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Abstract 

 
This paper presents application of ontology-based 

modelling and reasoning related to the different 
phases of the lifecycle of mobile services. Ontology-
based descriptions complement traditional design-time 
and runtime models allowing more complex 
reasoning. We present use cases for ontologies that 
may be applied at design time, deployment time and/or 
runtime. Some important characteristics of our 
approach are: 1. ontological descriptions define 
complex artefacts that are built from simpler ones 
defined in an ontology; 2. a single ontology can be 
used for specifying various artefacts and for reasoning 
on various aspects at different phases of the service 
lifecycle; 3. an artefact can be used for various 
purposes. This paper provides examples of ontological 
descriptions along with use cases, and discusses the 
applicability of the approach. 
 
1. Introduction 
 

One of the core challenges of service engineering is 
to find practical ways to model services and service 
features independently of each other, such that 
services may be composed into well functioning 
systems that satisfy their requirements. Service 
composition in general involves discovery, reuse and 
static composition at design time as well as dynamic 
discovery, deployment and binding at runtime. The 
lack of machine-readable semantics currently requires 
human intervention for automated service discovery 
and composition, thus hampering ease-of-use and 
ease-of-composition. Ontology-based modelling tries 
to solve this problem by adding significance to the 
traditional modelling languages, and thus enabling 
more complex reasoning during discovery and 
composition. 

The SIMS project1 introduces semantic interfaces 
to specify the collaborative behaviour of service 
components and the goals that can be achieved 
through collaborative behaviour, and to guarantee 
compatibility in static and dynamic component 
compositions. SIMS addresses semantics at two levels: 
1. UML is used to specify the semantic interface 
behaviour of service components, and the progress 
that might be achieved in a collaborative behaviour 
[1], 2. Ontologies are used to define extra-functional 
properties of services, service components and other 
service entities relevant for discovery and 
composition. For example, we use ontologies to 
specify collaboration goals, i.e. the desirable outcome 
achieved through a collaborative behaviour. Even 
though most service entities have representations in 
both UML and ontology universes, these 
representations do not overlap but complement each 
other. A main motivation for using UML and not a 
pure ontology-based approach is that UML is widely 
used by software developers. In that way we are also 
able exploit existing validation techniques. While the 
detailed behaviour descriptions in UML allow us to 
validate the safety and liveness properties of service 
collaborations, the ontological descriptions allow us to 
reason on other properties such as service intention 
and required device capabilities. Ontological 
descriptions are also exploited to provide developers 
and end-users with additional information about 
services. Modelling and validation using UML are not 
discussed in this paper. We rather concentrate on the 
ontological approach by introducing artefacts we have 
found useful for reasoning during service discovery 
and composition, and discuss use cases for design- 
time and runtime. 

Unlike the Service Oriented Architecture paradigm 
(SOA), where services are normally understood as 
                                                           
1 Semantic Interfaces for Mobile Services (SIMS), http://www.ist-
sims.org/ 



capabilities provided by a service provider to a service 
consumer, our work considers collaborative services 
that entail collaborations between several autonomous 
entities that may behave in a proactive manner and 
may take initiatives towards each other. This is typical 
for telecom services, but also for a large class of 
services such as attentive services, context-aware 
services, notification services and ambient 
intelligence. Also, we do not restrict to describing 
external service properties, but also propose 
techniques for engineering services. 

 
2. Semantic Interfaces for Mobile Services: 
approach overview 
 

The core research of SIMS is to provide new means 
to specify services, to develop well-formed 
components that realize these services and compose 
services with compatibility guarantee. Semantic 
interfaces combined with an ontology are instrumental 
to a goal driven development process, and enable 
automated service discovery, selection and 
composition mechanisms at runtime.  

