
Ontology-based Use Cases for Design-time and Runtime Composition of
Mobile Services

Michał Rój1, Per Håkon Meland2, Jacqueline Floch2, Jarosław Domaszewicz1

1Institite of Telecommunications, Warsaw University of Technology
2SINTEF ICT, System Development and Security
mroj@tele.pw.edu.pl, per.h.meland@sintef.no,

jacqueline.floch@sintef.no, domaszew@tele.pw.edu.pl

Abstract

This paper presents application of ontology-based

modelling and reasoning related to the different
phases of the lifecycle of mobile services. Ontology-
based descriptions complement traditional design-time
and runtime models allowing more complex
reasoning. We present use cases for ontologies that
may be applied at design time, deployment time and/or
runtime. Some important characteristics of our
approach are: 1. ontological descriptions define
complex artefacts that are built from simpler ones
defined in an ontology; 2. a single ontology can be
used for specifying various artefacts and for reasoning
on various aspects at different phases of the service
lifecycle; 3. an artefact can be used for various
purposes. This paper provides examples of ontological
descriptions along with use cases, and discusses the
applicability of the approach.

1. Introduction

One of the core challenges of service engineering is
to find practical ways to model services and service
features independently of each other, such that
services may be composed into well functioning
systems that satisfy their requirements. Service
composition in general involves discovery, reuse and
static composition at design time as well as dynamic
discovery, deployment and binding at runtime. The
lack of machine-readable semantics currently requires
human intervention for automated service discovery
and composition, thus hampering ease-of-use and
ease-of-composition. Ontology-based modelling tries
to solve this problem by adding significance to the
traditional modelling languages, and thus enabling
more complex reasoning during discovery and
composition.

The SIMS project1 introduces semantic interfaces
to specify the collaborative behaviour of service
components and the goals that can be achieved
through collaborative behaviour, and to guarantee
compatibility in static and dynamic component
compositions. SIMS addresses semantics at two levels:
1. UML is used to specify the semantic interface
behaviour of service components, and the progress
that might be achieved in a collaborative behaviour
[1], 2. Ontologies are used to define extra-functional
properties of services, service components and other
service entities relevant for discovery and
composition. For example, we use ontologies to
specify collaboration goals, i.e. the desirable outcome
achieved through a collaborative behaviour. Even
though most service entities have representations in
both UML and ontology universes, these
representations do not overlap but complement each
other. A main motivation for using UML and not a
pure ontology-based approach is that UML is widely
used by software developers. In that way we are also
able exploit existing validation techniques. While the
detailed behaviour descriptions in UML allow us to
validate the safety and liveness properties of service
collaborations, the ontological descriptions allow us to
reason on other properties such as service intention
and required device capabilities. Ontological
descriptions are also exploited to provide developers
and end-users with additional information about
services. Modelling and validation using UML are not
discussed in this paper. We rather concentrate on the
ontological approach by introducing artefacts we have
found useful for reasoning during service discovery
and composition, and discuss use cases for design-
time and runtime.

Unlike the Service Oriented Architecture paradigm
(SOA), where services are normally understood as

1 Semantic Interfaces for Mobile Services (SIMS), http://www.ist-
sims.org/

capabilities provided by a service provider to a service
consumer, our work considers collaborative services
that entail collaborations between several autonomous
entities that may behave in a proactive manner and
may take initiatives towards each other. This is typical
for telecom services, but also for a large class of
services such as attentive services, context-aware
services, notification services and ambient
intelligence. Also, we do not restrict to describing
external service properties, but also propose
techniques for engineering services.

2. Semantic Interfaces for Mobile Services:
approach overview

The core research of SIMS is to provide new means
to specify services, to develop well-formed
components that realize these services and compose
services with compatibility guarantee. Semantic
interfaces combined with an ontology are instrumental
to a goal driven development process, and enable
automated service discovery, selection and
composition mechanisms at runtime.

