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Mini-symposium:
Heterogeneous Computing

1. Tor Dokken: Geometry Processing and 
Heterogeneous Computing

2. Sylvain Lefebvre: Parallel Example-based 
Texture Synthesis for Surfaces

3. André Rigland Brodtkorb: A Comparison of 
Three Commodity Level Parallel Architectures: 
Multi-core CPU, the Cell BE and the GPU

4. Jon Hjelmervik: Simplification of FEM-models 
on multi-core processors and the Cell BE
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CAGD and Heterogeneous 
Computing

Tor Dokken
SINTEF & CMA
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Algorithm design in CAGD 
influenced by hardware evolution

• Floating point operations were expensive until 
the start of the 1990s
– Algorithms structured to reduce number of flops

• Localization of data important to avoid waiting
– Has been growing in importance with the growth in 

depth of memory hierarchies. (Registers, L1, L2, L3 
cache, primary memory, swapped memory)

– Will be even more important when only a small part of 
the chip can be reached in one clock cycle

• Parallel processing has until recently only been 
of interest within High Performance Computing
– Most education still aimed at sequential computing
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de Boor’s algorithm
• Evaluation of values on B-splines anno 1976 

– Lecture notes spline course University of Oslo Spring 1976

• Reduce number of 
multiplications and 
divisions
– k(k-1)    *,/
– Horner uses k-1 *

• Conversion to local 
polynomials proposed 
for repeated calculations

• Floating point operations 
significantly more costly 
than other operations  
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de Boor’s algorithm
• Evaluation of values on B-splines anno 1976 

– Lecture notes spline course University of Oslo Spring 1976

• Reduce number of 
multiplications and 
divisions
– k(k-1)    *,/
– Horner uses k-1 *

• Conversion to local 
polynomials proposed 
for repeated calculations

• Floating point operations 
significantly more costly 
than other operations  

• Experiences from the 
early 1980s showed
– Not efficient for 

parametric curves and 
surface

– Conversion to local 
polynomials gives loss 
of accuracy

– Seldom sufficiently 
repetition of calculation 
on  one polynomial 
segment
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Evaluation of values and derivatives of B-
splines represented curves and surfaces

• Around 1985 we asked Tom Lyche  and Knut Mørken to help make 
better methods for evaluating B-spline curves and surfaces

• First evaluate values and needed derivatives of basis functions,
then multiply with vertices
– Numerically stable, Improved performance for parametric curves and 

surfaces
– Compatible results with Oslo algorithm provided care taken
– Save operations compared to de Boor algorithm in most cases

• Algorithm later implemented in the SISL-library
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Animation of B-spline surfaces
• In 1997 we started on animation 

projects using B-splines
– A fairly dense regular grid of points and 

normals to be evaluated on the surface
– Independent evaluation of points too 

slow
– Mike Floater implemented an efficient 

algorithm for the SISL-library (nested 
loops)Example from MobileMedia

Image: SINTEF
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Data parallel B-spline point and 
partial derivatives evaluation

• Evaluate n1× n2 points (and possibly partial derivatives) 
on a B-spline surface of orders (k1,k2)
– Evaluate all non-zero basis functions of B-spline basis in first and 

second parameter direction and store in k1×n1 matrix D1 and k2×n2 
matrix D2 

– The surface vertices have a natural matrix structure C
– Remembering the compact storage in D1 and D2 the point evaluation 

can be expressed as a matrix product (remember relative indexing) of 
D1 ,C and D2 

• Data parallel processors such as GPUs are very efficient 
for execution of such matrix products
– Efficiency dependent on sufficiently large grids

• However, the matrix structures are also well suited for 
efficient execution on traditional CPUs

• Matrix formulation part of current courses in Spline 
Methods (e.g. INF-MAT5340 at the University of Oslo)
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Matrix formulation of B-spline 
evaluation

• Talk by Arne Lakså the first day:
– A generalized B-Spline matrix form of splines

• Matrix formulations better suited form making 
parallel algorithms than algorithms formulated 
by sums.
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What about other surfaces?