 
2.1 Fundamental concepts 
 

A central concept of SIMS is the principle of a 
service collaboration. A service is defined as a 
collaboration between distributed service components 
and delivers functionality to its environment.  Service 
components are software entities that may partake in 
multiple services. To ease component design and 
validation, we distinguish between the service roles 
that a component plays in different services. In our 
approach we specify services using UML2.0 
collaborations [1]. We distinguish between elementary 
and composite collaborations, the former defines a 
simple interaction between the interfaces of two 
service roles, the latter a structure of interacting 
service roles. Services are complex structures 
modelled by composite collaborations (Figure 1). 
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Figure 1. Composite collaboration with two 

roles 

Service roles are characterized by semantic 
interfaces and interface dependency graphs that are 
used to validate interactions between service roles and 
to compose them [2]. A semantic interface represents a 
partial behaviour of the service role in an interaction 
towards another service role. Semantic interfaces are 
specified by state machines (Figure 2) with semantics 
of message passing allowing validation of safety 
properties (i.e. avoiding occurrence of bad behaviour, 
such as deadlocks). In addition to the behavioural 
semantics we also specify ontological artefacts that 
define extra-functional properties of interfaces (see 
Section 3). 
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Figure 2. The state machine of a semantic 

interface 
 

Beyond safety properties we express liveness 
properties (i.e. ensuring that some desired behaviour 
may occur) using so-called service goals. Service 
goals describe that something desirable may occur [3]; 
as such they do not describe a behaviour, but rather an 
abstract concept of the desired behaviour outcome. We 
distinguish between role goals that are associated to 
events in the behaviour of semantic interfaces or 
service roles, and collaboration goals that express 
what might be achieved thorough an elementary 
collaboration. A service specification should contain a 
collaboration goal sequence, which specifies the 
dependencies between the goals of the elementary 
collaborations that form the composite service 
collaboration. 

 



2.2 The SIMS service lifecycle 
 

A generic lifecycle of a mobile service is shown in 
Figure 3.  

 
Figure 3. The SIMS service lifecycle 

 
A service designer specifies a service using 

collaborations, semantic interfaces and goals. In 
addition, the service designer produces ontological 
descriptions for the designed entities. Service 
components realising the specified behaviour are 
developed, unless the service designer is able to find 
and reuse existing components (upper dotted arrow). 
Different parties can implement service components, 
provided the service specification is followed. 

A service provider deploys service specifications 
and components so they are available for discovery. 
Services can be discovered through various means, 
and may eventually result in the end user downloading 
components to her device. Alternatively, the user 
already has a component that is able to play the 
desired service role (lower dotted arrow). 

At runtime, service sessions are usually initiated by 
end users that decide to initiate a service. Discovery of 
compatible service components is performed previous 
to session creation allowing service components to 
find service component instances with which they can 
successfully achieve service goals. Depending on the 
type of service, component may restrict the search to 
particular contexts. 

This lifecycle benefits from support provided by 
ontologies; the next sections focus on this. 
 
3. Describing entities with ontology 
 

In SIMS, an ontology spans two layers: the higher 
is called SIMS ontology of telecommunication services 
(in short: SIMS ontology) and the lower is a set of so-
called ontology-driven artefacts (ODAs). The SIMS 

ontology contains a number of concepts of the 
telecommunication domain relating to services, 
actions, activities and their attributes. It has to be 
available prior the service design phase.  

Ontology-driven artefacts (ODAs) are used to 
define SIMS-specific entities, and created using 
concepts, relations and properties found in the SIMS 
ontology. In addition to a “vocabulary,” the ontology 
enables different types of ODAs to be constructed by 
the service designer in the service design phase2. 

Both layers are implemented using the Web 
Ontology Languages (OWL) [4]. From a technical 
point of view, an ODA is an OWL class constructed 
by using classes from the SIMS ontology and tying 
them together with relations using so-called class 
constructors provided by the underlying ontology 
language (OWL)3.  
 
3.1 SIMS ontology sample concepts 
 

The SIMS ontology itself is not discussed in this 
paper. We rather concentrate on providing a “taste” of 
it by showing a selection of concepts in Figure 4. 

 

 
Figure 4. SIMS ontology: sample concepts 

 
The ontology contains a number of concepts (ovals 

in the figure). Some concepts are organized in 
concept-subconcept hierarchies (linked with solid 
arrows), e.g. the ConnectivityType concept has two 
subconcepts: ShortRangeConnectivity and 
LongRangeConnectivity. In addition, the ontology can 
contain individuals (instances of concepts), shown as 
                                                           
2 Some types of ODAs, such as user preferences ODAs, can be built 
or generated in later phases. 
3 The most prominent class constructors in OWL are existential and 
universal restrictions. 
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rectangles in the figure (Bluetooth is the only 
individual in the above example; the type of this 
individual is the ShortRangeConnectivity concept). 
Dotted arrows represent restrictions on properties 
(which are unnamed in the figure). Example properties 
are refersToCommunication (used to define a specific 
entity as referring a specific type of communication), 
hasParticipant (used to specify what kinds of 
participants are involved) or hasNetworkConnectivity 
(used to specify the network technology involved, 
such as wireless, fixed, etc.). 
 