2.1 Fundamental concepts

A central concept of SIMS is the principle of a
service collaboration. A service is defined as a
collaboration between distributed service components
and delivers functionality to its environment. Service
components are software entities that may partake in
multiple services. To ease component design and
validation, we distinguish between the service roles
that a component plays in different services. In our
approach we specify services using UML2.0
collaborations [1]. We distinguish between elementary
and composite collaborations, the former defines a
simple interaction between the interfaces of two
service roles, the latter a structure of interacting
service roles. Services are complex structures
modelled by composite collaborations (Figure 1).

A:Caller 1 B:Callee 1

Call

inviter
setup:Setup

accept:Accept

invitee
receiver accepter

rel_a:Release

rel_er
rel_ee

rel_b:Release

rel_ee

semantic interfaceservice role (s-role)

rel_er
Elementary collaboration

Figure 1. Composite collaboration with two

roles

Service roles are characterized by semantic
interfaces and interface dependency graphs that are
used to validate interactions between service roles and
to compose them [2]. A semantic interface represents a
partial behaviour of the service role in an interaction
towards another service role. Semantic interfaces are
specified by state machines (Figure 2) with semantics
of message passing allowing validation of safety
properties (i.e. avoiding occurrence of bad behaviour,
such as deadlocks). In addition to the behavioural
semantics we also specify ontological artefacts that
define extra-functional properties of interfaces (see
Section 3).

Simple_State_3

<< goal >>
MyGoal

Final_State_1

Simple_State_2

Simple_State_1

sm: Simple_Interface_Role

/Simple_Sig_1

Simple_Sig_2

/Simple_Sig_3

<< transitionGoal >>

Simple_Sig_4

signal sending

Event that
triggers the goal

role goal

Figure 2. The state machine of a semantic

interface

Beyond safety properties we express liveness
properties (i.e. ensuring that some desired behaviour
may occur) using so-called service goals. Service
goals describe that something desirable may occur [3];
as such they do not describe a behaviour, but rather an
abstract concept of the desired behaviour outcome. We
distinguish between role goals that are associated to
events in the behaviour of semantic interfaces or
service roles, and collaboration goals that express
what might be achieved thorough an elementary
collaboration. A service specification should contain a
collaboration goal sequence, which specifies the
dependencies between the goals of the elementary
collaborations that form the composite service
collaboration.

2.2 The SIMS service lifecycle

A generic lifecycle of a mobile service is shown in
Figure 3.

Figure 3. The SIMS service lifecycle

A service designer specifies a service using

collaborations, semantic interfaces and goals. In
addition, the service designer produces ontological
descriptions for the designed entities. Service
components realising the specified behaviour are
developed, unless the service designer is able to find
and reuse existing components (upper dotted arrow).
Different parties can implement service components,
provided the service specification is followed.

A service provider deploys service specifications
and components so they are available for discovery.
Services can be discovered through various means,
and may eventually result in the end user downloading
components to her device. Alternatively, the user
already has a component that is able to play the
desired service role (lower dotted arrow).

At runtime, service sessions are usually initiated by
end users that decide to initiate a service. Discovery of
compatible service components is performed previous
to session creation allowing service components to
find service component instances with which they can
successfully achieve service goals. Depending on the
type of service, component may restrict the search to
particular contexts.

This lifecycle benefits from support provided by
ontologies; the next sections focus on this.

3. Describing entities with ontology

In SIMS, an ontology spans two layers: the higher
is called SIMS ontology of telecommunication services
(in short: SIMS ontology) and the lower is a set of so-
called ontology-driven artefacts (ODAs). The SIMS

ontology contains a number of concepts of the
telecommunication domain relating to services,
actions, activities and their attributes. It has to be
available prior the service design phase.

Ontology-driven artefacts (ODAs) are used to
define SIMS-specific entities, and created using
concepts, relations and properties found in the SIMS
ontology. In addition to a “vocabulary,” the ontology
enables different types of ODAs to be constructed by
the service designer in the service design phase2.

