
June 30, 2008 7th International Conference on Mathematical
Methods for Curves and Surfaces

1

Mini-symposium:
Heterogeneous Computing

1. Tor Dokken: Geometry Processing and
Heterogeneous Computing

2. Sylvain Lefebvre: Parallel Example-based
Texture Synthesis for Surfaces

3. André Rigland Brodtkorb: A Comparison of
Three Commodity Level Parallel Architectures:
Multi-core CPU, the Cell BE and the GPU

4. Jon Hjelmervik: Simplification of FEM-models
on multi-core processors and the Cell BE

June 30, 2008 7th International Conference on Mathematical
Methods for Curves and Surfaces

2

CAGD and Heterogeneous
Computing

Tor Dokken
SINTEF & CMA
Oslo, Norway

June 30, 2008 7th International Conference on Mathematical
Methods for Curves and Surfaces

3

Algorithm design in CAGD
influenced by hardware evolution

• Floating point operations were expensive until
the start of the 1990s
– Algorithms structured to reduce number of flops

• Localization of data important to avoid waiting
– Has been growing in importance with the growth in

depth of memory hierarchies. (Registers, L1, L2, L3
cache, primary memory, swapped memory)

– Will be even more important when only a small part of
the chip can be reached in one clock cycle

• Parallel processing has until recently only been
of interest within High Performance Computing
– Most education still aimed at sequential computing

June 30, 2008 7th International Conference on Mathematical
Methods for Curves and Surfaces

4

de Boor’s algorithm
• Evaluation of values on B-splines anno 1976

– Lecture notes spline course University of Oslo Spring 1976

• Reduce number of
multiplications and
divisions
– k(k-1) *,/
– Horner uses k-1 *

• Conversion to local
polynomials proposed
for repeated calculations

• Floating point operations
significantly more costly
than other operations

June 30, 2008 7th International Conference on Mathematical
Methods for Curves and Surfaces

5

de Boor’s algorithm
• Evaluation of values on B-splines anno 1976

– Lecture notes spline course University of Oslo Spring 1976

• Reduce number of
multiplications and
divisions
– k(k-1) *,/
– Horner uses k-1 *

• Conversion to local
polynomials proposed
for repeated calculations

• Floating point operations
significantly more costly
than other operations

• Experiences from the
early 1980s showed
– Not efficient for

parametric curves and
surface

– Conversion to local
polynomials gives loss
of accuracy

– Seldom sufficiently
repetition of calculation
on one polynomial
segment

June 30, 2008 7th International Conference on Mathematical
Methods for Curves and Surfaces

6

Evaluation of values and derivatives of B-
splines represented curves and surfaces

• Around 1985 we asked Tom Lyche and Knut Mørken to help make
better methods for evaluating B-spline curves and surfaces

• First evaluate values and needed derivatives of basis functions,
then multiply with vertices
– Numerically stable, Improved performance for parametric curves and

surfaces
– Compatible results with Oslo algorithm provided care taken
– Save operations compared to de Boor algorithm in most cases

• Algorithm later implemented in the SISL-library

() () ()tBsBts kjki

N

i

N

j
i,j 21

1 2

,,
1 1

, ∑∑
= =

= cp

June 30, 2008 7th International Conference on Mathematical
Methods for Curves and Surfaces

7

Animation of B-spline surfaces
• In 1997 we started on animation

projects using B-splines
– A fairly dense regular grid of points and

normals to be evaluated on the surface
– Independent evaluation of points too

slow
– Mike Floater implemented an efficient

algorithm for the SISL-library (nested
loops)Example from MobileMedia

Image: SINTEF

June 30, 2008 7th International Conference on Mathematical
Methods for Curves and Surfaces

8

Data parallel B-spline point and
partial derivatives evaluation

• Evaluate n1× n2 points (and possibly partial derivatives)
on a B-spline surface of orders (k1,k2)
– Evaluate all non-zero basis functions of B-spline basis in first and

second parameter direction and store in k1×n1 matrix D1 and k2×n2
matrix D2

– The surface vertices have a natural matrix structure C
– Remembering the compact storage in D1 and D2 the point evaluation

can be expressed as a matrix product (remember relative indexing) of
D1 ,C and D2

• Data parallel processors such as GPUs are very efficient
for execution of such matrix products
– Efficiency dependent on sufficiently large grids

• However, the matrix structures are also well suited for
efficient execution on traditional CPUs

• Matrix formulation part of current courses in Spline
Methods (e.g. INF-MAT5340 at the University of Oslo)

June 30, 2008 7th International Conference on Mathematical
Methods for Curves and Surfaces

9

Matrix formulation of B-spline
evaluation

• Talk by Arne Lakså the first day:
– A generalized B-Spline matrix form of splines

• Matrix formulations better suited form making
parallel algorithms than algorithms formulated
by sums.

cc)()()()(21 tTtTtTt nK=

June 30, 2008 7th International Conference on Mathematical
Methods for Curves and Surfaces

10

What about other surfaces?