3.2 Types of ODAs in SIMS 
 

We apply different kinds of ODAs to formally 
express semantic properties of the concepts mentioned 
above.  The following sections present five different 
kinds of ODAs, one per section, exemplified with a 
so-called Manchester OWL syntax [5], which has a 
more concise syntax than “pure” OWL. Other ODA 
types exist but not mentioned in this paper. 

 
3.2.1 Service ODA. The service ODA describes the 
functionality that can be obtained by the user of the 
service. It is specified by providing a general type of 
the service (e.g. voice communication, a multimedia 
conference, etc.) and its attributes (such as number of 
participants, media involved, and types of devices 
required). The Service ODA, which is mainly aimed 
for end-users, allow them searching and subscribing 
for services based on their attributes. It can be also 
easier to understand the service added value with this 
ODA. 

The following is an example of a Service ODA 
(this is a conference with at least 2 participants with 
video or audio involved): 

 
MultimediaCall 
that containsStream some  VideoStream 
  and containsStream some  AudioStream 
  and hasParticipant some CommunicationParticipant 
  and hasParticipant min 2 

 
3.2.2 Goal ODA. Service goals (ref. Section 2.1) are 
expressed with Goal ODAs, e.g. role goals are 
connected to states in the state machines of the 
semantic interfaces (Figure 2). Goal ODAs are built of 
the concept describing the action that might be 
achieved (e.g. “establishment”, “detachment”, 
“initiation”) and additional attributes (e.g., specifying 
what kind of connection should be established). 

Goal ODAs can be used to find out if two semantic 
interfaces have goals that are semantically close, or 

thus to filter what semantic interfaces may be 
validated for interaction. The following goal example 
describes a multimedia call with a video/avi mime 
type:  

 
Establishment 
that refersToCommunication some MultimediaCall 
  and refersToData some  
    (StructuredData that hasMimeType 
       value video/avi) 

 
3.2.3 Device ODA. This ODA describes the 
capabilities of devices (such as ability to display 
pictures) and represents physical end-user devices 
(such as mobile telephones). The ODA contains 
information about the type of the device, and its 
hardware and software attributes. The type of the 
device can indicate if it is a smart phone, PDA, or 
PC/laptop. Hardware attributes capture the display or 
audio capabilities, memory, connectivity, etc. while 
software attributes would typically indicate if a 
browser is available, the multimedia codecs, etc.  

Device ODAs can be helpful for the service 
designers: when designing a service and its 
components, it may be useful to find out what types of 
devices the service components can run on. Finally, 
Service ODA can be taken into account along with the 
Device and Component ODAs, in order to look for 
components that can realize or partially realize a 
specific service (e.g. for a given service type, one can 
find components suitable for different classes of 
devices).  

The following definition describes a simple GSM 
mobile phone: 

 
Device 
that isDescribedByDevComponent some  
(HardwarePlatform 
  that containElements some (Keyboard 
    that hasTextInputCapable value "true"^^boolean)
     and containElements some (Display 
      that hasColourCapable value "false"^^boolean)  
     and hasVoiceInputCapable value "true"^^boolean
) 
and isDescribedByDevComponent some (SoftwarePlat
form 
     that acceptMime value text/plain) 
and isDescribedByDevComponent some (NetworkCha
racteristics 
    that supportNetworkBearers value GSM_CSD_MSI
SDN) 

 
3.2.4 Component ODA. The Component ODA gives 
an abstract description of the service component (ref. 
Section 2.1), describing the how the component 



participates in the service, its features and its 
limitations.  