Both layers are implemented using the Web
Ontology Languages (OWL) [4]. From a technical
point of view, an ODA is an OWL class constructed
by using classes from the SIMS ontology and tying
them together with relations using so-called class
constructors provided by the underlying ontology
language (OWL)3.

3.1 SIMS ontology sample concepts

The SIMS ontology itself is not discussed in this
paper. We rather concentrate on providing a “taste” of
it by showing a selection of concepts in Figure 4.

Figure 4. SIMS ontology: sample concepts

The ontology contains a number of concepts (ovals

in the figure). Some concepts are organized in
concept-subconcept hierarchies (linked with solid
arrows), e.g. the ConnectivityType concept has two
subconcepts: ShortRangeConnectivity and
LongRangeConnectivity. In addition, the ontology can
contain individuals (instances of concepts), shown as

2 Some types of ODAs, such as user preferences ODAs, can be built
or generated in later phases.
3 The most prominent class constructors in OWL are existential and
universal restrictions.

DESIGN

DEPLOY

IMPLEMENT
Specify the service Implement the service

components

 DISCOVER SERVICE
Make the service
available

FIND PLAYERS & RUN
Discover compatible comp-
onents and play a service role
during service execution

INSTALL

Find the desired service

Download and install
the service components

rectangles in the figure (Bluetooth is the only
individual in the above example; the type of this
individual is the ShortRangeConnectivity concept).
Dotted arrows represent restrictions on properties
(which are unnamed in the figure). Example properties
are refersToCommunication (used to define a specific
entity as referring a specific type of communication),
hasParticipant (used to specify what kinds of
participants are involved) or hasNetworkConnectivity
(used to specify the network technology involved,
such as wireless, fixed, etc.).

3.2 Types of ODAs in SIMS

We apply different kinds of ODAs to formally
express semantic properties of the concepts mentioned
above. The following sections present five different
kinds of ODAs, one per section, exemplified with a
so-called Manchester OWL syntax [5], which has a
more concise syntax than “pure” OWL. Other ODA
types exist but not mentioned in this paper.

3.2.1 Service ODA. The service ODA describes the
functionality that can be obtained by the user of the
service. It is specified by providing a general type of
the service (e.g. voice communication, a multimedia
conference, etc.) and its attributes (such as number of
participants, media involved, and types of devices
required). The Service ODA, which is mainly aimed
for end-users, allow them searching and subscribing
for services based on their attributes. It can be also
easier to understand the service added value with this
ODA.

The following is an example of a Service ODA
(this is a conference with at least 2 participants with
video or audio involved):

MultimediaCall
that containsStream some VideoStream
 and containsStream some AudioStream
 and hasParticipant some CommunicationParticipant
 and hasParticipant min 2

3.2.2 Goal ODA. Service goals (ref. Section 2.1) are
expressed with Goal ODAs, e.g. role goals are
connected to states in the state machines of the
semantic interfaces (Figure 2). Goal ODAs are built of
the concept describing the action that might be
achieved (e.g. “establishment”, “detachment”,
“initiation”) and additional attributes (e.g., specifying
what kind of connection should be established).

Goal ODAs can be used to find out if two semantic
interfaces have goals that are semantically close, or

thus to filter what semantic interfaces may be
validated for interaction. The following goal example
describes a multimedia call with a video/avi mime
type:

Establishment
that refersToCommunication some MultimediaCall
 and refersToData some
 (StructuredData that hasMimeType
 value video/avi)

3.2.3 Device ODA. This ODA describes the
capabilities of devices (such as ability to display
pictures) and represents physical end-user devices
(such as mobile telephones). The ODA contains
information about the type of the device, and its
hardware and software attributes. The type of the
device can indicate if it is a smart phone, PDA, or
PC/laptop. Hardware attributes capture the display or
audio capabilities, memory, connectivity, etc. while
software attributes would typically indicate if a
browser is available, the multimedia codecs, etc.

