similarity of class diagrams. The
basic idea is when calculate the similarity of a pair of classes Xi and Yj, all the related neighbor classes
(super class, subclass, reference, and itself) of Xi and Yj should be taken into account. The similarity value
considers the highest similarity value of each neighbor of Xi with all neighbor of Yj, and vice versa. In
detail, the matrix is stored in similarity Matrix R ranging from 0 to 1. The first initial R0 is equal to the
static 1-to-1 similarity Matrix S, then iterate k times from R0 to RK based on the following formula
algorithm (the iteration would be finished by several times or some value reaches certain threshold):

 =

T = |rela()| + |rela()|

• Xi or Yj represents one class in source MM’ or target MM’. RK(Xi,Yj) is similarity value of pairs of
classes Xi and Yj in iteration K, and RK-1(Xi,Yj) is the value in iteration K-1.

• |rela(Xi)| or |rela(Yj)| is number of relations of neighbor classes of Xi or Yj.

• Xi’ or Yj’. is a neighbor (super class, subclass, reference, or itself) of Xi or Yj.

• W(x,y) is a given value of relation weight, x or y means the relation of Xi->Xi’ or Yj->Yj’, the
W(x,y) value conforms to Weight Matrix W shown in table 3, and also can be customized.

Table 3: Weight Matrix (W) in Relational Iteration

Self Inheritance Reference

A Semi-automatic Transformation Approach for Semantic Interoperability

164 - 12 RTO-MP-IST-101

Yj->Yj’
 Xi->Xi’ Super class Subclass Composition Aggregation Single

Self 1 0.9 0.9 0.9 0.8 0.7
Inheritance Super class 0.9 0.9 0.8 0.8 0.7 0.6

Subclass 0.9 0.8 0.9 0.8 0.7 0.6
Reference Composition 0.9 0.8 0.8 0.9 0.7 0.6

Aggregation 0.8 0.7 0.7 0.7 0.8 0.6
Single 0.7 0.6 0.6 0.6 0.6 0.7

3) Combination similarity: Matrix S represents the static 1-to-1 semantic similarity; while Matrix RK
represents the relational semantic similarity after K time iterations. Though in calculation of relational
semantic similarity, the static 1-to-1 has been already considered (by R0 = S), for highlight the different
weights of static and relational similarities, it is necessary to combine them as one similarity matrix, we
can define their weighted averages of S and RK, so the final combined similarity degree Matrix C is like:

C(,) = weight(S)×S(,) + weight(R)× (,)

4) Similarity filter: after getting combined similarity matrix, similarity filter could allow user to use
certain threshold to filter the pairs of classes with lower similarity values, so let the following fragment
matching get possible and credible class pair candidates.

For motivating case, after static 1-to-1 similarity analysis and 2 iterations of relational iteration analysis,
then through combination ratio of 2-to-1, we can get the following similarity matrix in table 4, the class
pairs in shadow are the ones with similarities that are higher than 0.4 filter threshold.

Table 4: Combined Similarity Matrix (C)

X
 Y Company Dept Invoice Statement DeliveryAddress

Company 0.51 0.09 0.02 0.0 0.0
Department 0.11 0.64 0.25 0.01 0.01

Invoice 0.09 0.44 0.55 0.28 0.50

CompositeInvoice 0.10 0.64 0.66 0.01 0.01

SimpleInvoice 0.05 0.22 0.68 0.22 0.42

Contact 0.0 0.0 0.0 0.0 0.0
Statement 0.01 0.05 0.30 1.0 0.0

4.3 Fragments Matching

After getting attribute candidates from semantic engine and pairs of classes with higher similarity values
from similarity analysis, in order to find the mappings, it is necessary to group most similar fragments of
MM’s with their references and related adaptation solutions for attributes (the adaptation reflects the
fragment detail, e.g. CopyAttribute, MergeAttributes, TypeCast, etc.)

A Semi-automatic Transformation Approach for Semantic Interoperability

RTO-MP-IST-101 16 - 13

Figure 10: Fragment Matching Process

As illustrated in Figure 10, Fragment Matching has the following three main sub-steps:

1) Identify adaptations: from previous steps, the attribute candidates and pairs of classes after filtering
are available. This step is to identify initial fragments with adaptations, by putting attributes into pairs of
classes. Each Adaptation is identified by the SemanticType of AttributeCandidate. For instances,
CopyAttribute (corresponds to identical, synonym), MergeAttribute/SplitAttribute (corresponds to
merge/split), TypeCase (corresponds to type), ScaleExchange (corresponds to scale), and PresicionApprox
(corresponds to precision). Additionally, when identifying adaptations for each fragment, the inherited
attributes of LHS and RHS would be considered.