Since the Component ODA is built using the same 
ontology as the service ODA, it is possible to find 
services (Service ODAs) which can be accessed 
through a given component, and conversely it is 
possible to find what components (Component ODAs) 
can realize a specific service (described by a Service 
ODA). Also, with this ODA, one can check what 
devices will handle a specified component, by 
comparing Component ODAs with Device ODAs. It is 
also possible to provide the user with information 
about what goals can be achieved by a component and 
to compare new components with components already 
installed by the user thus allowing for service role 
learning. 

The following Component ODA example describes 
a component to be installed on a mobile phone, 
providing instant messaging exchange functionality 
over Bluetooth. It requires a proper device class to 
work properly (a Bluetooth-enabled phone), with the 
possibility of achieving a specific goal (message 
sending/receiving) and implements the functionality of 
the instant messaging service). Its OWL definition is 
as follows: 

 
Component 
that requiresDevice some (UserTerminal 
          that isDescribedBy some (HardwarePlatform   
             that containElements some (Bluetooth 
                    that supportBluetoothProfiles         
value GenericObjectExchangeBluetoothProfile)) 
          and isDescribedBy some (SoftwarePlatform 
                that acceptMime value text/plain)) 
and achievesGoal some (MessageSending 
         or MessageReceiving) 
and canRealizeService some InstantMessaging 
 
3.2.5 User preferences ODA. The User Preferences 
ODA describes the user wishes about the service 
provided, expressed in terms of selected properties of 
the service or service goals. It represents a class of 
services the user wants to be involved in. The User 
Preferences ODA can be matched with other types of 
ODA, e.g., the Goal or Service ODAs, and be taken 
into consideration before the user accesses the service. 

The following example expresses that a user prefers 
free instant messaging services: 

 
UserPreferences 
that hasPreferenceGoal some (Establishment 
           that refersToCommunication some  
(FreeService and InstantMessaging)) 
 
 

4. Ontology-related use cases 
 

This section describes what we consider to be the 
most promising use cases for ODAs during design 
time creation (DT) and run-time discovery of mobile 
services (RT). At DT the main stakeholder is the 
service designer, while at RT the stakeholders are the 
service provider and the end user of the service. 

Three of the following use cases are used in both 
DT and RT: (1) finding services with specific features, 
(2) finding components which realize a specific 
service, (3) finding compatible components. However 
the latter is only discussed for RT. In addition, a DT-
specific use case is described (4) checking if the 
sequence of service goals is correct. Other useful use 
cases, but not described here4, are: (5) subscribing for 
services with specific features, (6) finding non-dual 
semantic interfaces for subtype validation, (7) 
checking if the device can be used in a service, (8) 
complying with user preferences in service execution, 
(9) checking consistency between elementary 
collaboration goals, (10) checking consistency 
between devices and components. 

Most of the above use cases have been 
implemented and tested. For matching ODA artefacts, 
subsumption (class-subclass) detection is used. For 
example, to find services with specific features (use 
case (1)), the Service ODA class  (which covers only 
selected features) is created and matched with all 
available Service ODAs. 

 
4.1 Find services with specific features 
 

At design time, a service designer wants to create a 
service, but before that, she should check if such a 
service already exists or there might be something that 
she could build upon (this service could be created by 
others within her organisation or by outsiders who 
have publicly released their Service ODAs). She 
expresses the relevant service features by building a 
simple service ODA covering her needs and a search 
returns a set of services (if any) that will be subject for 
closer inspection. The search itself can be made on 
various levels of abstraction (more general / more 
specific) by exploiting the concept relations in the 
ontology. 

At runtime, a user wishes to achieve some 
functionality and is looking for a service that can 
support this. He can specify the service features he is 
interested in, and a service repository presents 
available service candidates. He can then browse these 
                                                           
4 See the publicly available reports at http:///ist-sims.org/ to have 
these explained.  



services and download components for the most 
promising one. 

An example is as follows. Assume that there is a 
service as specified in Section 3.2.1 that is defined in 
some DT/RT repository. A user/developer searches for 
services able to carry video which are not limited by a 
number of participants. She builds an ODA which can 
look as follows:  

 
Communication 
that containsStream some  VideoStream 

 
After the query is done, the service specified in 

Section 3.2.1 is returned as a match. In that case, 
information about the limitation on the number of 
participants will also be given to the user/developer. 
 
