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Abstract—This paper investigates the controllability and
stability properties of a planar snake robot influenced by
anisotropic viscous ground friction. An analysis of the model
shows that any asymptotically stabilizing control law for the
robot to an equilibrium point must be time-varying. Further-
more, the analysis shows that the snake robot (with four links)
is strongly accessible from almost any equilibrium point, except
for certain singular configurations, and that the robot does not
satisfy sufficient conditions for small-time local controllability
(STLC). Averaging theory is employed to model the average
velocity of the snake robot during lateral undulation. It is proven
that the average velocity will converge exponentially fast to a
steady state velocity, and an analytical expression for calculating
the steady state velocity of the robot with an arbitrary number
of links is presented. The paper presents simulation results that
support the theoretical findings.

I. INTRODUCTION

Inspired by biological snakes, snake robots carry the
potential of meeting the growing need for robotic mobility
in challenging environments. Snake robots consist of serially
connected modules capable of bending in one or more
planes. The many degrees of freedom of snake robots make
them difficult to control, but provide traversability in irreg-
ular environments that surpasses the mobility of the more
conventional wheeled, tracked and legged forms of robotic
mobility. Research on snake robots has been conducted
for several decades. However, our understanding of snake
locomotion so far is for the most part based on empirical
studies of biological snakes and simulation-based synthesis
of relationships between parameters of the snake robot. This
paper is an attempt to contribute to the understanding of
snake robots by employing nonlinear system analysis tools
for investigating fundamental properties of their dynamics.
There are several reported works aimed at analysing and

understanding snake locomotion. Gray [1] conducted empiri-
cal and analytical studies of snake locomotion already in the
1940s. Hirose [2] studied biological snakes and developed
mathematical relationships characterizing their motion, such
as the serpenoid curve. Ostrowski [3] studied the control-
lability properties of a wheeled snake robot on a purely
kinematic level. Saito et al. [4] optimized the parameters
of the serpenoid curve based on simulations of a planar
snake robot. Hicks [5] investigated general requirements
for the propulsion of a three-linked snake robot. Nilsson
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[6] employed energy arguments to analyse planar snake
locomotion with isotropic friction. Transeth et al. [7] proved
that the velocity of a planar snake robot is bounded. Li et
al. [8] studied the controllability of the joint motion of a
snake robot. The authors have previously studied the stability
properties of snake locomotion based on Poincaré maps and
investigated the controllability properties of a planar snake
robot influenced by anisotropic friction [9].
Research on robotic fish and eel-like mechanisms is

relevant to research on snake robots since these mechanisms
are very similar. The works in [10]–[12] investigate the
controllability of various fish-like mechanisms, synthesize
gaits for translational and rotational motion based on Lie
bracket calculations, and propose controllers for tracking
straight and curved trajectories.
The purpose of this paper is to investigate the control-

lability and stability properties of planar snake locomotion
based on a simplified model recently proposed by the authors
[13]. The paper has two contributions. The first contribution
is an analysis that shows that any asymptotically stabilizing
feedback control law for the snake robot to an equilibrium
point must be time-varying. Furthermore, the analysis shows
that the snake robot is strongly accessible from almost any
equilibrium point, except for certain singular configurations,
and that the robot does not satisfy sufficient conditions
for small-time local controllability (STLC). The second
contribution is the use of averaging theory to investigate
the velocity dynamics of the snake robot during lateral
undulation. The average velocity of the snake robot is shown
to converge exponentially fast to a steady state velocity,
and an analytical expression for calculating the steady state
velocity is presented as a function of the various controller
parameters. To the authors’ best knowledge, this is the
first published formal proof that a wheel-less snake robot
with anisotropic ground friction properties achieves forward
propulsion when it moves by lateral undulation. The paper
presents simulation results that support the theoretical find-
ings.
The paper is organized as follows. Section II presents the

model of the snake robot. Section III investigates the sta-
bilizability properties of the robot, while the controllability
properties are investigated in Section IV. Section V presents
a controller for lateral undulation. Section VI analyses the
stability of the velocity dynamics based on averaging theory.
Section VII presents simulation results. Finally, Section VIII
presents concluding remarks.

II. THE MODEL OF THE SNAKE ROBOT

This section summarizes the simplified model of a planar
snake robot which is described in detail in [13].



