
Evaluating Domain-Specific Modelling Solutions

Parastoo Mohagheghi, Øystein Haugen

SINTEF, Forskningsveien 1, Oslo, Norway
{parastoo.mohagheghi, oystein.haugen}@sintef.no

Abstr act. This paper presents criteria and evaluation methods for evaluating
domain-specific modelling (DSM) solutions based on analysing state of the art
and experiences of developing and evaluating DSM solutions in research
projects. The state-of-the-art analysis returned several requirements regarding
the quality of domain-specific modelling languages and tools developed based
on them that are classified based on the identified stakeholders. The
stakeholders are those who develop and those who use a DSM solution, the
intended domain and purposes with developing a DSM solution as defined by
domain experts, software engineering concerns, integration with other
languages or tools, and the quality of artefacts to be modelled or generated.
Both quantitative and qualitative approaches may be applied for evaluating
DSM solutions based on the development stage and requirements. There is a
clear need for a process that supports evaluating the quality of DSM solutions
and this research contributes to the definition of such process.

Keywords: domain-specific language, modelling, assessment, quality, case
study

1 Introduction

General-purpose modelling languages like UML are already widely used in industry,
but the experience of many cases shows that learning and adopting them to specific
contexts is difficult, such that they are not always the best fit for solving special
problems. This is the reason why domain-specific modelling is receiving attention by
industry, also because the domain-specific modelling environments are getting more
powerful and mature.

A Domain-Specific Language (DSL) is typically a small, highly focused language
used to model and solve some clearly identifiable problems in a domain; in contrast to
a General-Purpose Language (GPL) that is supposed to be useful for multiple
domains. DSLs may operate stand alone, be called at run-time from other programs or
be embedded into other applications to do specific tasks. DSLs may be designed from
scratch or by extending a base language (e.g., defining profiles in UML). Mernik et al.
discuss different approaches to the development of DSLs and their advantages and
disadvantages and also write that DSL development is hard, requiring both domain
knowledge and language development expertise [9]. Besides, it is often far from
evident that a DSL might be useful or that developing one might be worthwhile.

Several domain-specific modelling languages (DSML) and editors and
transformations for modelling, generation and other purposes such as simulation
(generally referred as DSM solutions) have been developed in the context of four
industrial partners involved in the European IST project MODELPLEX1.
MODELPLEX aimed at applying Model-Driven Engineering (MDE) techniques on
scenarios of complex software systems. The industrial domains here were enterprise
business applications, telecommunication, aerospace crisis management systems and
data intensive geological systems. Examples of DSM solutions developed in
MODELPLEX are a network modelling tool and DSMLs for security and
performance engineering. Also a DSM solution for specifying signalling at railway
stations and generating source code has been developed in the ITEA-MoSiS2

• Is the DSM solution easily usable by the intended domain experts?

 project.
All of these DSM solutions are meant to be used by domain experts and thus should
be understandable by these experts. Some questions that arose regarding the quality of
these DSM solutions were:

• Does the DSM solution provide appropriate built-in abstractions and notations for
building applications in the specific domain?

• Does the DSM solution serve the purpose of the development such as generating
relevant artefacts?

• Is the DSM solution maintainable and evolvable when the domain evolves?
• Is the DSML small enough, leaving out language features that do not contribute to

the purpose of the language?
In order to apply a systematic approach for evaluating DSM solutions, we

performed a state-of-the-art analysis on evaluating languages used in software
development in general and DSLs in particular. The analysis identified several
characteristics of DSLs and DSMLs that showed to be relevant for our work. We also
detected a few examples of evaluation. This paper summarizes the results of this
analysis, discusses experiences of evaluating DSM solutions in the research projects
MODELPLEX and MoSiS, and proposes directions for future work.

The remainder of this paper is organized as follows. Section 2 presents the
identified evaluation criteria and a classification of them while Section 3 focuses on
evaluation methods. Section 4 is the discussion of two case studies. Finally, the paper
is concluded in Section 5 and future work is discussed.