Device ODAs can be helpful for the service
designers: when designing a service and its
components, it may be useful to find out what types of
devices the service components can run on. Finally,
Service ODA can be taken into account along with the
Device and Component ODAs, in order to look for
components that can realize or partially realize a
specific service (e.g. for a given service type, one can
find components suitable for different classes of
devices).

The following definition describes a simple GSM
mobile phone:

Device
that isDescribedByDevComponent some
(HardwarePlatform
 that containElements some (Keyboard
 that hasTextInputCapable value "true"^^boolean)
 and containElements some (Display
 that hasColourCapable value "false"^^boolean)
 and hasVoiceInputCapable value "true"^^boolean
)
and isDescribedByDevComponent some (SoftwarePlat
form
 that acceptMime value text/plain)
and isDescribedByDevComponent some (NetworkCha
racteristics
 that supportNetworkBearers value GSM_CSD_MSI
SDN)

3.2.4 Component ODA. The Component ODA gives
an abstract description of the service component (ref.
Section 2.1), describing the how the component

participates in the service, its features and its
limitations.

Since the Component ODA is built using the same
ontology as the service ODA, it is possible to find
services (Service ODAs) which can be accessed
through a given component, and conversely it is
possible to find what components (Component ODAs)
can realize a specific service (described by a Service
ODA). Also, with this ODA, one can check what
devices will handle a specified component, by
comparing Component ODAs with Device ODAs. It is
also possible to provide the user with information
about what goals can be achieved by a component and
to compare new components with components already
installed by the user thus allowing for service role
learning.

The following Component ODA example describes
a component to be installed on a mobile phone,
providing instant messaging exchange functionality
over Bluetooth. It requires a proper device class to
work properly (a Bluetooth-enabled phone), with the
possibility of achieving a specific goal (message
sending/receiving) and implements the functionality of
the instant messaging service). Its OWL definition is
as follows:

Component
that requiresDevice some (UserTerminal
 that isDescribedBy some (HardwarePlatform
 that containElements some (Bluetooth
 that supportBluetoothProfiles
value GenericObjectExchangeBluetoothProfile))
 and isDescribedBy some (SoftwarePlatform
 that acceptMime value text/plain))
and achievesGoal some (MessageSending
 or MessageReceiving)
and canRealizeService some InstantMessaging

3.2.5 User preferences ODA. The User Preferences
ODA describes the user wishes about the service
provided, expressed in terms of selected properties of
the service or service goals. It represents a class of
services the user wants to be involved in. The User
Preferences ODA can be matched with other types of
ODA, e.g., the Goal or Service ODAs, and be taken
into consideration before the user accesses the service.

The following example expresses that a user prefers
free instant messaging services:

UserPreferences
that hasPreferenceGoal some (Establishment
 that refersToCommunication some
(FreeService and InstantMessaging))

4. Ontology-related use cases

This section describes what we consider to be the
most promising use cases for ODAs during design
time creation (DT) and run-time discovery of mobile
services (RT). At DT the main stakeholder is the
service designer, while at RT the stakeholders are the
service provider and the end user of the service.

Three of the following use cases are used in both
DT and RT: (1) finding services with specific features,
(2) finding components which realize a specific
service, (3) finding compatible components. However
the latter is only discussed for RT. In addition, a DT-
specific use case is described (4) checking if the
sequence of service goals is correct. Other useful use
cases, but not described here4, are: (5) subscribing for
services with specific features, (6) finding non-dual
semantic interfaces for subtype validation, (7)
checking if the device can be used in a service, (8)
complying with user preferences in service execution,
(9) checking consistency between elementary
collaboration goals, (10) checking consistency
between devices and components.

Most of the above use cases have been
implemented and tested. For matching ODA artefacts,
subsumption (class-subclass) detection is used. For
example, to find services with specific features (use
case (1)), the Service ODA class (which covers only
selected features) is created and matched with all
available Service ODAs.

