Parallel Local search for the CVRP on the GPU

Christian Schulz, Geir Hasle, Oddvar Kloster, Atle Riise and Morten Smedsrud

SINTEF ICT

28. October 2010

Outline	Motivation	CVRP & REFs	GPU 3-opt	Summary	
●	O	000	00000000000	00	

- 1. Motivation
- 2. CVRP & REFs
- 3. Three-opt on GPU
- 4. Summary

Outline	Motivation	CVRP & REFs	GPU 3-opt	Summary
0	●	000	0000000000	00

Motivation

Vehicle Routing Problem

- Still gap between requirements and performance
- Variants of large neighborhood search, variable neighborhood search, iterated local search proven effective

Why parallelize local search

- Local search is an essential part of more advanced strategies such as metaheuristics
- Embarrassingly parallel: Moves independent from each other
- \Rightarrow Potential for significant speed up

Why GPU

- High computational power and memory bandwidth
- Cheap

Outline Motivation CVRP & REFs GPU 3-opt Summa 0 0 000 00000000000 000							
Model							

CVRP

- Given: depot & customer nodes, travelling costs, vehicle capacity, customer demands
- Wanted: Feasible route(s) with minimal length

Model

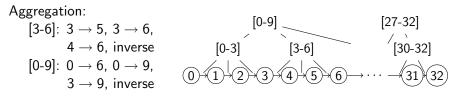
- Based on paper "A Unified Modeling and Solution Framework for Vehicle Routing and Local Search-based Metaheuristics" by Stefan Irnich, INFORMS JOURNAL ON COMPUTING, Vol. 20, No. 2, Spring 2008, pp. 270-287
- Solution represented as a giant tour
- Use of classical resource extension functions to model capacity constraint \Rightarrow Constant time move evaluation

Outline	Motivation	CVRP & REFs	GPU 3-opt	Summary
0	0	000	0000000000	00

Classical Resource extension function

- Resource vector $\mathbf{T} \in \mathbb{R}^n$
- Each node has a associated resource interval $[\mathbf{a}_i, \mathbf{b}_i]$
- A classical REF models change in resource from *i* to *j*: $\mathbf{f}_{ij}(\mathbf{T}) = \mathbf{T} + \mathbf{t}_{ij}$ or $\mathbf{f}_{ij}(\mathbf{T}) = \max(\mathbf{a}_j, \mathbf{T} + \mathbf{t}_{ij})$
- A path is feasible if for each node *i* there exists a resource vector T_i ∈ [a_i, b_i] s.th.

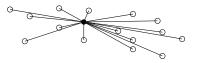
$$\mathbf{f}_{i,i+1}(\mathbf{T}_i) \leq \mathbf{T}_{i+1}$$


Outline	Motivation	CVRP & REFs	GPU 3-opt	Summary
0	0	000	0000000000	00

Classical Resource extension function

- Resource vector $\mathbf{T} \in \mathbb{R}^n$
- Each node has a associated resource interval $[\boldsymbol{a}_i, \boldsymbol{b}_i]$
- A classical REF models change in resource from *i* to *j*: $\mathbf{f}_{ij}(\mathbf{T}) = \mathbf{T} + \mathbf{t}_{ij}$ or $\mathbf{f}_{ij}(\mathbf{T}) = \max(\mathbf{a}_j, \mathbf{T} + \mathbf{t}_{ij})$
- A path is feasible if for each node *i* there exists a resource vector T_i ∈ [a_i, b_i] s.th.

$$\mathbf{f}_{i,i+1}(\mathbf{T}_i) \leq \mathbf{T}_{i+1}$$


Segment hierarchy \Rightarrow Constant time move evaluation

Outline	Motivation	CVRP & REFs	GPU 3-opt	Summary
0	O	00●	00000000000	00
		Method		

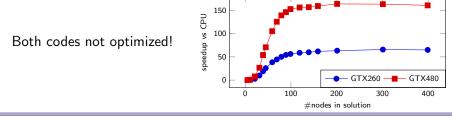
Initial solution

• Star solution: A single route to each customer

Simple method: Local search with 3-opt move on giant tour

- Remove 3 connections/edges \Rightarrow 4 parts
- \bullet Reconnect parts in all possible (new) ways \Rightarrow 7 possibilities
- \Rightarrow (7/6)(n-1)(n-2)(n-3) moves (n: #nodes in solution)

Outline	Motivation	CVRP & REFs	GPU 3-opt	Summary
0	O	000	•000000000	00

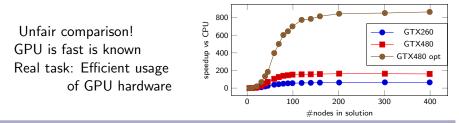

What we do on the GPU

- Once
 - Create neighborhood
- Each iteration
 - Create hierarchy
 - Evaluation of capacity constraint and length objective for each move
 - Choosing best move
- \Rightarrow Neighborhood and hierarchy live whole time on GPU