2 Criter ia for Evaluating Domain-Specific Modelling Languages

Related work can be discussed in several dimensions: evaluating languages in
general, evaluating modelling languages, and evaluating domain-specific languages.
We focus on the last two while some general characteristics of languages relevant for
our discussion are also included.

1 MODELPLEX- MODelling solutions for comPLEX software systems (2006-2010);

http://www.modelplex.org/
2 MoSiS- Model-driven development of highly configurable embedded Software intensive

Systems (2007-2010); http://itea-mosis.org/modules/wikimod/index.php?page=WikiHome

Howatt proposes four classes of criteria for evaluating languages [4]:
• Language Design and Implementation Criteria: Is the language formally defined?

Can a fast, compact compiler be written to generate efficient, compact code?
• Human Factors Criteria: These criteria are used to assess the human interface or

the user-friendliness of a language.
• Software Engineering Criteria: These assess those aspects of a language that

enhance the engineering of good software; for example supporting portability,
reliability and maintainability of the software.

• Application Domain Criteria: These criteria assess how well a language supports
programming for specific applications.
Kennedy et al. add two other criteria to this list [7]: The time and effort required to

write, debug, and tune the code, and the performance of the code that results.
Lindland et al. describe their framework for evaluating conceptual models in [8].

Conceptual models are models developed in early phases of development. The
framework defines three quality goals for models:
• Syntactic quality is how well the model corresponds to the language,
• Semantic quality is how well the model corresponds to the domain,
• Pragmatic quality is how well the model corresponds to its audience interpretation.

The Lindland et al.’s framework distinguishes between quality goals and means to
achieve the goals. For example, having a formal syntax helps to achieve syntactic
quality.

Grossman et al. use the following criteria and those identified in [1] for evaluating
UML in [2]. The criteria are however mostly relevant for DSLs as well:
• Having right data which are necessary constructs and their semantics.

Completeness is added in [15], which is capturing all concepts.
• Accuracy of concepts to present the developed system and helping in designing it.
• Flexibility to model different systems and ease of change.
• Understandability in the ease of read and conveying the meaning of the underlying

system.
• Level of detail and needed training.

Paige et al. have also identified some principles in the design of modelling
languages that may be used as evaluation criteria for evaluation DSMLs [11].
Examples are:
• Simplicity: no unnecessary complexity, including being small and memorable.
• Uniqueness or orthogonality: no redundant or overlapping features.
• Consistency: language features cooperate to meet language design goals.
• Seamlessness: mapping concepts in the problem space to implementations in the

solution space, and the same abstractions can be used throughout development.
• Space economy: concise models are produced.

An analysis of the identified characteristics shows that these are defined from
multiple viewpoints by different stakeholders. Based on the covered literature, we
have identified the stakeholders interested in a DSM solution and classified the
identified criteria according to their interests as depicted in Fig.1.

DSM
Solution

Tool
Developers

(TD)

Quality Exper ts
(QE)

End Users
(EU)

Software
Engineers (SE)

Domain Exper ts
(DE)

Other
languages /

tools (O)

ease of implementing
language features /
generating compilers,
unambiguous, formalism

ease of learning/understanding
models and other usability
concerns, increased
productivity, effort needed to
model, debug or generate
artefacts

debugger,
library,
intuitive
UI

domain / system
appropriateness,
consistency, orthogonality,
accurateness,
cost-effectiveness,
specific requirements

evolution,
scalability,
reusability,
modularity

reliability, maintainability,
completeness, correctness,
complexity, performance
of generated artefacts

mappings, metamodels,
integration, standards,
extensibility,
exchanging artefacts,
interoperability

Fig. 1. Evaluating a DSM solution by different stakeholders

The stakeholders are defined below and examples of criteria of interest for them
are discussed:
• Tool Developers (TD) are those developing the DSML and related tools. Examples

of relevant criteria for them are those identified by Howatt as language design and
implementation criteria and application domain criteria [4].

