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ABSTRACT

A flexible and highly configurable 3D vision system targeted for in-line product inspection is presented. The
system includes a low cost 3D camera based on structured light and a set of flexible software tools that automate
the measurement process. The specification of the measurement tasks is done in a first manual step. The user
selects regions of the point cloud to analyze and specifies primitives to be characterized within these regions.
After all the measurement tasks have been specified, measurements can be carried out on successive parts
automatically and without supervision. As a test case, a measurement cell for inspection of a V-shaped car
component has been developed. The car component consists of two steel tubes attached to a central hub. Each
of the tubes has an additional bushing clamped to its end. A measurement is performed in a few seconds and
results in an ordered point cloud with 1.2 million points. The software is configured to fit cylinders to each of
the steel tubes as well as to the inside of the bushings of the car part. The size, position and orientation of
the fitted cylinders allow us to measure and verify a series of dimensions specified on the CAD drawing of the
component with sub-millimetre accuracy.
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1. INTRODUCTION

The use of 3D geometric models has become an important tool in the design, development and production of
machined and cast parts. Traditionally, coordinate measurement machines (CMMSs) have been used to acquire
the shape of objects, but these machines are generally slow, expensive and cumbersome to use.

In the recent years, advanced optical 3D digitizers based on e.g., laser scanning, structured light and photogram-
metry have emerged and they are slowly coming into use. Examples of manufactureres of such digitizers are
GOM mbH, Steinbichler GmbH, Konica Minolta and Metronor. These systems have in common that they are
relatively pricy and they are primarily targeted at very advanced end users, such as manufacturers of e.g., cars
and airplanes. One example of such a system is the ATOS III digitizer by GOM mbH.

The optical digitizers on the market today are mainly used for reverse engineering or first article inspection.
They typically require the object to be pre-treated with white paint or white powder spray, and many require
also that markers are attached to the surface under investigation. The digitization is normally carried out by
specially trained personell. It is usually a quite tedious process which typically requires alignment and stitching
of a series of scans from different angles.
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After all the point data has been acquired, 3D modelling software systems such as CATTA, Raindrop Geomagic
or PolyWorks by Innovmetric are typically used to process the data. The goal is often to convert a point cloud
acquired from a 3D digitizer to a CAD model that consists of NURBS surfaces and other simple, geometric
primitives. The process of creating a CAD model from a point cloud is usually time-consuming, and it requires
manual intervention from the user to e.g., remove noise from the point cloud, fill holes, repair artifacts in the
mesh, divide the mesh into subregions and specify boundary conditions.

Another use of such 3D modelling software is to perform comparisons of an object that has been digitized
with a pre-existing CAD model. This is also a process that currently consists of several steps and it requires
a considerable amount of manual intervention from the user. Typically, the result of such a comparison is a
colour-coded plot that is interpreted manually by an operator.

Our ambition has been to create a 3D vision system based on low-cost, off-the-shelf components that is able
to acquire 3D point clouds of objects at regular intervals directly in the production line. The system should
be applicable for inspection of 100% of the production. This means that the entire process of digitization and
subsequent extraction of physical parameters from the point clouds needs to be carried out within a timeframe
of very few seconds, and without intervention from an operator.

The idea is to divide the measurement into two phases, whereas the first manual phase consists of a specification
of all the parameters that should be measured, and the second phase carries out the actual measurements. The
specification of the measurements needs only to be performed once, typically when the system is configured for
a new measurement task.

Our measurement tools have been implemented in Scorpion Vision Software® (hereby referred to as Scorpion),
which is an independent and open framework for industrial machine vision developed by Tordivel AS. Scorpion
has an intuitive user interface, and it contains a set of standard tools to perform typical measurement tasks.
Scorpion has traditionally contained tools for machine vision in 2D, but has recently been extended with support
for 3D point clouds and a set of 3D measurement tools, such as tools for fitting and characterizing geometric
primitives (e.g., cylinders, spheres and planes) and tools for finding relationships between said primitives, such
as distances and angles. The tools for fitting and characterization of 3D primitives are based on the results
presented in this paper.