Outline	Motivation	CVRP & REFs	GPU 3-opt	Summary
0	O	000	●0000000000	00

What we do on the GPU

- Once
 - Create neighborhood
- Each iteration
 - Create hierarchy
 - Evaluation of capacity constraint and length objective for each move
 - Choosing best move
- \Rightarrow Neighborhood and hierarchy live whole time on GPU

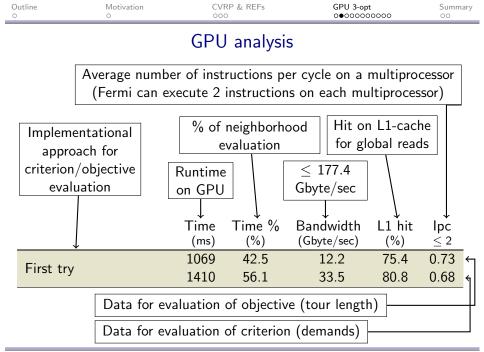


Parallel Local search for the CVRP on the GPU

Outline	Motivation	CVRP & REFs	GPU 3-opt	Summary
0	0	000	●0000000000	00

What we do on the GPU

- Once
 - Create neighborhood
- Each iteration
 - Create hierarchy
 - Evaluation of capacity constraint and length objective for each move
 - Choosing best move
- \Rightarrow Neighborhood and hierarchy live whole time on GPU



Parallel Local search for the CVRP on the GPU

Outline	Motivation	CVRP & REFs	GPU 3-opt	Summary			
0	O	000	○●○○○○○○○○	00			
GPU analysis							

Look at data for largest available solution (399 nodes)

	Time (ms)		Bandwidth (Gbyte/sec)		
First try	1069 1410	42.5 56.1	12.2 33.5	75.4 80.8	

0	utline	Motivation 0	CVRP & REFs 000		CVRP & REFs GPU 3-opt 000 0000000		Summar 00	у
			GPU	analysi	5			
			Time (ms)	Time % (%)	Bandwidth (Gbyte/sec)	L1 hit (%)	$pc \leq 2$	
	First tra		1069	42.5	12.2	75.4	0.73	
First try	First try		1410	56.1	33.5	80.8	0.68	

- Number of registers per thread limited to 32 as compile option \Rightarrow Set to 64
- Only 32 threads per block, increase
- Default 16k Cache, change to 48k

_

Οι 0	utline Motivation O	CVRP & REFs 000		GPU 3-opt 000€0000000		Summary 00		
GPU analysis								
		Time (ms)	Time % (%)	Bandwidth (Gbyte/sec)	L1 hit (%)	lpc ≤ 2		
	Eirct tru	1069	42.5	12.2	75.4	0.73		
	First try	1410	56.1	33.5	80.8	0.68		
	Max 64 registers,	475	40.8	68.8	86.2	1.64		
	128 threads, 48k Cache	657	56.3	119.6	93.3	1.39		

• Currently use of array for 4 parts in 3-opt

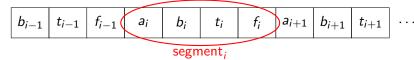
 \Rightarrow In local memory (slow)

 $\Rightarrow \mathsf{Store} \text{ in registers}$

(Registers per thread: before: 32/39, after: 32/37)

-

Outline 0	e Motivation O	CVF 000	RP & REFs	GPU 3-opt 0000●00		Summary 00		
GPU analysis								
		Time (ms)	Time % (%)	Bandwidth (Gbyte/sec)	L1 hit (%)	${\sf lpc} \le 2$		
Г	inst two	1069	42.5	12.2	75.4	0.73		
Г	First try	1410	56.1	33.5	80.8	0.68		
N	/lax 64 registers,	475	40.8	68.8	86.2	1.64		
12	28 threads, 48k Cache	657	56.3	119.6	93.3	1.39		
D)erte in registere	479	45.3	24.6	89.2	1.60		
P.	Parts in registers	544	51.1	49.6	95.5	1.60		

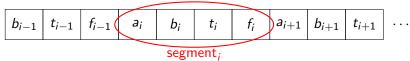

Outline	Motivation	CVRP & REFs	GPU 3-opt	Summary
0	0	000	000000000	00

Array of Structures or Structure of Arrays

A hierarchy segment has 4 entries:

- Interval [a, b]
- Cost t
- Feasible information f

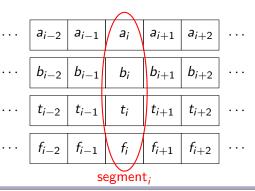
Array of Structures



. . .

Outline	Motivation	CVRP & REFs	GPU 3-opt	Summary
0	0	000	000000000	00

Array of Structures or Structure of Arrays


Array of Structures

Structure of Arrays

Normally:

- Neighboring threads access neighboring entries
- Better coalescing
- Fewer transactions
- Faster

Parallel Local search for the CVRP on the GPU

Outline O	Motivation O	CVR 000	RP & REFs	GPU 3-opt 000000●		Summai 00
		GPU	analysis	5		
		Time (ms)	Time % (%)	Bandwidth (Gbyte/sec)	L1 hit (%)	lpc ≤ 2
		1069	42.5	12.2	75.4	0.73
First try		1410	56.1	33.5	80.8	0.68
Max 64 reg	jisters,	475	40.8	68.8	86.2	1.64
128 threads	s, 48k Cache	657	56.3	119.6	93.3	1.39
Darte in ree	rictore	479	45.3	24.6	89.2	1.60
Parts in reg	Parts in registers	544	51.1	49.6	95.5	1.60
Charlest and a	f array in	479	43.6	24.6	89.2	1.60
Structure o	r arrays	584	53.3	46.7	94.1	1.62

- Most accessed hierarchy segments identical
- All data from a segment needed to compute part
- Array of structure: Data cached!