• End-Users (EU) are those using the DSM solution for modelling or generating
artefacts. Usability and ease of learning are examples of criteria relevant for them.
The link between TD and EU suggests that providing some support by tool
developers such as including a useful library, debugger and an intuitive User
Interface (UI) helps improving end-users’ experience with the DSM solution.

• Domain Experts (DE) represent the domain of interest and the purpose of a DSM
solution. In general, a DSML should include appropriate domain concepts and
abstractions [9] and be complete and accurate. A DSM solution may be developed
for multiple purposes such as programming directly in the terms used by domain
experts and thus reducing the gap between domain experts and software
developers, automating software development or improved quality of the code. The
evaluation should therefore focus on the purpose of a DSM solution.

• Software Engineers (SE) are interested in the characteristics of the DSM solution
that lead to developing good software. Examples of their concerns are reuse of
models and evolvability of the DSM solution. Applying some software engineering
practices also improve the quality of models and generated artefacts.

• Quality experts (QE) are interested in the quality of models or artefacts generated
from models. These may have requirements regarding completeness and
performance of the generated code, its completeness and even understandability of
models and generated artefacts for maintenance.

• Other languages / tools (O) cover requirements for interoperability with other tools
or languages, mappings between languages or tools, building extensions, and
compliance to standards if required. There are several approaches for developing a
DSML (such as developing from scratch or extending an existing language) and
the O-characteristics should be considered when selecting the approach.
The model depicted in Fig.1 allows classifying identified criteria in a meaningful

way and is applied when selecting evaluation criteria in the case studies discussed in
Section 4. The identified evaluation methods are discussed in the next section.

3 Evaluation Methods

To perform the evaluation of a DSM solution, one may take advantage of quantitative
or qualitative approaches. For quantitative evaluation, some identified metrics are:
• Time and effort required to model, debug, and generate artefacts (from [7]). We

may also add time and effort to understand models. One may compare time and
effort when using a DSM solution with time and effort without using a DSM
solution in a controlled experiment as done in [5].

• Performance of the code that results from models (from [7]).
• Collecting metrics from models such as the number of model elements. Model

metrics are discussed in [10]. A large amount of metrics can be defined on
models while identifying useful model metrics is a challenge.

• Usability metrics are discussed in [14]. Seffah et al define usability as “whether a
software product enables a particular set of users to achieve specific goals in a
specific context of use” and covers efficiency, productivity, satisfaction,
learnability, safety and usefulness for solving problems. Some proposed metrics
are time to learn or perform tasks, user steps to perform a task and layout
appropriateness.

• Number of concepts and the relations between these concepts in the DSML [13].
This metric is on the metamodel of languages and assumes that languages with
more concepts and relations are more complex, such as UML. Since DSMLs are
usually small languages, this count will probably not return interesting
information.

• Evaluating metamodel’s understandability by performing controlled experiments
as discussed in [12]. Both syntactic understanding which refers to the constructs
of the metamodels and relationships (for example, how many attributes describe
an employee) and semantic understanding that assess the understanding of
contents (for example whether every employee has a unique employee number)
are of interest to assess.

• Performing a survey among users can generate quantitative data.

Qualitative approaches cover case studies (including comparative ones that
compare using a DSM solution with other approaches), analysis of a language and the
DSM solution by experts for various characteristics, and monitoring or interviewing
users.

A DSM solution may be evaluated both quantitatively and qualitatively. The
important issue is to decide which approach is best in which phase of the development
lifecycle. The ISO 9126 standard divides metrics in internal (design time), external
and quality in use metrics which indicates that properties should be measured in
different stages and some design-time measures can be used as prediction of run-time
characteristics. Seffah et al. discuss predictive and testing metrics where predictive
metrics may provide an estimate of system usability [14]. Testing metrics are
collected when a software product is in use. Kelly and Tolvanen recommend an
incremental and test-driven approach for developing DSLs [6]. For a DSM solution,
there is often a prototyping phase and a usage phase. In the prototyping phase,
evaluation is often done by language experts and pilot users who try the language on
small cases. We developed a set of questions for this phase based on the requirements
of case studies that is presented in the next section. The evaluation in the prototyping
stage is often qualitative. In the usage stage, more users are involved which allows
running experiments or collecting opinion of users in a survey.