Fig. 1. The revolute joints of the snake robot are modelled as prismatic
joints that displace the CM of each link transversal to the direction of
motion.

A. Overview of the model

We consider a planar snake robot with links intercon-
nected by active revolute joints. The surface beneath the
robot is flat and horizontal, and each link is subjected to a
viscous ground friction force. The body shape changes of the
robot induce friction forces on the links, which subsequently
produce translational and rotational motion of the robot. A
simplified model that captures only the most essential part
of the snake robot dynamics is proposed in [13]. The idea
behind this model is illustrated in Fig. 1 and motivated by
an analysis presented in [13], which shows that:
• The forward motion of a planar snake robot is produced
by the link velocity components that are normal to the
forward direction.

• The change in body shape during forward locomotion
primarily consists of relative displacements of the CM
of the links normal to the forward direction of motion.

Based on these two properties, the simplified model
describes the body shape changes of a snake robot as linear
displacements of the links with respect to each other instead
of rotational displacements. The linear displacements occur
normal to the forward direction of motion and produce
friction forces that propel the robot forward. This essentially
means that the revolute joints of the snake robot are modelled
as prismatic (translational) joints and that the rotational mo-
tion of the links during body shape changes is disregarded.
However, the model still captures the effect of the rotational
link motion during body shape changes, which is a linear
displacement of the CM of the links normal to the forward
direction of motion.
A model of the snake robot is summarized in the follow-

ing subsections in terms of the symbols illustrated in Fig. 2
and Fig. 3.

B. Kinematics of the snake robot

The snake robot has  links of length  and mass 
interconnected by −1 prismatic joints. The prismatic joints
control the normal direction distance between the links. As
seen in Fig. 3, the normal direction distance from link  to
link + 1 is denoted by  and represents the coordinate of
joint . The positive direction of  is along the  axis.
The snake robot moves in the horizontal plane and has

 + 2 degrees of freedom. The motion is defined with
respect to the two coordinate frames illustrated in Fig. 2.

Fig. 2. Illustration of the two coordinate frames employed in the model.
The global - frame is fixed. The - frame is always aligned with the
snake robot.

Fig. 3. Symbols characterizing the kinematics and dynamics of the snake
robot.

The - frame is the fixed global frame. The - frame is
always aligned with the snake robot, i.e. the  and  axis
always point in the tangential and normal direction of the
robot, respectively. The origin of both frames are fixed and
coincide.
As seen in Fig. 2 and Fig. 3, the global frame position

of the CM (center of mass) of the snake robot is denoted by
(  ) ∈ R2, while the - frame position is denoted by
(  ) ∈ R2. The global frame orientation is denoted by
 ∈ R and is expressed with respect to the global  axis with
counterclockwise positive direction. The angle between the
global  axis and the  axis is also  since the - frame
is always aligned with the snake robot. The relationship
between the - frame and the global frame position is given
by

 =  cos  +  sin  (1)

 = − sin  +  cos  (2)

C. Equations of motion

The state vector of the model is chosen as

x = (φ   v   ) ∈ R2+4 (3)

where φ =
¡
1 · · ·  −1

¢ ∈ R−1 are the joint coordi-
nates,  ∈ R is the absolute orientation, (  ) ∈ R2 is
the - frame position of the CM, v = φ̇ ∈ R−1 are
the joint velocities,  = ̇ ∈ R is the angular velocity, and
(  ) ∈ R2 is the tangential and normal direction velocity
of the snake robot.
As illustrated in Fig. 3, each link is influenced by a ground

friction force (acting on the CM of the link) and constraint



forces that hold the joints together. A model of these forces
is presented in [13], where it is also shown that the complete
model of the snake robot can be written as

φ̇ = v (4a)

̇ =  (4b)

̇ =  +  (4c)

̇ =  −  (4d)

v̇ = −1

v +

2


AD

φ+
1


DDu (4e)

̇ = −3 + 4

 − 1e
φ (4f)

̇ = −1

 +

22


e

φ− 2


φADv (4g)