Scorpion makes the configuration of the system an easy task, even for production engineers with no specific
expertise within the area of image processing or 3D analysis. The configuration is performed by adding tools to
a list of operations that is executed in sequential order. Regions-of-interests (ROIs) for the tools can be defined
with a relative translation and rotation to each other. This means that, e.g., once a characteristic feature on an
object has been localized, subsequent ROIs can be specified with coordinates relative to this feature.

When Scorpion has been configured, it can perform repeated measurement tasks automatically for subsequent
parts without intervention from the operator. The results of the measurements are continuously logged, and they
can also be transferred via popular transport protocols like TCP/IP, RS-232 or Profibus for adaptive process
control.

This paper is organized as follows. Section 2 gives a description of our measurement system along with a basic
procedure for system calibration. In section 3, our algorithms for geometric modelling and fitting of primitives
are presented. The application of our 3D vision system for inspection of a V-shaped car component is given in
section 4. Section 5 discusses important topics for further work. Finally, a summary with conclusions follows in
section 6.

2. MEASUREMENT SYSTEM

Our 3D camera targeted for automatic product inspection is based on structured light, and has been developed
through a series of earlier projects related to product inspection.!?3 Structured light was preferred because of
its ability to capture full-field 3D images, its high accuracy and the relatively short measurement time.



We have developed an API for structured light that is very flexible with respect to the choice of hardware and
the optical setup. Any commercial multimedia projector with VGA or DVI input can be used to project the
structured light patterns, and a standard machine vision camera with e.g., analog or IEEE1394 interface is
used to capture the images. The API includes calibration algorithms. This allows the user to use an arbitrary
configuration of a projector and a camera as an accurate 3D image acquisition device.

Our structured light system is based on a combination of Gray Code and Phase Shifting fringe projection'
(hereby referred to as GCPS). The object is first illuminated with a series of shifted cosine patterns. A general
N-step algorithm* is used to calculate the phase of the projected cosine fringes:
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After the sequence of cosine patterns has been projected, a sequence of Gray code patterns is used to associate
a time-encoded binary code with each individual stripe in the structured light pattern. The Gray code sequence
is used to eliminate the need of phase unwrapping. For each pixel a Gray code word, GC(z,y), is obtained.
The resulting Gray code words, GC(z,y), and the values obtained for the phase, ¢(z,y), can be simply added
together to form a continuous function that describes the absolute stripe displacement in each position in the
field of view:

¢(z,y) = arctan ( (1)
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2.1 CALIBRATION
2.1.1 Z calibration

Efforts have been made by many researchers®®” to derive an exact mapping function between the measured
stripe displacement, §(x,y), and the object height, Z(z,y), in each point in the camera image. These mapping
functions quickly become complicated, and they involve system parameters that are difficult to measure, such as
the exact position of the exit pupil of the projector as well as the entrance pupil of the camera.

We have observed that the mapping function can be approximated quite accurately by a lower order polynomial,

Z(.Z‘,y) = Co(l’,y) +a (.Z‘,y)(S(.fL',y) + 02(m,y)5(m,y)2 +et cn(x,y)é(x,y)n, (3)

where §(z,y) is the measured GCPS value and ¢, (z,y) are coefficient matrices that needs to be determined.
Typically we have used a polynomial of order 4.

We can estimate a value for the coefficients by minimizing the least squares difference,
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where Z;(x,y) is given by (3), and h;(z,y) is a set of known height distributions used to calibrate the system.
Here, N must be greater or equal to the number of coefficients we want to use in our polynomial approximation
(3). An analytical solution that minimizes s(z,y) can be found by differentiating s(x,y) with respect to each of
the coefficients, ¢, (z,y), and by setting these expressions equal to zero. This results in a possibly overdetermined
system of equations that can be solved by Singular Value Decomposition or similar techniques known from linear
algebra.