4 Case Studies

4.1 Evaluating the Network Modelling Tool

The first case discussed here covers developing a network modelling tool in
Telefónica using Eclipse GMF. The experiences are discussed in detail in [3]. The key
driver for this DSM solution is the recognition that it is becoming increasingly
difficult to manage the complexity and size of modern telecom networks. By
Telefónica’s requirement, the Network DSML had to include specific elements
required for modelling and also allow modelling at different levels of abstraction, at
least showing the internal of devices, how devices connect to each other and higher-
level interactions and roles of whole sub-networks in the deployment of a service.
From these models, a wide range of artefacts could be generated such as device
configuration specifications.

Rather than developing a metamodel from scratch, a metamodel based on Common
Information Model (CIM)3

3 Common Information Model Website, http://www.dmtf.org/standards/cim

 was used in this development. CIM was relevant as it is
the underlying model in many products dealing with management and instrumentation
of network equipment. Finally, there were a number of generic features which were
required in order to meet the needs of end-users of the tool. These included: a) a
visual, user-friendly interface; b) scalability – enabling thousands of model elements
to be managed; c) interoperability with other tools and standards; d) flexibility –
enabling the rapid adaptation of the tool to support new abstractions (preferably done
by the engineers themselves); and e) support for model validation and checking.

The evaluation of the DSM solution was performed by answering a set of questions
defined by a team of researchers and domain experts based on the requirements. The
feedback by a team of pilot users is based on using the tool for modelling and the
generator to produce the required artefacts in some example scenarios. The set of
questions from various viewpoints and the results of evaluation are summarized in
Table 1.

Table 1. Evaluating the network modelling solution

Stake
holder

Question Results

EU Is the DSML tool easy to
use? Is the UI acceptable?

Not enough, largely due to the sheer size of the
metamodel which resulted in having to add a large
number of connection and node tools.

EU Do you intend to use the
DSM solution in future
projects and invest on
making a more usable
version?

We would like to use but there are several barriers:
The DSML should be smaller and more focused,
other tools than GMF for developing it should be
evaluated and the DSM solution should be used in a
series of projects to investigate Return-On-
Investment.

EU Does the DSM solution
affect the performance of
users?

Yes, the DSM solution has the potential to improve
productivity and quality but additional work and
training are needed to achieve those objectives.

EU Do we think that using the
DSM solution improves our
reputation and image as
innovative?

Yes, the image and reputation of innovation can be
greatly improved by the use of tools and
approaches such as the one presented herein.

SE Is the DSM solution
scalable?

GMF does not scale well because of some
shortcomings in the implementation.

SE Is the DSM solution
flexible?

The same applies to flexibility. A more dynamic,
metamodel-driven tool generation approach is
needed.

SE Does the DSM solution
provide reuse possibilities?

Modelling at different abstraction levels is applied
to increase reusability of elements.

DE Is the CIM metamodel
suitable for modelling
network management in
Telefónica?

Yes, they are suitable for this purpose but need
constant revision and extension to keep up with the
evolution of the domain and the standard of
reference (CIM).

O Is the DSML compatible
with the standards?

Yes, using CIM provides such compatibility but
brings problems due to its size.

O Is the DSML compatible
with other tools?

Many tools used in the network management
domain are based on CIM, but as the DSML
transforms the CIM metamodel into EMF, this
leads to compatibility issues with CIM-based off-
the-shelf products that need to be resolved.