4.1 Find services with specific features

At design time, a service designer wants to create a
service, but before that, she should check if such a
service already exists or there might be something that
she could build upon (this service could be created by
others within her organisation or by outsiders who
have publicly released their Service ODAs). She
expresses the relevant service features by building a
simple service ODA covering her needs and a search
returns a set of services (if any) that will be subject for
closer inspection. The search itself can be made on
various levels of abstraction (more general / more
specific) by exploiting the concept relations in the
ontology.

At runtime, a user wishes to achieve some
functionality and is looking for a service that can
support this. He can specify the service features he is
interested in, and a service repository presents
available service candidates. He can then browse these

4 See the publicly available reports at http:///ist-sims.org/ to have
these explained.

services and download components for the most
promising one.

An example is as follows. Assume that there is a
service as specified in Section 3.2.1 that is defined in
some DT/RT repository. A user/developer searches for
services able to carry video which are not limited by a
number of participants. She builds an ODA which can
look as follows:

Communication
that containsStream some VideoStream

After the query is done, the service specified in

Section 3.2.1 is returned as a match. In that case,
information about the limitation on the number of
participants will also be given to the user/developer.

4.2 Find components realizing a specific
service

By comparing Component ODAs and Service
ODAs it is possible to find all services related to a
given component and vice versa. At design time, the
service designer can find the components that that play
service roles specified for the service or compatible
roles, and thus can participate to the service. At
runtime, components can be found, and consequently
downloaded, based on desirable service features. A
user can also identify that components installed on his
device can be used in services they were not originally
downloaded for.

For example, the service designer wants to know if
there are any components implementing the instant
messaging service, she makes a very simple artefact
consisting of one concept only:

InstantMessaging

Assuming that the repository of components
contains the Component ODA as defined in Section
3.2.4, this component will be returned to the designer.

4.3 Check if the sequence of goals is in the
right order

This use case allows a service designer to check of
two or more goals used in a goal sequence are
properly ordered. By defining sequence rule relations
in the telecom relation, it is possible to detect that the
order of two or more elementary collaboration goals
are not consistent.

Consider the following example; a service architect
creates a conference service, where, among others, the
achievement of two goals is desirable:
 • Invitation to a multimedia conference (goal A)
 • Establishment of a multimedia conference (goal B)

Assume that both goals are defined for elementary
collaborations and their semantics defined by ODAs.
Goal B may be defined as specified in Section 3.2.2,
and goal A may be defined in a similar way. If the
developer specifies a goal sequence where goal A is
achieved before goal B, reasoning on the ODAs
should make it possible to detect a wrong ordering and
inform the developer about this sequence
inconsistency. Knowledge that establishment of a
conference takes place before invitation of participants
is expressed in the SIMS ontology.

This use case should benefit service designers by
assisting them during service creation and to assure
that incorrect services will not be created.

4.4 Find compatible components

The Component ODAs provide a way to limit the
search space for compatible components. We say that
one component is compatible to another component if
the former can be put in place of the latter without
loosing (partial) functionality. It means that the latter
can provide a wider functionality than the former but
never more limited.

We search for compatible components if we want
(1) to upgrade an existing to a newer version (e.g., a
more stable one), (2) to extend the existing component
with new features.

The example for this use case is as follows:
Assume that a user has a Bluetooth instant messenger
component installed as described in Section 3.2.4. The
user enjoys the component very much and would like
to have a similar component (in terms of
functionality), which can run on a wider range of
networks than Bluetooth. Then he makes a query:
“find all components compatible to my current
component.” A list of detected components is
displayed to the user. One of them supports Bluetooth
and other kinds of connectivity (such as GPRS). Then
the user decides to download and install the
component.

Notice that the compatibility between components
cannot be ensured only by making ontology-based
comparisons. Theoretically, incompatible components
can provide the very same functionality (and hence, be
described with identical ODAs). The full component
compatibility can be checked using other UML-based
validation techniques developed in SIMS. In these

terms, the two technologies based on ontology- and
UML-reasoning complement each other very well.