One way of calibrating the system is to use a planar calibration object which is elevated to a set of N constant
heights. The height distributions, h;(x,y), then becomes a set of constant values.



2.1.2 XY calibration

When the coefficient matrices have been determined, we are able to obtain a height map of the scene as seen by
the camera. The height map is a floating-point image where each pixel value corresponds to a height above a
chosen reference plane. The height map is also sometimes referred to as a 2.5D image of the object.

To be able to measure true 3D coordinates, we need a mapping between pixel indices, (z,y), and coordinates,
(X,Y, Z), in millimeters. To obtain this mapping, we have used the excellent MATLAB Camera Calibration
Toolbox by Jean-Yves Bouguet® to model our camera as a pinhole camera with radial and tangential distortion.

The model in this toolbox assumes three steps:

1. Rigid-body transformation (rotation + translation) from object coordinates to coordinates centered in the
camera’s principal point

2. Perspective projection

3. Distortion (radial and tangential)

The parameters used in step 1 of the model are called extrinsic parameters, while the parameters used in step
2 and 3 are called intrinsic parameters. There are a total of about 20 parameters in this model. To solve the
equations for the unknowns, a planar calibration object with a chessboard pattern is placed in a series of random
positions. A corner detection algorithm is applied to detect the sub-pixel position of the corners of the chessboard
squares. The detected points are fitted to the model to obtain estimates for the parameters.

When all the parameters have been estimated, we can use the camera model to trace a ray from a pixel in the
camera image to a point on the surface of the object, given by its Z value as obtained with the GCPS method.
The result is an ordered point cloud of N, x N, (X,Y, Z) values, where N, x N, corresponds to the resolution
of the camera.

3. DATA ANALYSIS
3.1 Modelling

Typical measuring tasks involve measuring properties of or between subparts of the object under inspection.
Examples include angles between subparts, or the size of a particular subpart. For example, in the case of the
model of figure 3, an important measure is the angle between the axes of the two cylindrical tubes on the V-stay.
In order to accomplish this, we need to fit models to the acquired data as accurately as possible. In our case,
we have focused on fitting subparts to geometric primitives like cylinders and spheres.

Our desire to automate the measurement process requires a split of the modelling task into two steps:

1. Assisting the user in setting up the measurement task with sufficient precision.

2. Performing the defined measurement in a robust fashion.

3.2 Defining the measurement task

Without using topological information from the whole model, we cannot in general detect and fit primitives or
submodels to subparts of the point cloud if the model contains more than just one of these submodels. This
makes it necessary to partition the point cloud into ROIs. In our application this can easily be done once
for a model to be inspected, and simple rules for this partition can be applied to all subsequent scans and
inspections in the production line. The manual ROI selection does not need to be very accurate. There are two



important considerations, first that ambiguities are removed, and second, that most points sampled from the
actual submodel are retained in the ROI. The user therefore manually defines the ROI to use for the measurement.

Secondly, the user needs to specify the geometric primitive to find within this ROI. To avoid ambiguities and
optimize later measurement speed, the user is also required to provide an initial guess of the whereabouts of this
particular geometric primitive. The user is assisted in providing this guess through the use of a MLESAC-inspired
algorithm,® a robust but rough optimization method. For well-chosen ROIs that really do eliminate ambiguities,
the MLESAC-inspired algorithm will find the primitive without further user interaction.

In short, this method works by testing a number of (more or less random) hypotheses, keeping the one which
best fits the available data. Measuring how well data fit is typically done by ignoring data points that clearly do
not fit with the hypothesis, and calculating a match score based on the remaining points. In the current context,
we make use of this algorithm to rapidly locate a geometric primitive in a ROI of a point cloud without any
prior information.