2) Combine References: because the basic idea of mapping and run-time transformation is like this,
firstly to check the LHS classes of each mapping whether it appears in source instance model, if LHS
classes appear then generate the classes of RHS classes of found mapping, by using the adaptations and
strategies for the transformation of attributes. Therefore, it is significant to combine the fragments
according to their references (composition, aggregation, single reference) for effectiveness and
correctness. The combination has two methods as follows:

• Combine the fragments that LHS classes are same and RHS classes are reference relation. So
when run-time transformation, after matching the LHS classes, only the combined fragment
would be used so that it is more effective. Figure 11 shows the idea of this process, both (X1, Y1)
and (X1, Y2) are two initial fragments with higher similarities, Y1 has a composition of Y2, after
combination, the two fragments combine into one (X1, Y1&Y2).

Figure 11: References Combination (RHS)

• Combine the fragments that both LHS classes and RHS classes have same reference relation. So
when run-time transformation, the position of structure could be specified (e.g., where to generate
the new class to RHS). Figure 12 shows the idea of this process, both (X1, Y1) and (X2, Y2) are
two initial fragments with higher similarities, X1 has a composition of X2, Y1 has a composition
of Y2, after combination, the two fragments combine into one (X1&X2, Y1&Y2).

Figure 12: References Combination (LHS&RHS)

3) Verification: the whole process of fragments matching has a high-level automation to find the
fragments. It can run automatically with certain default values. However, user interaction is also allowed,
user can verify each process, for example, in the step of identify adaptations, user can select the attribute
candidates and pairs of classes arbitrarily, and also can customize specific adaptation.

A Semi-automatic Transformation Approach for Semantic Interoperability

164 - 14 RTO-MP-IST-101

Figure 13: Example of fragments after Fragments Matching

For the motivating case, figure 13 shows the example of fragments results after references combination.
For clarity purpose, the LHS classes and RHS classes of one fragment are described in one line, and the
adaptations of one fragment just with the adaptation type and the aligned attribute names.

 4.4 Mappings Specification

After getting fragments, the mapping model that conforms to the mapping metamodel can be finally
generated. Also, this step links the fragments back to original metamodels according to the traceability
links. After the verification of user, the executable mappings code would be generated.

Figure 14: Mapping Specification Process

As illustrated in figure 14, mapping specification has the following three main sub-steps:

1) Traceability Link Back: this step is to rename the names of fragments found from fragments matching
to the original names based on the traceability link. After linking back, the initial mappings that conform
the mapping metamodel are available.

2) Generate Mappings Code: to serialize the mappings into concrete XML model that conforms to the
mapping metamodel, using ECore metamodel API.

3) Verification: user can verify each initial mapping and generated code text. For example, optimize,
modify or customize the mappings for specific purpose, and modify the executable mapping code as the

A Semi-automatic Transformation Approach for Semantic Interoperability

RTO-MP-IST-101 16 - 15

user wants.

For the motivating case, figure 15 gives a quick look of the mapping xml file, which has the found four
mappings, including LHS and RHS classes, adaptations and strategies (most are PerElement type because
that if a RHS element has already been created and associated to a LHS element in a previous mapping,
then it will be reused and not duplicated).

Figure 15: Mapping Model of Example

4.5 Run-time Transformation

Finally, using the found mappings generated at the design-time, the source instance model can be
transformed into the target instance model in run-time transformation environment. AutoMapping reuses
our run-time transformation environment of ExchangeMap[4], which is based on Drool Expert (see
http://www.jboss.org/drools/drools-expert.html/) techniques to execute the mappings and then get target
instance model.

Figure 16: Example of Run-time Transformation

For the motivating case, figure 16 shows an example of run-time transformation from source instance
model to target instance model in the motivating case.

5. IMPLEMENTATION AND EXPERIMENTAL RESULTS

AutoMapping is currently implemented in Java/EMF programming language and KerMeta meta-modeling
language (see http://www.kermeta.org/). For the design-time, it uses SWT (see

A Semi-automatic Transformation Approach for Semantic Interoperability

164 - 16 RTO-MP-IST-101

http://www.eclipse.org/swt/) for the Graphical User Interface (GUI). For the run-time transformation,
AutoMapping reuses the available project of ExchangeMap [4], which is our previous tool devised for
data exchange of Model-driven Interoperability.