̇ = −1

 +

22


e

φ (4h)

where u ∈ R−1 are the actuator forces at the joints and
e =

£
1   1

¤ ∈ R−1,
D =D

³
DD

´−1
∈ R×(−1),

A =

⎡⎢⎣1 1
 

 
1 1

⎤⎥⎦D =

⎡⎢⎣1 −1
 

 
1 −1

⎤⎥⎦ 
whereA ∈ R(−1)× andD ∈ R(−1)× . The parameters
1, 2, 3, and 4 are scalar friction coefficients that char-
acterize the external forces acting on the snake robot. More
specifically, the coefficient 1 determines the magnitude of
the friction forces resisting the link motion, 2 determines the
magnitude of the induced friction forces that propel the snake
robot forward, 3 determines the friction torque opposing the
rotation of the snake robot, while 4 determines the induced
torque that rotates the snake robot (this torque is induced
when the forward direction velocity and the average of the
joint coordinates are nonzero). The role of each coefficient
is explained in more detail in [13].
We will assume that the actuator forces are always set

according to the linearizing control law

u = 
³
DD

´−1 ³
u+

1


φ̇− 2


AD

φ
´

(5)

where u ∈ R−1 is a new set of control inputs. This control
law transforms the joint dynamics (4e) into v̇ = u.

III. STABILIZABILITY ANALYSIS OF THE SNAKE ROBOT

This section presents and proves a fundamental theo-
rem concerning the properties of an asymptotically stabi-
lizing control law for the snake robot to any equilibrium
point x = (φ    


v = 0  = 0  = 0  = 0).

A well-known result by Brockett [14] states that a necessary
condition for the existence of a time-invariant (i.e. not explic-
itly dependent on time) continuous state feedback law, u =
u (x), that makes x asymptotically stable, is that the image
of the mapping (xu) 7→ ẋ contains some neighbourhood
of ẋ = 0. A result by Coron and Rosier [15] states that
a control system that can be asymptotically stabilized (in
the Filippov sense [15]) by a time-invariant discontinuous
state feedback law can be asymptotically stabilized by a
time-varying continuous state feedback law. If, moreover, the

control system is affine (i.e. linear with respect to the control
input), then it can be asymptotically stabilized by a time-
invariant continuous state feedback law. We now employ
these results to prove the following fundamental result:
Proposition 1: An asymptotically stabilizing feedback

control law for a planar snake robot described by (4) to
any equilibrium point must be time-varying, i.e. of the form
u = u (x ).

Proof: The result by Brockett [14] states that
the mapping (xu) 7→ ẋ must map an arbitrary
neighbourhood of x onto a neighbourhood of
ẋ = 0. For this to be true, points of the form ẋ =³
φ̇=0 ̇=0 ̇=0 ̇=0 v̇=0 ̇=0 ̇= ̇=0

´
must be contained in this mapping for some arbitrary
 6= 0 because points of this form are contained in every
neighbourhood of ẋ = 0. However, these points do not
exist for the model (4) because ̇ = 0 6=  when all the
other derivatives of the state vector are zero. Hence, the
snake robot cannot be asymptotically stabilized to x by
a time-invariant continuous state feedback law. Moreover,
since the model is affine and cannot be asymptotically
stabilized by a time-invariant continuous state feedback law,
the result by Coron and Rosier [15] proves that the system
can neither be asymptotically stabilized by a time-invariant
discontinuous state feedback law. We can therefore conclude
that an asymptotically stabilizing control law for the snake
robot to any equilibrium point must be time-varying, i.e. of
the form u = u (x ).
Remark 2: The authors have previously presented a sim-

ilar stabilizability analysis of a snake robot modelled by
a more complex model [9], which produced an identical
result as in Proposition 1. This supports the conjecture that
the simplified model employed in this paper captures the
essential part of the dynamics of planar snake locomotion.

IV. CONTROLLABILITY ANALYSIS OF THE SNAKE ROBOT

This section presents a controllability analysis of the
snake robot.

A. Controllability of the linearized system

We assume that the joint dynamics has been linearized
by the control law (5) so that v̇ = u. This enables us to
rewrite the model of the snake robot (4) in the standard form
of a control affine system as

ẋ = f(x) +

−1X
=1

gu (6)

where f (x) contains all the terms from (4) with u =
0(−1)×1, u is the th element of the control input vector
u ∈ R−1, and

g =

⎡⎣0(+2)×1e
03×1

⎤⎦ (7)

where e denotes the th standard basis vector in R−1 (the
th column of I−1). The linearization of the model (6)
about an equilibrium point x can be written as

ż = Az + Bu (8)



where z = x − x, A = ()



¯̄̄

∈ R(2+4)×(2+4),

and B = £g1 · · · g−1
¤ ∈ R(2+4)×(−1). The con-

trollability matrix of the linearized system is given by
R =

£B AB A2B A2+3B¤ and does not have full
rank since it can be verified that rank (R) = 2 + 1.
The linearized model of the snake robot is therefore not
controllable since the Kalman rank condition [16] is not
satisfied. To study the controllability of the snake robot, we
must therefore consider nonlinear controllability concepts.