This localization can be illustrated by how cylinder candidates are found. To generate a hypothesis, we generate
two triples 77 and T» of random points (see figure 1). We restrict the points in each triple to reside within a
certain minimum and maximum distance of each other. These parameters depend on the scanning resolution,
and the purpose is only to weed out bad hypotheses as early as possible. For each triple we consider the line
passing through the mean of the three points, say, M; and M, respectively, perpendicular to the plane which is
spanned by the triples, call these lines L1 and L,. There exists a new line A; that crosses both L; and L, at a
distance r; from M; and Ms, as well as being perpendicular to L;. Similarly, there exists a line A that crosses
both L; and Ls at a distance ro from M; and Ms, as well as being perpendicular to Ls. As our hypothesized
cylinder, we consider the cylinder of radius r = (r; + r2)/2 with axis A through the points at a distance r from
My and M along lines L; and Ls, respectively. Again, we speed up the process by discarding hypotheses with
radii outside a predetermined interval specified a priori.

To test the hypothesis, we make use of a slightly modified version of the error objective that will be minimized
during a subsequent optimization, namely the average squared distance from the points to the geometric surface,
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for the point (sub-)cloud P = (p;)¥,, cylinder axis A and radius r, with p, being the projection of point p, onto
the cylinder surface. For the MLESAC hypothesis evaluation, we use

N
1
MLESAC-error(P, A,r,e) = N Z min(|p; — p;],€)?,
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to define the match score of hypothesis (4,r). Here, the idea is that a point’s error is clamped to € in order
not to let adjacent primitives within the same ROI influence the score of the hypothesis too much. To achieve
this, we select ¢ to be approximately the size of the predicted error in the sampling process generating the point
cloud.

3.3 Optimal fitting

With a proper ROI, initial guess, and error-function (all described for the cylinder above), a standard minimiza-
tion method like e.g., conjugated gradients'® or Nelder-Mead!! has a good chance at converging on a (global)
minimum. Note however, that it is very likely that the ROI still contains points that are not sampled from the
geometry to which we attempt to fit the points. Such points may be sampled from another adjacent part of the
geometric primitive or from some background, like a table or other fixture. They may also be artifacts, e.g.,
produced by reflections. The consequence of this is a suboptimal fit, because the fitting procedure may try to
accomodate these points along with the ones actually sampled from the primitive. Just as we took measures to
eliminate these during MLESAC, we try to mask them out from the final fitting.



3.3.1 Decimation and re-fitting

We cannot simply minimize the error function (5), and then remove points further away than a given distance,
for example the previously used distance, £, since outliers may be sufficiently dominating so as to skew the
minimum enough to make us discard the wrong set of points. Neither can we remove points far from the
MLESAC-result, as this is just an inaccurate estimate of the global minimum, only suitable for an initial guess
of a better optimization.

To overcome this, we use the following procedure. We iteratively fit and remove the worst outliers, a small
fraction at a time. Doing this, we should get a very small average error when only the points sampled from the
geometry are left. However, in the process of getting to this point, we will most likely have ”lost” a lot of points
which should really have been retained. (Points sampled from the geometry, being discarded early in the process
when the geometry best fitting the point cloud is far from the final and correct solution.)

To remedy this, we only record the point in this iteration where the error decline drops markedly, and the solution
at this stage (see figure 2). We find this point by intersecting two straight lines fitted by linear regression to
the first and last 10% of the points on these curves. Now we assume that this solution will be close to the
final solution. We then start over again with the full point cloud and this intermediate solution, and decimate
the point cloud by discarding all points outside a layer around this solution. Finally, we do a refitting of the
remaining points to the geometry primitive we seek.

4. APPLICATION

The test case for the project is a V shaped car component, with dimensions approximately 700x700mm. The
component consists of two steel tubes attached to a central bushing with two additional bushings clamped to
its ends (see figure 3). A series of dimensions given on the CAD drawing of the component should be inspected
and verified. Examples of such dimensions are: the distance between the centers of the cylindrical bushings, the
diameters of the tubes, the angle spanned by the two tubes and the angle of the bushing with respect to the
baseplane of the item. The geometry of the component makes it impractical to perform this verification with
only 2D inspection tools.