For design-time finding mappings of the motivation case, figure 17 shows several important program
results of AutoMapping.

Step1- Semantic Engine (alignment)

Step2- Similarity Analysis (relational iteration)

Step3- Fragments Matching (combination)

Step4- Mappings Specification (code generation)

Figure 17: Design-time SWT program results

Based on the mapping model, AutoMapping reuses existed technique in ExchangeMap[8] to generate
executable mappings. The following script illustrates the result of the first mapping of the executable
mappings. This technique is proposed for automatically compile executable code (Java and Drools Expert,
see http://www.jboss.org/drools/drools-expert.html/) from the specification of mappings, using a 2-pass
visitor implemented in Kermeta.

rule "Company+Department = Company+Dept"
when

// Code dealing with the relations between classes: compostion
lhs__Company: companyx.Company(this == lhs__CompanyDecl, depts contains lhs__DepartmentDecl)
lhs__Department: companyx.Department(this == lhs__DepartmentDecl)

then
companyy.Company rhs__Company = null;

A Semi-automatic Transformation Approach for Semantic Interoperability

RTO-MP-IST-101 16 - 17

companyy.Dept rhs__Dept = null;
// Code dealing with the instantiation of the RHS elements, depending on:
// strategies: PerElement (make sure just one instatntiation of RHS classes)
rhs__Company.getDepts().add(rhs__Dept);
//adaptations: CopeAttribute (title = tilte)
rhs__Dept.setTitle(lhs__Department.getTitle());

end
// other three mappings’ rule code

The first line is the name of the mapping. The when clause of the script corresponds to the LHS (from line
2 to line 6), they are the time this rule happens, which specifies that the rule is looking for any
composition of Company and Department of LHS. The then clause of the script corresponds to the RHS.
All the elements of the RHS are first declared and set to null. Then that are properly instantiated according
to their associated strategies, as described in [6]. In the motivating example, the PerElement of strategies
are mainly used, which makes sure that the RHS classes just be instantiated once, because several
mappings may correspond to the same class of RHS. Lastly, the mapping adaptations are compiled into set
primitives that properly manage the details of the attributes and references of the RHS elements.

Finally, using the executable mappings generated from reusable part of ExchangeMap, the source instance
model can be transformed at the run-time into the target instance model. Automapping reuses our run-time
transformation environment of ExchangeMap[6], which is based on Drool Expert techniques to execute
the mappings and then get target instance model. To roundly test the implementation performance of
AutoMaping, using the executable mappings generated from design-time, figure 18 shows multiple
examples of run-time transformation from source instance model to target instance model in the
motivating case, including multiple departments, composite invoices, simple invoices and statements. We
can see from the results that target instance models conform to the target ECore metamodel and the data
of target instance models are compatible and correct.

A Semi-automatic Transformation Approach for Semantic Interoperability

164 - 18 RTO-MP-IST-101

Figure 18: Multiple test results of Run-time Transformation

6. RELATED WORK, CONCLUSIONS AND OUTLOOK

The problem of data exchange has been extensively studied for decades, and model transfromation is well
established in MDA and MDI domain. Nevertheless, a generic approach that can easily handle both
semantic interoperability and automatic model transformation has not yet been widely investigated in the
community.

For solving semantic mismatches, existed approaches propose some possible solutions. The schema
translation operations in [8] could provide valuable ideas. The principle behind it is to use different
operations to add or change to the attribute, so that the semantic mismatches can be identified or modified
without confusions. The solution for semantic operations in AutoMapping is inspired from [8], including
alignment, conversion, similarity filter, reference combination, etc.

For improving automation transformation, this paper applies the bi-similarity heuristic algorithm described
in [9]. Bi-similarity is a recursive notion and can be calculated in two ways, forward and backward which
mean it considers not only the similarity each other elements in the forward direction but also when going
backward in their history [10]. Though [9] and [10] are addressing for state machines diagram, this paper
significantly changed its algorithm and devises new heuristic algorithm for analyzing similarity values of
class diagrams.

Several works are related to our approach. For example, Atlas Transformation Language (ATL) [11] is a
model transformation engine and is supported by abundant standard material. However, ATL does not
support the semi-automatic transformation very well, the mapping rules are required hard coding by user;

A Semi-automatic Transformation Approach for Semantic Interoperability

RTO-MP-IST-101 16 - 19

also, its support to graphical interface is not well satisfactory. Besides, Spicy System [12] provides a
solution for finding a mapping selection mechanism in certain automation level with some user
interaction. However, it cannot solve all semantic interoperability mismatches, and the similarity analysis
of mapping pairs of classes is not supported, which are well discussed in this paper.