• Box spline surface
– A regular grid should be straight forward

• Triangular Bezier surfaces
– A regular triangular grid should be straight forward

• T-splines will be more challenging
– “Extensive” T-structure will require independent

evaluation of each sample point
– Challenging for current GPUs
– Probably better suited for Cell BE due to fast data

transfer between Fat and Thin cores

June 30, 2008 7th International Conference on Mathematical
Methods for Curves and Surfaces

11

Hardware evolution
• Current hardware

– Multi-core CPUs (Fat cores)
– Graphics cards (Data parallel, Thin cores)

• Slow exchange of data between Fat (CPU) and Thin cores
(GPU)

– Cell BE (1 Fat, 8 Thin cores)
– Double precision recently introduced on GPUs

• Expected evolution
– Multi core chips combining some fat cores and many

thin cores with access to same memory
• AMD Fusion (Planned release 2009)

– Only a small part of the chip can be reached in on
clock cycle

June 30, 2008 7th International Conference on Mathematical
Methods for Curves and Surfaces

12

Regular grid evaluation of
tri-variate representation

• Iso-geometric analysis replacing Finite Elements
by tri-variate NURBS
– Straight forward extensions of NURBS bi-variate

matrix representation to tri-variate representation
• Tetrahedral Bezier volumes

– Should be straight forward
• Box-splines

– Should be straight forward
• Trivariate T-splines

– Even more complicated than the bi-variate case

June 30, 2008 7th International Conference on Mathematical
Methods for Curves and Surfaces

13

Challenges for grid evaluation:
Watertight network of T-spline objects

Basis function for T-splines are
more complex than the tensor
product basis functions for
NURBS.
• Evaluation of T-spline basis

functions more complex than
NURBS basis functions

Challenge:
• Efficient evaluation for

numerical integration in iso-
geometric analysis

Image by Vibeke Skytt, SINTEF

June 30, 2008 7th International Conference on Mathematical
Methods for Curves and Surfaces

14

Making water tight models
• The T-spline surface or volume can to be structured into

regions:
– T-spline structure: Regions to be refined to match adjacent

objects exactly
– NURBS structure: Regions that keep their tensor product nature

NURBS structure

T-spline structure
Split into

sub-regions

Image by Vibeke Skytt, SINTEF

June 30, 2008 7th International Conference on Mathematical
Methods for Curves and Surfaces

15

Evaluation on future combined Fat and Thin
multi-core chips with shared memory

• Alternative 1:
– Evaluate T-spline structures on Fat-cores
– Evaluate NURBS-structures on Thin cores

• Alternative 2:
– Convert T-structures to NURBS-structures on Fat-

cores
– Evaluate on Thin-cores

• ….
Communication between GPU and CPU on the PCI-
Express bus can be a bottleneck for this approach. Future
chips combining Thick and Thin cores better adapted.

June 30, 2008 7th International Conference on Mathematical
Methods for Curves and Surfaces

16

Subdivison algorithms

• Using the Oslo algorithm for knot insertion:
– Calculate discrete B-splines and store in a

matrix
• Use matrix products as in grid evaluation

– Take care to avoid trivial multiplications

June 30, 2008 7th International Conference on Mathematical
Methods for Curves and Surfaces

17

Intersection algorithms

• Intersections of NURBS with guarantee is
always resource consuming.

• Use the parallel resources to understand
the complexity of the problem
– Decide if a simple approach is sufficient for

finding all intersections
– Find intersection regions where more

advanced approaches necessary

June 30, 2008 7th International Conference on Mathematical
Methods for Curves and Surfaces

18

Rational cubic B-spline surface
11 x 16 coefficients

Eight singular points

Example surface self-intersection

Fairly simple parallel algorithms can detect if and where
self-intersections may be located, and their complexity

Example courtesy of think3.
Images by Vibeke Skytt, SINTEF

June 30, 2008 7th International Conference on Mathematical
Methods for Curves and Surfaces

19

Example surface self-intersection

Fairly simple parallel algorithms can detect if and where
self-intersections may be located, and their complexity

Self-intersection curve in
parameter domain

Details of 3D self-
intersection curves

June 30, 2008 7th International Conference on Mathematical
Methods for Curves and Surfaces

20

Example surface ray-casting
• Was addressed in detail in the talk

by Martin Reimers on Thursday:
Ray Casting Algebraic Surfaces using

the Frustum Form
• Autumn 2006 GPU-generation

from NVIDIA. Image size 512×512
– Real time ray-casting of algebraic

degree up to 10 to 12
– For degree 20, two to four frames a

second
• Expected significantly improved

performance on most recent
NVIDIA generation of GPUs Image by Johan Seland, SINTEF

June 30, 2008 7th International Conference on Mathematical
Methods for Curves and Surfaces

21

Conclusion

• The emerging heterogeneous
computational resources (multi-core, GPU,
Cell BE) challenge current algorithmic
approaches within CAGD,

• and have the potential of drastically
improving performance of algorithms
within CAGD