One of the most challenging aspects of this DSM solution was the large number of

modelling abstractions and relationships in the CIM model. Another challenge was
that of making the tool as usable as possible, which involved changing the tooling
definition. We experienced that developing a DSML in an environment such as
Eclipse required high language and tool expertise, which make developing DSM

solutions out of reach of domain experts with some IT expertise, and the resulting
DSM solution is not changeable or flexible enough. Changes to the metamodel which
happen frequently in the domain required considerable effort in updating the tool and
the developed models became corrupted due to changes.

4.2 Evaluating the Train Control Language

The Train Control Language (TCL) is a DSML for specifying the signalling at
railway stations and generating interlocking source code that is used in allocating
routes to trains. Using TCL has several benefits compared with the current
development process. In the current workflow, errors in the various steps are possible
due to the manual procedure. Thus validation of each step is required to ensure the
safety of the system. Using TCL most of these steps are automated. By assuring that
TCL and the generators are correctly implemented, consistency between the
representations can be guaranteed. Therefore some of the validation steps can be
eliminated. Several constraints are defined to assure that stations are correctly created,
and the editor makes sure that every necessary condition is taken into consideration. If
the constraints are properly defined, the TCL tool may guarantee completeness by
requiring all necessary elements. Other benefits are implementing a target
environment that includes generators such as code generators and analysis tool that
prevent or detect inconsistencies or errors in models. Together these benefits lead to
significant productivity improvements.

The first step in evaluating the TCL has been identifying stakeholders and their
reasons for developing a DSM solution. We identified the stakeholders to be: a) tool
developers who have developed the metamodel and supporting tools; b) signalling
engineers who are the end-users that will model the stations; c) station deployers that
will generate required source code; d) testers who will generate test cases from the
models; and e) railway authorities who are the standardization organs and national
authorities that define safety requirements. The second step in evaluation has been
identifying quality requirements of these stakeholders. Finally, we have also
identified evaluation method for each requirement, and how a requirement can be
achieved by “means” that should be applied. Examples of quality requirements,
means and evaluation methods are depicted in Table 2.

Table 2. Examples of requirements for evaluating TCL, means and evaluation methods

Stake
holder

Requirement Means Evaluation Method

EU TCL models should
be similar to
existing diagrams.

Walking through
existing examples
together with Station
deployers.

Performing visual comparison
of models developed with the
first version of TCL with
existing diagrams.

EU Small stations
should be covered
completely.

Small stations are
identified and their
models are reviewed.

Models developed with the first
version of TCL are compared
with existing diagrams.

Stake
holder

Requirement Means Evaluation Method

EU TCL and tools
should prevent
specifying unsafe
models.

Adding well-
formedness rules to the
language. Also adding
constraints to the TCL
specifications.

Validate the constraints by
inspections and running test
cases.

O Models are
compliant with
safety standards.

Add constraints to the
TCL specifications.
Also, integrate the
safety standards in the
necessary steps in the
development process.

Validate the constraints and
inspect the development
process.

The actual evaluation of the language as identified by evaluation methods remains

to be performed. At this stage, the evaluation work has helped the involved
stakeholders to clarify and communicate their intentions with the DSM solution, the
implemented features of the solution (defined as means) and relating requirements to
features.

5 Conclusions and Future Work

The quality of domain-specific languages (DSLs) and modelling solutions has been
subject of some research by now. Based on a state–of-the-art analysis and experiences
with developing domain-specific modelling (DSM) solutions in research projects, we
have identified several evaluation criteria. These are currently classified according to
the stakeholders interested in them. We have also identified evaluation methods and
examples of evaluation. All these are included in a framework for evaluating DSM
solutions which is under development and should include examples of best practices
or means as well.

Based on the experiences so far, we can summarize that some characteristics are
especially important for DSLs. An important criterion is domain-appropriateness. A
DSL must be powerful enough to capture the major domain concepts and should
match the mental representation of the domain. DSM solutions are typically used for
prediction or simulation, as well as code generation, test generation and execution.
Thus the language should be formal and accurate. Any DSL with a diagrammatical
syntax should have proper layout, and the there is often a need for integrating DSLs
with other ones. Performing a systematic review of published literature for identifying
all related research will contribute to this work.