Outline 0	Motivation O	CVF 000	RP & REFs	GPU 3-opt 0000000		Summar 00		
GPU analysis								
		Time (ms)	Time % (%)	Bandwidth (Gbyte/sec)	L1 hit (%)	Ipc ≤ 2		
Einst tur.		1069	42.5	12.2	75.4	0.73		
First try		1410	56.1	33.5	80.8	0.68		
Max 64 r	egisters,	475	40.8	68.8	86.2	1.64		
128 threa	ds, 48k Cache	657	56.3	119.6	93.3	1.39		
Deute in a		479	45.3	24.6	89.2	1.60		
Parts In r	Parts in registers	544	51.1	49.6	95.5	1.60		

- So far: Complicated order to ensure access of neighboring structures (most of the times)
- But: Most accessed hierarchy segments identical, reduced coalescing due to array of structures
- \Rightarrow Use simpler order

Outline Motivation O	CVR 000	RP & REFs	GPU 3-opt 0000000		Summai 00
	GPU	analysis	5		
	Time (ms)	Time % (%)	Bandwidth (Gbyte/sec)	L1 hit (%)	lpc ≤ 2
First true	1069	42.5	12.2	75.4	0.73
First try	1410	56.1	33.5	80.8	0.68
Max 64 registers,	475	40.8	68.8	86.2	1.64
128 threads, 48k Cache	657	56.3	119.6	93.3	1.39
Darte in registers	479	45.3	24.6	89.2	1.60
Parts in registers	544	51.1	49.6	95.5	1.60
Simpler order	295	42.3	38.4	86.6	1.59
(array of structures)	369	53.0	86.2	92.7	1.54

- Modulo operations expensive
- Integer division expensive
- Both can be replaced by bitwise operations for powers of 2

GPU	analysis									
	5	GPU analysis								
Time (ms)	Time % (%)	Bandwidth (Gbyte/sec)	L1 hit (%)	lpc ≤ 2						
1069	42.5	12.2	75.4	0.73						
1410	56.1	33.5	80.8	0.68						
475	40.8	68.8	86.2	1.64						
657	56.3	119.6	93.3	1.39						
479	45.3	24.6	89.2	1.60						
544	51.1	49.6	95.5	1.60						
295	42.3	38.4	86.6	1.59						
369	53.0	86.2	92.7	1.54						
213	39.4	52.8	87.8	1.60						
295	54.5	104.1	93.1	1.52						
	(ms) 1069 1410 475 657 479 544 295 369 213	(ms)(%)106942.5141056.147540.865756.347945.354451.129542.336953.021339.4	(ms)(%)(Gbyte/sec)106942.512.2141056.133.547540.868.865756.3119.647945.324.654451.149.629542.338.436953.086.221339.452.8	(ms)(%)(Gbyte/sec)(%)106942.512.275.4141056.133.580.847540.868.886.265756.3119.693.347945.324.689.254451.149.695.529542.338.486.636953.086.292.721339.452.887.8						

- So far single precision
- What about double precision

utline Motivation O	CVR ooc	RP & REFs	GPU 3-opt 0000000		Summary 00		
GPU analysis							
	Time (ms)	Time % (%)	Bandwidth (Gbyte/sec)	L1 hit (%)	lpc ≤ 2		
	1069	42.5	12.2	75.4	0.73		
First try	1410	56.1	33.5	80.8	0.68		
Max 64 registers,	475	40.8	68.8	86.2	1.64		
128 threads, 48k Cache	657	56.3	119.6	93.3	1.39		
Danta in variatava	479	45.3	24.6	89.2	1.60		
Parts in registers	544	51.1	49.6	95.5	1.60		
Simpler order	295	42.3	38.4	86.6	1.59		
(array of structures)	369	53.0	86.2	92.7	1.54		
Modulo computations	213	39.4	52.8	87.8	1.60		
switched to base 2 op.	295	54.5	104.1	93.1	1.52		
Double precision	215	38.9	69.3	87.8	1.60		
for tour length	295	53.2	104.1	93.1	1.52		

Outline	Motivation	CVRP & REFs	GPU 3-opt	Summary
0	0	000	0000000000	•0

Summary & Future Work

Summary

- Local search suited for data parallelism
- Use of GPU can lead to significant speed ups
- Challenge to get full performance of GPU

Future Work

- Larger solutions: memory limit
- More advanced strategies such as metaheuristics
- Keep CPU and GPU busy
- Richer problems

Outline	Motivation	CVRP & REFs	GPU 3-opt	Summary
0	0	000	0000000000	0

Thank you for your attention!