B. Controllability of the nonlinear system

In the following, we will investigate the controllability
of the snake robot in terms of strong accessibility [16]
and small-time local controllability (STLC) [17]. Strong
accessibility means that the dimension of the space that the
system can reach in exactly time  for any   0 is equal
to the dimension of the state space. Accessibility does not
imply controllability, but is a necessary (but not sufficient)
condition for small-time local controllability (STLC). STLC
is a stronger property than controllability and implies that
the control input can steer the system in any direction
in an arbitrarily small amount of time. For second-order
systems, STLC is only possible from equilibrium states. Only
sufficient (not necessary) conditions for STLC exist.
We assume that the snake robot consists of  = 4 links

interconnected by  −1 = 3 joints. The model of this robot
will have 2 + 4 = 12 states. We argue that the following
controllability results will also be valid for a snake robot
with more links. In particular, a snake robot with   4
links can behave as a snake robot with  = 4 links by
fixing ( − 4) joint coordinates at zero and allowing the
remaining two joints to move. By calculating Lie brackets
of the system vector fields in (6), we can construct the
following accessibility algebra [16] of the system evaluated
at an equilibrium point x:

∆ (x) =
£
∆1 · · · ∆15

¤

∈ R12×15 (9)

where
∆1 = g1∆2 = g2∆3 = g3

∆4 = [f  g1] ∆5 = [f  g2] ∆6 = [f g3] 
∆7 = [f  [f g1]] ∆8 = [f  [f  [f  g1]]] 

∆9 = [f  [f  [f  [f  g1]]]] 
∆10 = [g1 [f  [f  g2]]] 
∆11 = [g1 [f  [f  [f  g2]]]] 

∆12 = [g1 [f  [f  [f  [f  g2]]]]] 
∆13 = [g1 [f  [f  [f  [f  [f g2]]]]]] 

∆14 = [g1 [f  [f  [f  [f  [f g3]]]]]] 
∆15 = [g2 [f  [f  [f  [f  [f g3]]]]]] 

The accessibility algebra satisfies the following property:
Property 3: The accessibility algebra, ∆ (x), has full

rank (rank (∆ (x)) = 12) as long as the sum of the joint
coordinates is nonzero, i.e. as long as eφ 6= 0.
Due to space constraints, we cannot present the ex-

pressions contained in each column of ∆ (x). However,
Property 3 can be shown to hold by employing a computer
software for symbolic mathematics, such asMatlab Symbolic
Toolbox. Note that we have included three more columns
than rows in ∆ (x) because different pairs of columns

become linearly independent at certain configurations. In-
cluding three redundant columns ensures that ∆ (x) does
not drop rank at these configurations. We are now ready to
state the following result:
Proposition 4: A planar snake robot described by (4)

with  = 4 links is locally strongly accessible from any
equilibrium point x satisfying eφ 6= 0.

Proof: The system is locally strongly accessible from
x if the accessibility algebra of the system evaluated at x

has full rank and does not contain the drift vector field f
by itself (i.e. unbracketed) [16]. By Property 3, the snake
robot satisfies these conditions as long as eφ 6= 0. This
completes the proof.
We now show that the snake robot does not satisfy suffi-

cient conditions for small-time local controllability (STLC).
STLC requires that we classify the Lie brackets of the system
vector fields in terms of good and bad brackets. A Lie
bracket is said to be bad if it contains the drift vector field
f an odd number of times and each control vector field g
an even number of times (0 is even). This classification is
motivated by the fact that a bad bracket may have directional
constraints. E.g. the drift vector f is bad because it only
allows motion in its positive direction. The snake robot is
STLC from an equilibrium point x if it is accessible from
x and all bad brackets of the system can be neutralized,
i.e. written as linear combinations of good brackets of lower
-degree [17] or lower -degree [18]. The model of the snake
robot satisfies the following property:
Property 5: The brackets g ,