We have also performed several case studies on evaluating DSM solutions in the
early phase of development using a questionnaire. We presented two cases of
evaluation in this paper. Relating evaluation criteria to evaluation methods is also
subject for future work.

When discussing DSM solutions, it is of key importance to focus on the needs of
an often narrow application domain and the actual purposes of the DSM solution. The
development of a DSM solution is iterative and so is the assessment. Having the

requirements in mind, there is a clear need for a process that supports defining and
evaluating the quality of domain-specific solutions. We have identified some steps of
this process as identifying stakeholders and requirements of the DSM solutions,
identifying means to achieve the requirements, and identifying evaluation methods.
We will continue work on this process in future work.

Acknowledgments. This work has been supported by the MODELPLEX project
(IST-FP6-2006 Contract No. 34081) and the MoSiS project ITEA 2 – ip06035.

References

1. Goodhue, D.L.: Development and Measurement Validity of a Task Technology Fit
Instrument for User Evaluations of Information Systems. Decision Sciences 29 (1),
pp.105—138 (1998)

2. Grossman, M., Aronson, J.E., McCarthy, R.V.: Does UML Make the Grade? Insights from
the Software Development Community. Information and Software Technology 47, pp.
383—397 (2005)

3. Evans, A., Fernández, M.A., Mohagheghi, P.: Experiences of Developing a Network
Modelling Tool Using the Eclipse Environment. In ECMDA-FA 2009, LNCS, vol. 5562,
pp. 301–312, Springer (2009)

4. Howatt, J.: A Project-Based Approach to Programming Language Evolution. URL
http://academic.luther.edu/~howaja01/v/lang.pdf, visited in August 2007 (2001)

5. Kärnä, J., Tolvanen, J.P., Kelly, S.: Evaluating the Use of Domain-Specific Modeling in
Practice. In 9th OOPSLA Workshop on Domain-Specific Modeling (2009)

6. Kelly, S., Tolvanen, J-P: Domain-Specific Modeling- Enabling Full Code Generation. IEEE
Computer Society Publications (2008)

7. Kennedy, K., Koelbel, C., Schreiber, R.: Defining and Measuring the Productivity of
Programming Languages. In: International Journal of High Performance Computing
Applications, Volume 18, Issue 4, pp. 441—448 (2004)

8. Lindland, O.I., Sindre, G., Sølvberg, A.: Understanding Quality in Conceptual Modelling.
IEEE Software 11 (2), pp. 42—49 (1994)

9. Mernik, M., Heering, J., Sloane, A.M.: When and How to Develop Domain-Specific
Languages. ACM Computing Surveys 37(4), pp. 316—344 (2005)

10. Mohagheghi, P., Dehlen, V.: Existing Model Metrics and Relations to Model Quality. In
2009 ICSE Workshop on Software Quality (WoSQ’09), IEEE CS, pp. 39-45 (2009)

11. Paige, R.F., Ostroff, J.S., Brooke, P.J.: Principles for Modeling Language Design.
Information and Software Technology 42, pp. 665--675 (2000)

12. Patig, S.: Preparing Meta-Analysis of Metamodel Understandability. In Workshop on
Empirical Studies of Model-Driven Engineering (ESMDE’08), pp. 11--20 (2008)

13. Rossi, M., Brinkkemper, S.: Complexity Metrics for System Development Methods and
Techniques. Information Systems 21(2), pp.209—227 (1996)

14. Seffah, A., Donyaee, M., Kline, R.B., Padda, H.K.: Usability Measurement and Metrics: a
Consolidated Model. Software Quality Journal (14), pp. 159--178 (2006)

15. Teeuw, W.B., van den Berg, H.: On the Quality of Conceptual Models. URL
http://osm7.cs.byu.edu/ER97/workshop4/tvdb.html (1997)