4.1 V-stay inspection cell

A measurement cell based on structured light (as described in section 2) was built to acquire the 3D shape of
the V-stay. A Plus U5-632h multimedia projector was used together with a Sony XCD-SX910 machine vision
camera with SXGA resolution (1280x960 pixels) and an IEEE1394 (FireWire) interface. The inclination of the
camera and the projector was chosen carefully to provide a high number of data points on the inside of each of
the bushings as well as on the surface of the steel tubes. The field of view for the measurement cell is around
1200x900mm, and the system was calibrated for a Z range from Omm to 355mm.

4.2 Calibration of measurement cell

Our calibration object has been a 1200x900x6 mm glass plate. The glass plate was first painted matte white,
and afterwards a chessboard pattern was applied onto the surface by silkscreen printing. The same calibration
object was used both for the Z calibration and for the XY calibration.

We have also fabricated a set of 6 x 3 spacers with accurately known height. This allowed us to place the
calibration plate in six different known positions, z = {hy, ha, hs, ha, hs, he}.

During the calibration process, a GCPS measurement is performed on the glass plate in each of the six positions.
Because reliable values for §(z,y) can only be obtained for the white squares of the chessboard pattern, the result
is interpolated by least-squares fitting to a sixth order polynomial surface in z and y (given by 28 coefficients).
The interpolation also has the nice side effect of suppressing high-frequency noise in the measurements. The
result of the interpolation is a set of six smooth distributions of GCPS values, 0;(z,y).



Dimension | Nominal 1 2 3 4 ) 6 7 8 I3 o
Cylinder 0 49.8 | 49.8 | 50.0 | 50.2 | 50.2 | 50.2 | 49.7 | 499 | 49.6| 4995 | 0.24
Sphere 1 O 50.01 | 50.2 | 50.4 | 50.2 | 50.5| 50.5| 50.1 | 50.7 | 49.9 | 50.31 | 0.26
Sphere 2 O 50.01 | 50.1 | 499 | 503 | 50.6 | 50.5 | 50.0 | 50.1 | 49.9 | 50.18 | 0.27
Cs1 — Cgso 500.47 | 499.6 | 499.7 | 499.9 | 499.7 | 499.9 | 499.8 | 500.3 | 499.9 | 499.85 | 0.21

Table 1. Nominal and measured values for calibration test object

Estimates for a set of 5 coefficient matrices, {c,(z,y) | n € [0,4]}, are found by minimization of the equation
given in (4).

4.3 Performing the measurements

In this particular setup, a set of 18 patterns was used for the GCPS measurements. This corresponds to 4 phase-
shifted sine patterns, 6 Gray code patterns, 6 inverse Gray code patterns and uniform black and white patterns
(for normalization and thresholding purposes). A measurement is performed in about 5 seconds and results in
an ordered point cloud with 1280x960 (X, Y, Z, ¢, I) values, where (X,Y, Z) are coordinates in millimetres, ¢ is a
contrast value and I is the intensity obtained from uniform illumination of the object. The contrast value, g, is
obtained by calculating the standard deviation of the perceived intensity in each pixel during the phase stepping
process. That means that pixels that reside in the shadow can easily be eliminated by throwing away points
with a contrast value smaller than a certain threshold.

4.4 Verification of measurement accuracy

To verify the accuracy of the calibration, we have fabricated a precise test object. The test object consists of
a cylinder with accurately known radius. The cylinder has spheres attached on either side. Various dimensions
for our verification object are given in table 1. These dimensions were obtained by a coordinate measurement
machine (CMM) with a mechanical probe.

The test object was placed in eight random positions in the measurement volume, and a set of eight point clouds
was obtained by our structured light system. In measurements 1-4, the test object was placed in various positions
in a plane near Z = Omm. In measurements 5-6, the test object was located near Z = 155mm. In measurements
7-8 one end of the test object was elevated around 200mm whilst the other end resided in Z = Omm.