£
f  g

¤
,
£
g [f  g]

¤
,£

g  [f  [f  g]]
¤
,

££
f  g

¤
 [f  g]

¤
,

£
f 
£
f  g

¤¤
,£

f 
£
f 
£
f  g

¤¤¤
, · · · , £

f  [· · · £f  g¤¤ · · · ], where
  ∈ {1 2 3} and  6= , are all good brackets, but
does not span the entire 12-dimensional state space.
Due to space constraints, we are again unable to present

the expressions contained in the brackets in Property 5.
However, the property can be shown to hold by employing
a computer software for symbolic mathematics, such as
Matlab Symbolic Toolbox. Property 5 enables us to state the
following result:
Proposition 6: A planar snake robot described by (4) with

 = 4 links does not satisfy the sufficient conditions for
small-time local controllability (STLC) presented in [17] and
[18].

Proof: The bracket
£
g 
£
f 
£
f 
£
f  g

¤¤¤¤
of the

system, where  ∈ {1 2 3}, is a bad bracket. The
only good brackets of lower -degree or lower -degree
that can neutralize this bad bracket are of the form g ,£
f  g

¤
,
£
g  [f  g]

¤
,
£
g  [f  [f  g]]

¤
,
££
f  g

¤
 [f  g]

¤
,£

f 
£
f  g

¤¤
,
£
f 
£
f 
£
f g

¤¤¤
, · · · , £f  [· · · £f g¤¤ · · · ],

where   ∈ {1 2 3} and  6= . By Property 5, these
brackets do not span the entire 12-dimensional state space.
We therefore cannot express the bad bracket as a linear
combination of good brackets of lower -degree or lower -
degree. Since there are bad brackets of the system that cannot
be neutralized, the system does not satisfy the conditions for
STLC given in [17] and [18].
Remark 7: The authors have previously presented a sim-

ilar controllability analysis of a snake robot with  = 4
links modelled by a more complex model [9]. This analysis
produced an identical result concerning STLC, but showed



that the accessibility algebra of the system has full rank
except for configurations where all joint coordinates are
equal (1 = 2 =  = −1), which will be the case
when the snake robot is lying straight or forming an arc.
According to Proposition 4, a configuration is singular when
the sum of the relative linear link displacements is zero.
Since this sum is zero for both straight and arc shaped snake
robots with revolute joints, the singular configurations of
the complex model considered in [9] are actually contained
in the singular configurations stated in Proposition 4. This
similarity supports the conjecture that the simplified model
proposed in this paper captures the essential part of the
dynamics of planar snake locomotion. Note anyhow that the
most important conclusion to be drawn from Proposition 4
is that the snake robot is locally strongly accessible from
almost any equilibrium point, except for certain singular
configurations. This is in accordance with the result from
[9].

V. CONTROLLER DESIGN

We will control the snake robot according to a motion
pattern called lateral undulation, which consists of horizontal
waves that are propagated backwards along the snake body
from head to tail. As proposed in [2], lateral undulation is
achieved by controlling joint  ∈ {1 · · ·   − 1} of the
snake robot according to the sinusoidal reference

ref =  sin (+ (− 1) ) +  (10)

where  and  are the amplitude and frequency, respectively,
of the sinusoidal joint motion and  determines the phase
shift between the joints. The parameter  is a joint offset
coordinate used to control the direction of the locomotion.
We assume that  is a constant offset, so that

̇ref =  cos (+ (− 1) ) (11)

̈ref = −2 sin (+ (− 1) ) (12)

We choose the control input u of the snake robot as

u = φ̈ref + 

³
φ̇ref − φ̇

´
+  (φref − φ) (13)

where  and  are positive scalar controller gains and
φref ∈ R−1 are the joint reference coordinates. The error
dynamics of the joints is therefore given by³

φ̈ref − φ̈
´
+ 

³
φ̇ref − φ̇

´
+  (φref − φ) = 0 (14)

which is clearly exponentially stable [19].