• Box spline surface
– A regular grid should be straight forward

• Triangular Bezier surfaces
– A regular triangular grid should be straight forward

• T-splines will be more challenging
– “Extensive” T-structure will require independent 

evaluation of each sample point
– Challenging for current GPUs
– Probably better suited for Cell BE due to fast data 

transfer between Fat and Thin cores
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Hardware evolution
• Current hardware

– Multi-core CPUs (Fat cores)
– Graphics cards (Data parallel, Thin cores)

• Slow exchange of data between Fat (CPU) and Thin cores 
(GPU) 

– Cell BE (1 Fat, 8 Thin cores)
– Double precision recently introduced on GPUs

• Expected evolution
– Multi core chips combining some fat cores and many 

thin cores with access to same memory 
• AMD Fusion (Planned release 2009)

– Only a small part of the chip can be reached in on 
clock cycle
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Regular grid evaluation of
tri-variate representation

• Iso-geometric analysis replacing Finite Elements 
by tri-variate NURBS
– Straight forward extensions of NURBS bi-variate 

matrix representation to tri-variate representation
• Tetrahedral Bezier volumes

– Should be straight forward
• Box-splines

– Should be straight forward
• Trivariate T-splines

– Even more complicated than the bi-variate case
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Challenges for grid evaluation: 
Watertight network of T-spline objects

Basis function for T-splines are 
more complex than the tensor 
product basis functions for 
NURBS. 
• Evaluation of T-spline basis       

functions more complex than 
NURBS basis functions

Challenge:
• Efficient evaluation for 

numerical integration in iso-
geometric analysis

Image by Vibeke Skytt, SINTEF
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Making water tight models
• The T-spline surface or volume can to be structured into 

regions:
– T-spline structure: Regions to be refined to match adjacent 

objects exactly
– NURBS structure: Regions that keep their tensor product nature

NURBS structure

T-spline structure
Split into 

sub-regions

Image by Vibeke Skytt, SINTEF
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Evaluation on future combined Fat and Thin 
multi-core chips with shared memory

• Alternative 1:
– Evaluate T-spline structures on Fat-cores 
– Evaluate NURBS-structures on Thin cores

• Alternative 2:
– Convert T-structures to NURBS-structures on Fat-

cores
– Evaluate on Thin-cores

• ….
Communication between GPU and CPU on the PCI-
Express bus can be a bottleneck for this approach. Future 
chips combining Thick and Thin cores better adapted.
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Subdivison algorithms

• Using the Oslo algorithm for knot insertion:
– Calculate discrete B-splines and store in a 

matrix
• Use matrix products as in grid evaluation 

– Take care to avoid trivial multiplications
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Intersection algorithms

• Intersections of NURBS with guarantee is 
always resource consuming.

• Use the parallel resources to understand 
the complexity of the problem
– Decide if a simple approach is sufficient for 

finding all intersections
– Find intersection regions where more 

advanced approaches necessary
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Rational cubic B-spline surface
11 x 16 coefficients

Eight singular points

Example surface self-intersection

Fairly simple parallel algorithms can detect if and where 
self-intersections may be located, and their complexity

Example courtesy of think3.
Images by Vibeke Skytt, SINTEF
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Example surface self-intersection

Fairly simple parallel algorithms can detect if and where 
self-intersections may be located, and their complexity

Self-intersection curve in 
parameter domain

Details of 3D self-
intersection curves
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Example surface ray-casting
• Was addressed in detail in the talk 

by Martin Reimers on Thursday:
Ray Casting Algebraic Surfaces using 

the Frustum Form
• Autumn 2006 GPU-generation 

from NVIDIA. Image size 512×512
– Real time ray-casting of algebraic 

degree up to  10 to 12
– For degree 20, two to four frames a 

second
• Expected significantly improved 

performance on most recent 
NVIDIA generation of GPUs Image by Johan Seland, SINTEF
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Conclusion

• The emerging heterogeneous 
computational resources (multi-core, GPU, 
Cell BE) challenge current algorithmic 
approaches within CAGD,

• and have the potential of drastically 
improving performance of algorithms 
within CAGD