To eliminate possible influences of inaccuracies in our fitting algorithms, the commercial software package Geo-
magic was used to fit two spheres and one cylinder to manually selected ROIs for each of the eight measurements.
The results of the measurements are given in table 1.

As can be seen, the parameters vary within a few tenths of a millimeter. The standard deviation is around 0.25mm
for all the parameters, corresponding to around 1 part in 5000 of the field of view of the camera (1200x900mm).
Since values do not have a mean value identical to the mechanically measured value, they all seem to have a
certain bias. The spheres and the cylinders tend to have slightly larger radii in our measurements compared to
the CMM results, while the distance between the spheres actually appear to be, in average, 0.6mm smaller than
the values obtained with the CMM.

The dominant systematic errors in the system is believed to arise from inaccuracies during the system calibration.
Our current calibration procedure requires the calibration plate to be located in six distinct, accurately known
positions. Effects such as small displacements of the projector and/or camera relative to the calibration object,
environmental vibrations, deflection of the plate because of gravity etc. are likely to introduce unacceptable
inaccuracies. The fact that the field-of-view and the calibration plate for the V-stay inspection cell is very large
(1200x900mm) makes it difficult to achieve a high absolute accuracy with the current calibration procedure.

We have also observed that inaccuracies are introduced by the interpolation of the GCPS values with a 6th order
polynomial surface, especially when regularly spaced samples are used, and when periodical, systematic noise is



Dimension C1 c2| C3 S1 S2 S3 S4 S5 1t o
R(Cyll) 26.45 | 26.35 | 26.2 | 26.18 | 26.19 | 26.21 | 26.21 | 26.18 | 26.19 | 0.0165
R(Cyl2) 26.45 | 26.35 | 26.2 | 26.21 | 26.23 | 26.24 | 26.18 | 26.20 | 26.21 | 0.0218
Angle 56.74 56.48 | 56.47 | 56.45 | 56.47 | 56.45 | 56.47 | 0.0119

Table 2. Extraction of dimensions on the V-stay. C1-C3: Measurements performed with callipers on three different
positions on the tube (C1l: near central hub, C2: center of tube, C3: end of tube). S1-Sb: fitting of a single cylinder to
five different measurements of same V-stay.

present on the GCPS data.

We are currently working on new approaches for calibrating the system that have the potential to yield a higher
degree of absolute accuracy. This is discussed further in section 5.

4.5 V-stay measurements

Three critical dimensions for the V-stay are the radii of each of the two tubes and the angle spanned by the tubes.
To extract these parameters, we performed cylinder fits on each of the two tubes. A pair of 2D rectangular ROIs
was defined in the zy-plane that roughly covered a set of approximately 12 thousand points each on the surface
of the two arms of the V-stay.

The two cylinder fit minimizations were done with the conjugated gradient method, Polak-Ribiere variation,'®

used in the multipass framework described in section 3. The initial guess was supplied by the MLESA C-variation
also described in section 3. In average around 11000 points were used as final input to each of the two cylinder
fits, and these fits were performed in around 56 ms each on a stationary x86 desktop PC. For the multipass
fitting, we used 50 passes. We briefly note that focus has not been on minimizing the speed of these fittings, but
on the automation and robustness of the procedure. For speeding up the procedure both the number of passes
can be reduced, and the point clouds can be decimated.

A series of five measurements was performed on one V-stay. The component was lifted up and lowered again
onto a black cardboard background between each of the measurements. Three pieces of aluminium were used as
indicators to guide the V-stay roughly into place. The expected displacement in the zy-direction was in the order
of a few millimeters between each of the measurements. Definitions of ROIs were done on the first V-stay, and
subsequent cylinder fits and angle computations were done automatically for successive V-stay measurements.

For our test measurements, approximately 5 seconds were spent on performing the image acquisition and about
3 seconds on the cylinder fits and extraction of measurement parameters per V-stay.