VI. STABILITY ANALYSIS OF SNAKE LOCOMOTION
BASED ON AVERAGING THEORY

In this section, averaging theory [20] is employed in order
to study the velocity dynamics of the snake robot during
lateral undulation. We employ averaging theory since we are
primarily interested in the overall, i.e. average, speed and
direction of the locomotion. The periodic fluctuations about
the average trajectory of the snake is not of particular interest.

A. Introduction to averaging theory

Consider a system of the form

ẋ = f(x) (15)

where  is a small positive parameter characterizing the
magnitude of the perturbations of the system and f(x)
is  -periodic, i.e. f( + x) = f(x). A system that, in
‘average’, behaves similarly to the system in (15) is given
by

ẋ = f(x) (16)

where

f(x) =
1



Z
0

f( x) (17)

Note that the above integral should be calculated by treating
the elements of the state vector x as constants. The smallness
requirement on  ensures that x varies slowly with  relative
to the periodic excitation of the system. The system response
will thereby be determined predominantly by the average of
the excitation. The following theorem follows directly from
a more general theorem stated in [19] (Theorem 10.4):
Theorem 8: Let f(x) and its partial derivatives with

respect to x be continuous and bounded for (x) ∈ [0∞)×
R. Suppose f is  -periodic in  for some   0 and 
is a positive parameter. Let x ( ) and x( ) denote the
solutions of (15) and (16), respectively. If the average system
(16) has a globally exponentially stable equilibrium point and
kx (0 )− x(0 )k ≤ 0 for some 0  0, then there
exist   0 and ∗  0 such that for all 0    ∗,

kx ( )− x( )k ≤  for all  ∈ [0∞) (18)
This theorem basically says that, for sufficiently small

, the solutions of the original system (15) and the average
system (16) remain close (of order ) for all time if the initial
conditions of the systems are close and the average system
is globally exponentially stable.

B. Model of the velocity dynamics of the snake robot

We will now study the velocity dynamics of the snake
robot during lateral undulation (the gait pattern defined in
(10)). The velocity dynamics is defined by (4f), (4g), and
(4h), which give the dynamics of the forward direction
velocity , the normal direction velocity , and the angular
velocity  of the snake robot. It was shown in Section V
that we can achieve exponentially stable tracking of the joint
reference coordinates (10) with the control law (13). We will
therefore assume that φ and v = φ̇ are given by (10) and
(11), respectively. Furthermore, in order to arrive at a model
of the velocity dynamics which is in the standard averaging
form (15), we assume that the amplitude  and frequency 
of the joint motion are always set according to the rule

 =


2
(19)

where   0 is a controller parameter. Note that  and 
are still independent parameters since any choice of  and
 can be obtained by choosing  = 2. Using (10),
(11), and (19), and introducing the velocity state vector v =
(  ) ∈ R3, the velocity dynamics can be written as



v̇ =

⎡⎣ ̇̇
̇

⎤⎦ = f(v) (20)

where

f(v) =

⎡⎣− 1

 +

22


1()− 2


2()

− 1

 +

22


1()
−3 + 4

−11()

⎤⎦ (21)

1() = ( − 1) +
−1X
=1

 sin (+ (− 1) ) (22)

2() =
−1P
=1

−1P
=1

£


 cos (+(−1) )

+ sin (+(−1) ) cos (+(−1) )]
(23)

and  denotes element  of the matrix AD. To transform
the model (20) into the standard form of averaging (15), we
change the time scale from  to  =  and define  = 1.
Since 


= 1




, the model (20) can now be written as

v


= f( v) (24)

where

f( v) =

⎡⎣− 1

 +

22


1()− 2


2()

− 1

 +

22


1()
−3 + 4

−11()

⎤⎦ (25)

This model is in the standard form defined in (15). Note that
when we require  to be small, we equivalently require that
 = 1 is large.

C. Averaged model of the velocity dynamics

The averaged model of (24) is calculated in accordance
with (16) as

v


= 

1

2

2Z
0

f( v) (26)

It can be verified that

1

2

2Z
0

1() = ( − 1) (27)

1

2

2Z
0

2() = −1
2
 (28)

where the constant  ∈ R is defined as

 =

−1X
=1

−1X
=1

 sin (( − ) ) (29)

The averaged model can therefore be written as
v


=  (Av + b) (30)

where

A = A () =
⎡⎣ − 1



2(−1)


2 0
2(−1)


2 − 1


0
4 0 −3

⎤⎦ (31)

b = b ( ) =

⎡⎣ 2
2


0
0

⎤⎦ (32)

By changing time scale back to  using that 

=  


, the

averaged model is given by

v̇ = Av + b (33)

We see that the averaged model of the velocity dynamics is
a linear system characterized by the parameters of the joint
reference coordinates, i.e. by , , , and .