The AutoMapping is an initial proof-of-concept that shows that semi-automatic transformation for
semantic interoperability is feasible. However, there are still some directions that can be considered to
further enhance AutoMapping.

• Verify Mappings: mapping verification in the current AutoMapping approach focuses on user
manually level. However, it lacks of mapping verification module, which is used to check
candidate mappings and choose the ones that represent better transformations of the source into
the target. Several ideas of mapping verification approaches are inspired to further enhance, for
example, the spicy verification module in [13] can achieve high precision in mapping selection.

• Leverage additional knowledge: If additional knowledge is available, such as a common
ontology between the source and target data model, AutoMap should leverage this knowledge.
However, it should also be able to identify mappings if such an ontology does not exists. Also not
that AutoMap could be used to identify mapping between data models and ontologies.

• Extend more Metamodels/Schemas: current AutoMapping approach is designed for finding
mappings between ECore metamodels and executing transformation between XML instance
models. Though the approach works at an expressive model level, it should be fairly simple to
extend it to handle other types of schemas or metamodels such as rule-based schemas [2], OWL
metamodel (see http://www.w3.org/TR/owl-guide/). This would widen the instance models to be
transformed that conform to different schematic representation.

7. REFERENCES

[1] C. Bussler. Business-to-Business (B2B) Integration. Springer: ISBN-3540434879. 2003.

[2] Y. Liao, D. Roman, and A. J. Berre. Model-driven Rule-based Mediation in XML Data Exchange.
MDI 2010. Proceedings of the First International Workshop on Model-driven Interoperability. ACM
2010: 89–97.

[3] M. Missikoff and F. Taglino. An Ontology-based Platform for Semantic Interoperability. Handbook
on Ontologies, Springer-Verlag. 2004: 617-634.

[4] D. Roman, B. Morin, S. Wang, and A. J. Berre. A Model-driven Approach to Interoperability in B2B
Data Exchange. Advanced results in MDI/SOA innovation Workshop, MDI 2010, IWEI. 2011.

[5] R. Grønmo, S. Krogdahl, and B. Møller-Pedersen. A Collection Operator for Graph Transformation.
ICMT’09: 2nd International Conference on Theory and Practice of Model Transformations, Berlin,
Heidelberg. Springer 2009: 67–82.

[6] B. Morin, J. Klein, J. Kienzle, and J-M. Jézéquel. Flexible model element introduction policies for
aspect-oriented modeling. ACM/IEEE 13th International Conference on Model Driven Engineering
Languages and Systems (MoDELS 2010), Oslo, Norway. October, 2010.

[7] S. Nejati, M. Sabetzadeh, M. Chechik, et al. Matching and Merging of State charts Specifications.
ICSE. 2007: 54-64.

[8] L. Lehto. Schema translations in a Web service based SDI. 10th AGILE International Conference on

A Semi-automatic Transformation Approach for Semantic Interoperability

164 - 20 RTO-MP-IST-101

Geographic Information Science, the European Information Society: Leading the way with geo-
information, Denmark. 2007

[9] S. Nejati, M. Sabetzadeh, M. Chechik, et al. Matching and Merging of State charts Specifications.
ICSE. 2007: 54-64.

[10] R. D. Nicola, U. Montanari, and F. Vaandrager. Back and forth bisimulations. CONCUR. 1990:152–
165.

[11] F. Jouault, F. Allilaire, J. Bézivin, et al. ATL: a QVT-like Transformation Language. OOPSLA'06,
Portland, Oregon, USA. ACM 2006: 719-720.

[12] A.Bonifati, G.Mecca, A.Pappalardo, et al. The Spicy system: towards a notion of mapping quality.
SIGMOD’08, Vancouver, Canada. June, 2008.

[13] A. Bonifati., G. Mecca, A. Pappalardo, et al. Schema Mapping Verification: The Spicy Way.
EDBT’08. ACM 2008: 85-96.

ACKNOWLEDGMENT

This work is partly funded by the FP7 projects “Reuse and Migration of legacy applications to
Interoperable Cloud Services (REMICS, http://www.remics.eu/).

A Semi-automatic Transformation Approach for Semantic Interoperability

RTO-MP-IST-101 16 - 21