4.2 Find components realizing a specific 
service  
 

By comparing Component ODAs and Service 
ODAs it is possible to find all services related to a 
given component and vice versa. At design time, the 
service designer can find the components that that play 
service roles specified for the service or compatible 
roles, and thus can participate to the service. At 
runtime, components can be found, and consequently 
downloaded, based on desirable service features. A 
user can also identify that components installed on his 
device can be used in services they were not originally 
downloaded for. 

For example, the service designer wants to know if 
there are any components implementing the instant 
messaging service, she makes a very simple artefact 
consisting of one concept only: 

 
InstantMessaging 
 

Assuming that the repository of components 
contains the Component ODA as defined in Section 
3.2.4, this component will be returned to the designer.  
 
4.3 Check if the sequence of goals is in the 
right order 
 

This use case allows a service designer to check of 
two or more goals used in a goal sequence are 
properly ordered. By defining sequence rule relations 
in the telecom relation, it is possible to detect that the 
order of two or more elementary collaboration goals 
are not consistent. 

Consider the following example; a service architect 
creates a conference service, where, among others, the 
achievement of two goals is desirable: 
  • Invitation to a multimedia conference (goal A) 
  • Establishment of a multimedia conference (goal B) 

Assume that both goals are defined for elementary 
collaborations and their semantics defined by ODAs. 
Goal B may be defined as specified in Section 3.2.2, 
and goal A may be defined in a similar way. If the 
developer specifies a goal sequence where goal A is 
achieved before goal B, reasoning on the ODAs 
should make it possible to detect a wrong ordering and 
inform the developer about this sequence 
inconsistency. Knowledge that establishment of a 
conference takes place before invitation of participants 
is expressed in the SIMS ontology.  

This use case should benefit service designers by 
assisting them during service creation and to assure 
that incorrect services will not be created. 
 
4.4 Find compatible components 
 

The Component ODAs provide a way to limit the 
search space for compatible components. We say that 
one component is compatible to another component if 
the former can be put in place of the latter without 
loosing (partial) functionality. It means that the latter 
can provide a wider functionality than the former but 
never more limited.  

We search for compatible components if we want 
(1) to upgrade an existing to a newer version (e.g., a 
more stable one), (2) to extend the existing component 
with new features.  

The example for this use case is as follows:  
Assume that a user has a Bluetooth instant messenger 
component installed as described in Section 3.2.4. The 
user enjoys the component very much and would like 
to have a similar component (in terms of 
functionality), which can run on a wider range of 
networks than Bluetooth. Then he makes a query: 
“find all components compatible to my current 
component.” A list of detected components is 
displayed to the user. One of them supports Bluetooth 
and other kinds of connectivity (such as GPRS). Then 
the user decides to download and install the 
component. 

Notice that the compatibility between components 
cannot be ensured only by making ontology-based 
comparisons. Theoretically, incompatible components 
can provide the very same functionality (and hence, be 
described with identical ODAs). The full component 
compatibility can be checked using other UML-based 
validation techniques developed in SIMS. In these 



terms, the two technologies based on ontology- and 
UML-reasoning complement each other very well. 
 
5. Case study: A virtual meeting place 
 

The following case study describes the creation and 
use of a single but compound service where we take 
advantage of the use cases described in the previous 
section. The service itself is not revolutionary, you can 
find similar functionality already offered different 
mobile device manufacturers and mobile operators, 
but notice how the SIMS technology solves design 
time and run-time issues.  

In a virtual meeting place you would like people 
sharing a common interest or a common task (e.g. a 
company or a charitable institution) to interact with 
each other seamlessly regardless of geographic 
boundaries and across multiple means of 
communication. Actors of the meeting place service 
are (among others) participants (everyone who 
participates in the service) and a controller (the one 
who can create a conference within the meeting place, 
invite others and other things related to the 
conference). Figure 5 shows the composite 
collaboration diagram of how such a service might 
look like. The hexagons are service roles (played by 
service components), while the ovals are elementary 
collaborations connecting two semantic interfaces. 