D. Stability analysis of the velocity dynamics

Before we determine the stability properties of the aver-
aged model (33), we remove the constant offset term b with
the coordinate transformation z = v +A−1b. This gives

ż = v̇ = A ¡z −A−1b¢+ b = Az (34)

Employing a computer software for symbolic mathematics,
such as Matlab Symbolic Toolbox, the eigenvalues of A are
easily calculated as

eig (A) =
⎡⎣− 1


− 2(−1)


2

− 1

+

2(−1)


2
−3

⎤⎦ (35)

The equilibrium point z = 0 is globally exponentially stable
if all eigenvalues of A are negative [19], which is easily seen
to be the case if

|| 


2 ( − 1)
1

2
(36)

This is a limit on the amplitude of the joint coordinate offset
, and is a function of the friction coefficients 1 and 2.
It is not surprising that the model of the snake robot (4) can
become unstable since the approach of modelling the link
motion as translational displacements must naturally break
down at some point. The instability issue in (36) is not
relevant to a snake robot with revolute joints since the normal
direction distance between the links of this mechanism will
be physically constrained by the revolute joints.
Assuming that we choose  to satisfy the limit (36), then

z will converge exponentially to zero, which means that v
will converge exponentially to −A−1b, which means that the
average velocity will converge exponentially to the steady
state velocity

v = −A−1b = £  
¤

(37)

which is given analytically by

=
12

2
¡
221 − (42 − 8 + 4) 22

2


¢ (38a)

=
 ( − 1) 22

221 − (42 − 8 + 4) 22
2


(38b)

=
124

23
¡
221 − (42 − 8 + 4) 22

2


¢ (38c)



We can see that the resulting steady state velocity of the
snake robot is proportional to the controller parameters
 = 2 and , and that the velocity also depends
on nonlinear terms involving the joint coordinate offset
. We can for example immediately see that the steady
state velocity of the snake robot when it conducts lateral
undulation with zero joint offset ( = 0) is given by
 =

2
21

,  = 0, and  = 0.
Since the averaged model of the velocity dynamics given

by (33) is globally exponentially stable (assuming that (36)
is satisfied), it follows from Theorem 8 that, for sufficiently
small  (i.e. for sufficiently large ), the average velocity
given by (33) will approximate the exact velocity (20) for
all time, and that the error of this approximation is of order
, i.e. bounded in accordance with (18). In this paper, we
will not investigate the lower limit of  corresponding to
some maximum error bound. However, the simulation results
presented in Section VII shows that the exact and the average
velocity agree well when  is set to values that are commonly
used for snake robot locomotion.
We now summarize the above conclusions.
Proposition 9: Consider a planar snake robot described

by (4). Suppose the joint coordinates φ are controlled in
exact accordance with (10) and (11), and that the joint
coordinate offset  satisfies (36). Then there exist   0
and ∗  0 such that for all   ∗,

kv()− v()k ≤ 


for all  ∈ [0∞) (39)

where v() denotes the exact velocity of the snake robot
given by (20) and v() denotes the average velocity given
by (33). Furthermore, the average velocity v() of the
snake robot will converge exponentially fast to the steady
state velocity v given by (37).
Remark 10: Proposition 9 is a powerful result. First of

all, it proves mathematically that lateral undulation enables
a wheel-less snake robot with anisotropic ground friction
properties to achieve forward propulsion. To the authors’ best
knowledge, such a proof has never before been presented.
Secondly, the result gives an analytical expression for the
steady state velocity as a function of the controller parame-
ters , , , and , i.e. the amplitude, frequency, phase
shift and offset of the joint motion during lateral undulation.
This information is relevant for motion planning purposes.
We can e.g. use the result to determine the phase shift 
that will maximize the forward velocity of the robot. A final
powerful feature of the result is that it applies to snake robots
with an arbitrary number of links  .

VII. SIMULATION RESULTS

This section presents simulation results in order to inves-
tigate the validity of Proposition 9.