The results of a series of measurements is given in table 2. Note that the tubes are not perfect cylinders, and
that the radii vary along the tubes. The angle displayed in the first column is the nominal value, taken from the
CAD drawing of the component. The ROIs used for automatic measuring were placed around the outer half of
the tubes.

As can be seen in table 2, the values obtained have a smaller standard deviation than the results in table 1. This
is expected, because the V-stay was located in roughly the same position for all the five measurements, whereas
our test object was located in a series of arbitrary positions and orientations within the entire measurement
volume. Apart from small systematic errors due to miscalibration, variations present on the different parameters
arise when slightly different subregions of the point clouds are used as ROIs for the fitting procedures.

5. FURTHER WORK

The results presented in this paper are preliminary results from an ongoing, three-year research project. Increas-
ing the speed, accuracy and robustness of the system is an important challenge in our further work. As has been
briefly discussed earlier, we are working with methods for calibrating our structured light system which does



not require exact positioning of the calibration object in the measurement volume, and hence have the potential
to yield a higher degree of absolute accuracy. One approach that is being evaluated is to use the calibrated
camera to estimate the orientation and pose of the calibration object (instead of using spacers with a precicely
known height), similar to what is described by Vargas et. al.'> Another approach is to model the projector as
an “inverse camera”’ and use techniques known from stereo photography and photogrammetry to calibrate the
system, such as described by e.g., Brenner et. al.'®> and Zhang et. al.'*

When it comes to the data analysis algorithms, we are focusing on the development of fitting functions for more
geometric primitives, as well as more general geometries such as CAD models. Efficient use of CAD models
for the specification of measurement tasks and for comparing measurements with its nominal values is also an
important task.

The system is currently being trialled for random bin picking applications, where 3D point clouds of an unorgan-
ised crate full of items are being acquired at regular intervals. Algorithms are under development for detection
and localization of known 3D objects in the crate.

6. SUMMARY AND CONCLUSIONS

We have presented our 3D vision system suitable for automatic in-line product inspection. The system is based on
structured light with low cost, off-the-shelf projectors and cameras. Software tools have been implemented that
allow the user to specify and carry out measurements on 3D shape data, such as the fitting of primitives (planes,
cylinders, spheres etc.) to regions of point clouds, and extraction of parameters such as lengths, directions, angles
and radii. The specification of measurements is done in a first manual step. Afterwards, successive measurements
can be carried out automatically and without supervision.

Finally, our 3D vision system has been demonstrated for inspection of a V-shaped car part, consisting of steel
tubes with cylindrical bushings. Critical dimensions, such as the diameters of the tubes and the angle that is
spanned by the tubes, is extracted automatically from the point clouds by utilising a robust cylinder fitting
algorithm.

The API for structured light shape acquisition, as well as tools for fitting primitives to subregions of point
clouds, have been integrated into Scorpion Vision Software®), a commercial software package for industrial
machine vision.

We believe that our system will bridge the gap between high-end 3D digitizers and complex CAD systems on
one side, and flexible and user-friendly 2D machine vision tools on the other side, by enabling the use of 3D
vision for product inspection directly in the production line. Eventually, efficient and automatic 3D inspection
will become as pervasive as 2D machine vision solutions are today.
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Figure 1. Cylinder MLESAC
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Figure 2. Plots of log(error) for the error (5) against the number of remaining points in an iteratively decimated point
cloud for two different ROIs during the multipass cylinder fitting. The original point cloud is the same, but drawn solid
and with ’o’s we have a ROI with points mainly sampled from the geometry, and with dashed lines and ’+’s we have a ROI
with approximately 30-40% of the points belonging to the end bushing of the V-stay. The straight lines and corresponding
intersections indicate chosen solutions for classification of points.



Figure 3. CAD drawing of V-stay
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Figure 5. Screenshot from SCORPION. A point cloud of a V-stay is shown with 6 ROIs (shown as cuboids) and 6 cylinders

fitted to the points within the ROIs.