5. Case study: A virtual meeting place

The following case study describes the creation and
use of a single but compound service where we take
advantage of the use cases described in the previous
section. The service itself is not revolutionary, you can
find similar functionality already offered different
mobile device manufacturers and mobile operators,
but notice how the SIMS technology solves design
time and run-time issues.

In a virtual meeting place you would like people
sharing a common interest or a common task (e.g. a
company or a charitable institution) to interact with
each other seamlessly regardless of geographic
boundaries and across multiple means of
communication. Actors of the meeting place service
are (among others) participants (everyone who
participates in the service) and a controller (the one
who can create a conference within the meeting place,
invite others and other things related to the
conference). Figure 5 shows the composite
collaboration diagram of how such a service might
look like. The hexagons are service roles (played by
service components), while the ovals are elementary
collaborations connecting two semantic interfaces.

Figure 5. The design of a virtual meeting place

At design time the service designer looks for

similar services as described by the use case in section
4.1. Ontological concepts related to conference would
be natural search criteria. A set of matching existing
services can then be used to find components she can
reuse in her new meeting place service, as described
by the use case in section 4.2. Let’s say a component

able to play the conference role is found and reused.
The conference role will have a set of semantic
interfaces which can be used to create the required
duals (corresponding interfaces) for the other roles
that will have to be played by newly implemented
components. The use case in section 4.3 helps the
service designer to define the right goal sequences
(show with arrows in Figure 5).

Now, let’s jump to runtime. Three users are
participating within the same meeting place, and
would now like to setup a common voice conference.
Two of them have components realizing the voice
communication (talk), while the third one has a
component that supports voice and video
communication. As described in the use case in
section 4.4, these components could be found
compatible as long as the voice data is the only thing
transferred.

The virtual meeting place is a service being realized
to demonstrate the SIMS approach’s practical
applicability and usefulness. Both existing and new
components for mobile devices are used, and a
centralized middleware has been developed for run-
time reasoning.

6. Related work

Application of ontologies in SIMS is an original
merge of use cases at design-time and runtime. When
we separate the use cases into concrete phases we can
find similarities with existing approaches.

setup
Controller

At runtime, similar approaches have been
developed in the area of Semantic Web Services
(SWS). Two most prominent technologies are Web
Service Modeling Ontology (WSMO) [6] and OWL-S
[7]. Both WSMO and OWL-S use ontologies to
describe functionality of services. Common to the
SIMS and SWS approaches, a domain ontology is
used to build artefact to represent specific entities
(e.g., goals, preconditions, assumptions in WSMO,
service type, effects in OWL-S). The same vocabulary
is used for building the “advertisements” (descriptions
of what is provided) and the “requests” (descriptions
of what is desired) to be matched at runtime. The
artefacts defined in SWS are different from those in
SIMS. This results mainly from different
understanding and definition for services. SWS
addresses Web services that may be defined as “a
computational entity which is able to achieve users’
goals by invocation” [6], while SIMS address
collaborative services. Another difference is that
service providers offering Web services are
responsible for their creation and management, and

MeetingPlace

Conferenc
e

Participant
[*]

join

invite

other

lead

talk

talk

delete

create

services that are discovered are ready to be consumed.
In SIMS, a service results from a collaboration
between components possibly developed by different
stakeholders. The concept of service discovery is
extended and discovery might require downloading
and instantiation of a service components.

Benefits from applying ontologies at design time
have already been presented in the literature. Deridder
and Wouters [8] point that using precise terminology
(from an ontology) to annotate software entities
addresses the problem of language ambiguity. This is
of interest in the case of complex services and large
service systems, where component development
usually involves different developers. Since the SIMS
ontology-based use cases cover most of the entity
types the services are built of, annotation can be
widely applied. Happel and others [9] present how
software artefacts (especially in software libraries) can
be easily reused if properly annotated with ontologies.
The authors exploit ontology-based queries, which,
when ontologies are involved, are a very flexible
means to acquire relevant information. In a similar
way the SIMS use cases also support reusing (e.g.,
services, components, elementary collaborations) and
querying (e.g., available services). Using ontologies to
assist in software engineering is addressed by the
W3C initiative, “Ontology Driven Architectures and
Potential Uses of the Semantic Web in Systems and
Software Engineering”5. Several uses described in the
document (such as “Software Lifecycle Support”) are
covered by the SIMS approach.