A. Simulation parameters

The exact model of the snake robot was given by (4) under
the assumption that φ was controlled in exact accordance
with (10). The averaged model of the snake robot was
given by (33). Both models were implemented and simulated
in Matlab R2008b on a laptop running Windows XP. The
dynamics was calculated using the ode45 solver in Matlab
with a relative and absolute error tolerance of 10−6.

Fig. 4. Lateral undulation along a straight line with the controller
parameters  = 01 m,  = 70◦/s,  = 40◦, and  = 0 m. Both
the exact (blue) and the average (red) velocities are plotted.

We assumed that the snake robot had  = 10 links
of length  = 014 m and mass  = 1 kg. Further-
more, we chose the friction coefficients as 1 = 045,
2 = 3, 3 = 05 and 4 = 20, the initial state values
as (φ=0 =0 =0 =0v=0 =0 =0 =0),
and the controller gains as  = 20 and  = 5. The values
of the controller parameters , , , and  are presented
with each simulation result.

B. Simulation results

The motion of the snake robot during lateral undulation
was first simulated with the controller parameters  = 01 m,
 = 70◦/s,  = 40◦, and  = 0 m. Proposition 9
then states that the average velocity of the snake robot
will converge exponentially fast to the steady state velocity
 =

2
21

 ≈ 010 m/s,  = 0 m/s, and  = 0◦/s.
This is in agreement with the simulation result shown in
Fig. 4. The top left plot illustrates the global CM position
of the snake robot and the body shape at  = 1 s and
 = 30 s. The other three plots show the exact and the average
velocities of the snake robot. There is almost an exact overlap
between the plots from the exact and the averaged model.
This suggests that  = 70◦/s is well above the (unknown)
value of ∗ described in Proposition 9.
In the next simulation, the controller parameters were set

to  = 01 m,  = 70◦/s,  = 40◦, and  = 8 m.
The joint coordinates were, in other words, offseted by 18
of the link length . In accordance with Proposition 9, the
average velocity of the snake robot should then converge to
 ≈ 011 m/s,  ≈ 0022 m/s, and  ≈ 423◦/s. This
agrees very well with the simulation result shown in Fig. 5,
which also shows a close overlap between the velocity plots
from the exact and the averaged model.
In the final simulation, the controller parameters were set

to  = 01 m,  = 30◦/s,  = 40◦, and  = −4 m.
The joint coordinates were, in other words, offseted by 14
of the link length . In addition, we reduced the frequency
of the sinusoidal motion from  = 70◦/s to  = 30◦/s to



Fig. 5. Counterclockwise turning during lateral undulation with the
controller parameters  = 01 m,  = 70◦/s,  = 40◦, and  = 8 m.
Both the exact (blue) and the average (red) velocities are plotted.

Fig. 6. Clockwise turning during lateral undulation with the controller
parameters  = 01 m,  = 30◦/s,  = 40◦, and  = −4 m. Both the
exact (blue) and the average (red) velocities are plotted.

see how this affected the estimate of the average velocity.
From Proposition 9, the average velocity should converge to
 ≈ 0052 m/s,  ≈ −0022 m/s, and  ≈ −420◦/s. This
agrees very well with the simulation result shown in Fig. 6.
The figure shows that there is still a good agreement between
the velocities from the exact and the averaged model even
though we reduced  considerably.

VIII. CONCLUSIONS AND FUTURE WORK

This paper has investigated the controllability and stability
properties of a planar snake robot influenced by anisotropic
viscous ground friction.
The paper has shown that any asymptotically stabilizing

control law for the snake robot to an equilibrium point must
be time-varying. Furthermore, it was shown that a snake
robot (with four links) is strongly accessible from almost any

equilibrium point, except for certain singular configurations,
and that the robot does not satisfy sufficient conditions
for small-time local controllability (STLC). The velocity
dynamics of the snake robot during lateral undulation was
investigated based on averaging theory. It was proven that
the average velocity of the snake will converge exponentially
fast to a steady state velocity, and an analytical expression for
calculating the steady state velocity was given. In particular,
explicit analytical relations between the steady state velocity
and the amplitude, frequency, phase shift and offset of the
joint motion during lateral undulation were given. In future
work, the authors will employ the theoretical findings in
this paper in order to develop and analyse motion planning
strategies for snake robots.
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