 
Figure 5. The design of a virtual meeting place 

 
At design time the service designer looks for 

similar services as described by the use case in section 
4.1. Ontological concepts related to conference would 
be natural search criteria. A set of matching existing 
services can then be used to find components she can 
reuse in her new meeting place service, as described 
by the use case in section 4.2. Let’s say a component 

able to play the conference role is found and reused. 
The conference role will have a set of semantic 
interfaces which can be used to create the required 
duals (corresponding interfaces) for the other roles 
that will have to be played by newly implemented 
components. The use case in section 4.3 helps the 
service designer to define the right goal sequences 
(show with arrows in Figure 5). 

Now, let’s jump to runtime. Three users are 
participating within the same meeting place, and 
would now like to setup a common voice conference. 
Two of them have components realizing the voice 
communication (talk), while the third one has a 
component that supports voice and video 
communication. As described in the use case in 
section 4.4, these components could be found 
compatible as long as the voice data is the only thing 
transferred.  

The virtual meeting place is a service being realized 
to demonstrate the SIMS approach’s practical 
applicability and usefulness. Both existing and new 
components for mobile devices are used, and a 
centralized middleware has been developed for run-
time reasoning. 
 
6. Related work 
 

Application of ontologies in SIMS is an original 
merge of use cases at design-time and runtime. When 
we separate the use cases into concrete phases we can 
find similarities with existing approaches. 
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At runtime, similar approaches have been 
developed in the area of Semantic Web Services 
(SWS). Two most prominent technologies are Web 
Service Modeling Ontology (WSMO) [6] and OWL-S 
[7]. Both WSMO and OWL-S use ontologies to 
describe functionality of services. Common to the 
SIMS and SWS approaches, a domain ontology is 
used to build artefact to represent specific entities 
(e.g., goals, preconditions, assumptions in WSMO, 
service type, effects in OWL-S). The same vocabulary 
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of what is provided) and the “requests” (descriptions 
of what is desired) to be matched at runtime. The 
artefacts defined in SWS are different from those in 
SIMS. This results mainly from different 
understanding and definition for services. SWS 
addresses Web services that may be defined as “a 
computational entity which is able to achieve users’ 
goals by invocation” [6], while SIMS address 
collaborative services. Another difference is that 
service providers offering Web services are 
responsible for their creation and management, and 
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services that are discovered are ready to be consumed. 
In SIMS, a service results from a collaboration 
between components possibly developed by different 
stakeholders. The concept of service discovery is 
extended and discovery might require downloading 
and instantiation of a service components.  

Benefits from applying ontologies at design time 
have already been presented in the literature. Deridder 
and Wouters [8] point that using precise terminology 
(from an ontology) to annotate software entities 
addresses the problem of language ambiguity. This is 
of interest in the case of complex services and large 
service systems, where component development 
usually involves different developers. Since the SIMS 
ontology-based use cases cover most of the entity 
types the services are built of, annotation can be 
widely applied. Happel and others [9] present how 
software artefacts (especially in software libraries) can 
be easily reused if properly annotated with ontologies. 
The authors exploit ontology-based queries, which, 
when ontologies are involved, are a very flexible 
means to acquire relevant information. In a similar 
way the SIMS use cases also support reusing (e.g., 
services, components, elementary collaborations) and 
querying (e.g., available services). Using ontologies to 
assist in software engineering is addressed by the 
W3C initiative, “Ontology Driven Architectures and 
Potential Uses of the Semantic Web in Systems and 
Software Engineering”5. Several uses described in the 
document (such as “Software Lifecycle Support”) are 
covered by the SIMS approach. 
 
7. Summary and conclusions 
 

This paper shows a novel way of exploiting 
ontologies, which can be summarized by the following 
points: (1) ontology use in many phases of the service 
lifecycle, (2) the use of so-called ontology-driven 
artefacts, (3) ontology techniques combined with other 
techniques within a single framework. In contrast to 
approaches where ontologies are used for a single 
purpose such as to discover a web service or to 
facilitate communication between designers and 
developers, in SIMS a single ontology finds its use in 
many phases and for different purposes. Specifically 
the ontology-driven artefacts that are created in the 
service design phase are exploited at design-time, 
deployment and runtime phases. 

Selected use cases are currently being validated by 
the SIMS demo applications. The authors will examine 
which use cases are most useful for different kinds of 

                                                           
5 http://www.w3.org/2001/sw/BestPractices/SE/ODA/  

users (service designers, component developers, and 
end users of services).  
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