7. Summary and conclusions

This paper shows a novel way of exploiting
ontologies, which can be summarized by the following
points: (1) ontology use in many phases of the service
lifecycle, (2) the use of so-called ontology-driven
artefacts, (3) ontology techniques combined with other
techniques within a single framework. In contrast to
approaches where ontologies are used for a single
purpose such as to discover a web service or to
facilitate communication between designers and
developers, in SIMS a single ontology finds its use in
many phases and for different purposes. Specifically
the ontology-driven artefacts that are created in the
service design phase are exploited at design-time,
deployment and runtime phases.

Selected use cases are currently being validated by
the SIMS demo applications. The authors will examine
which use cases are most useful for different kinds of

5 http://www.w3.org/2001/sw/BestPractices/SE/ODA/

users (service designers, component developers, and
end users of services).

8. Acknowledgements

Our work is funded by the European Community
under the Sixth Framework Programme, contract FP6-
IST-027610 SIMS. Contributions from Cyril Carrez,
Richard Sanders and Robert Dawidziuk are gratefully
acknowledged.

9. References

[1] R. Sanders, H. Castejón, F. Kraemer, and R. Bræk,
"Using UML 2.0 Collaborations for Compositional Service
Specification," presented at 8th International Conference of
Model Driven Engineering Languages and Systems, 2005.

[2] J. Floch and R. Bræk, "A Compositional Approach to
Service Validation," presented at SDL 2005: Model Driven
Systems Design: 12th International SDL Forum, Grimstad,
Norway, 2005.

[3] B. Alpern and F. Schneider, "Recognizing safety and
liveness," Cornell University, Computer Science Department
TR86-727, 1986.

[4] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks,
D. L. McGuinness, P. F. Patel-Schneider, and L. A. Stein,
"OWL Web Ontology Language Reference," vol. 2005,
2005.

[5] M. Horridge, N. Drummond, J. Goodwin, A. Rector, R.
Stevens, and H. Wang, "The Manchester OWL Syntax,"
presented at OWL Experiences and Directions Workshop
(OWLED'06) at the ISWC'06, Athens, Georgia, USA, 2006.

[6] D. Roman, U. Keller, H. Lausen, J. d. Bruijn, R. Lara, M.
Stollberg, A. Polleres, C. Feier, C. Bussler, and D. Fensel,
"Web Service Modeling Ontology," Applied Ontology, vol.
1, pp. 77-106, 2005.

[7] OWL Services Coalition, "OWL-S: Semantic Markup for
Web Services, version 1.0," 2004.

[8] D. Deridder and B. Wouters, "The use of ontologies as a
backbone for software engineering tools," Proceedings of
the Fourth Australian Knowledge Acquisition Workshop
AKAW99, pp. 187-200, 1999.

[9] H.-J. Happel and S. Seedorf, "Applications of Ontologies
in Software Engineering," presented at 2nd International
Workshop on Semantic Web Enabled Software Engineering
(SWESE 2006), Athens, GA, USA, 2006.

	1. Introduction
	2. Semantic Interfaces for Mobile Services: approach overview
	2.1 Fundamental concepts
	2.2 The SIMS service lifecycle

	3. Describing entities with ontology
	3.1 SIMS ontology sample concepts
	3.2 Types of ODAs in SIMS

	4. Ontology-related use cases
	4.1 Find services with specific features
	4.2 Find components realizing a specific service
	4.3 Check if the sequence of goals is in the right order
	4.4 Find compatible components

	5. Case study: A virtual meeting place
	6. Related work
	7. Summary and conclusions
	8. Acknowledgements
	9. References

