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Abstract—Bayesian Networks (BNs) are a powerful means
for modelling dependencies and predicting impacts of archi-
tecture design changes on system quality. The extremely de-
manding parametrization of BNs is however the main obstacle
for their practical application, in spite of the extensive tool
support. We have promising experiences from using a tree-
structured notation, that we call Dependency Views (DVs),
for prediction of impacts of architecture design changes on
system quality. Compared to BNs, DVs are far less demanding
to parametrize and create. DVs have shown to be sufficiently
expressive, comprehensible and feasible. Their weakness is
however limited analytical power. Once created, BNs are more
adaptable to changes, and more easily refined than DVs. In
this paper we argue that DVs are fully compatible with BNs,
in spite of different estimation approaches and concepts. A
transformation from a DV to a BN preserves traceability and
results in a complete BN. By defining a transformation from
DVs to BNs, we have enabled reliable parametrization of BNs
with significantly reduced effort, and can now exploit the
strengths of both the DV and the BN approach.

I. INTRODUCTION

Our recent research (including an extensive industrial case
study) indicates the feasibility and reliability of DVs for
predicting impacts of architecture design changes on system
quality. Promising experiences from the creation and use
of DVs argue for their validity in this context. A DV is a
structured, directed and parametrized tree showing:
• how and to what degree relevant parts and aspects of a system

relate, with respect to a specified quality attribute
• to what degree each system part or aspect fulfills the specified

quality attribute (which the DV is dedicated to).

Hence, DVs comprise two notions of parameters:
• EI: Estimated degree of Impact (assigned to an arc pointing

to the node being influenced)
• QCF: degree of Quality attribute or Characteristic Fulfillment

(assigned to a labelled node).

Figure 1a shows a small extract of a DV dedicated to the
quality attribute availability. A quality attribute is defined
by the underlying system specific ”quality models”, which
may for example be based on [1]. A QCF value expresses
to what degree the node (system part, aspect or similar) is
realised so that it, within its own domain, fulfills the quality
attribute in question. In the case of the ”HW recovery”
node of Figure 1a, the QCF value expresses the goodness
of hardware recovery with respect to availability. The EI
value on an arc expresses the degree of impact of a child

Figure 1. (a) a small extract of a DV. (b) the equivalent BN.

node (which the arc is directed to) on the parent node, or
to what degree the parent node depends on the child node.
The QCF value of each parent node is recursively (starting
from leaf nodes and moving upwards in the tree) calculated
by multiplying the QCF and EI value for each closest child
and summing these products for all children. For example,
with respect to Figure 1a1:
QCF (R) = QCF (H) ∗ EI(R→ H) + QCF (S) ∗ EI(R→ S) (1)

The DV based approach constrains the QCF of each node
to range between 0 (lowest) and 1 (ideal). The sum of
EIs, each between 0 (no impact) and 1 (maximum impact),
assigned to the closest children must be 1 (for model com-
pleteness purpose). Moreover, all nodes having a common
parent have to be orthogonal (independent). The correlating
nodes are placed at different levels, when structuring the
tree. The leaf nodes of a DV must be observable.

Each DV is created with respect to a quality attribute. The
structure of a DV is deduced following a systematic proce-
dure: selecting the relevant parts of the underlying (design
and quality) models, and structuring them in a top-down
manner. The assigned parameters (EIs and QCFs of leaf
nodes) may be based on expert judgment or measurement,
thus incorporating objective and subjective input.

A BN [3] is a directed acyclic graph. Observation of
known nodes (variables with a probability distribution) al-
lows inferring the probability of others, using probability
calculus and Bayes theorem throughout the model (propa-
gation). In the case of three variables (where B and C cause
A), Bayes rule states: P (A|B, C) = P (B|A,C)P (A|C)

P (B|C) . From
this, we get:

P (A) =
P (A|B,C)P (B)P (C|B)

P (B|A)P (C|A,B)
(2)

1Denoting: H: HW recovery; S: SW recovery; R: Recovery mechanisms
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According to the Law of Total Probability,
P (A) = P (A|B, C)P (B)P (C) + P (A|B,¬C)P (B)P (¬C) +

P (A|¬B, C)P (¬B)P (C) + P (A|¬B,¬C)P (¬B)P (¬C) (3)

While DVs are comprehensible and easy to construct, BNs
are far more demanding to parametrize but in turn more
adaptable and expressive than DVs. The number of estimates
needed for a DV is (2n−1), while traditional parametrization
of a BN requires upto 2n estimates (n: number of nodes).
This represents a serious BN scalability issue. Our approach
seeks to overcome the weaknesses and combine strengths of
both the DV and the BN approach. A correct and complete
construction of DVs does not presuppose familiarity with
probabilistic reasoning or acquaintance with tools (which is
the case with BNs). BNs are, however, more fine grained,
more refinable and more expressive than DVs. The tool
support of BNs is also more extensive, contributing to the
adaptability and effectiveness of BNs. In contrast to DVs,
BNs support correlations (between states of the same or
several linked nodes), network optimization, self-learning,
automatic evidence feeding, diagnostic analysis, notions of
utility, cost, decision points, etc. By creating the initial
model as a DV and transforming it into a complete BN, the
parametrization is made straight forward, and the rest of the
prediction analysis can take advantage of the BN approach.

II. APPROACH

Parametrization of a BN, based on a DV, involves:
• assigning the prior probabilities for each root node of a BN

(corresponding to the QCF values on the leaf nodes of a DV)
• assigning the conditional probability tables (CPTs) associated

with each non-root node, which quantify the relationship
between nodes (corresponding to the EI values on the arcs
of a DV).

Figure 1b shows the BN equivalent (from the NETICA [2]
BN modelling tool) to the DV from Figure 1a. Leaf nodes
of Figure 1a correspond to root nodes of Figure 1b. While
arcs of Figure 1a represent direction of dependence, the arcs
of Figure 1b represent causes and therefore have opposite
direction. The EI values assigned to the DV are embedded
in the CPTs of the BN. A node of the DV is assigned one
QCF value, while a node of the BN may contain several
states, each being assigned a probability of the node’s being
in the state. Satisfaction and non-satisfaction of the quality
attribute are the states used for all BN nodes in this example.
By asserting:
• orthogonality of DV nodes with a common parent implies

conditional independence and disjoint probabilities of the
corresponding BN nodes (having a common child)

• degree of an attribute fulfillment (given by a QCF value of a
DV node) corresponds to probability of being in satisfaction
state on the corresponding BN node

• EIs from a DV are embedded in the corresponding BN node’s
CPT, and the missing CPT values are deduced from joint
probability distributions

• DV model completeness implies cumulative distribution of
adjacent nodes within a BN

we deduce for Figure 1b:
P (H) = 0.9; P (¬H) = 0.1; P (S) = 0.8; P (¬S) = 0.2; P (R|S, H) =

1; P (R|S,¬H) = 0.7; P (R|¬S, H) = 0.3; P (R|¬S,¬H) = 0.

The marginal distribution on Figure 1b is automatically
calculated by NETICA, using Bayes rule. Generally, given
a network of three nodes and based on the assertions stated
above, the following statements will hold:
P (A|B, C) = 1; P (A|B,¬C) = 1− P (A|¬B, C); P (A|¬B,¬C) =

0; P (¬B) = 1− P (B); P (¬C) = 1− P (C); P (C|B) = P (C).

Inserting these general statements into the right hand side
of Eq.3, results in the expression of the form given by
Eq.1, which is used by all DVs. Also, inserting the general
statements into the right hand side of Eq.2 results in P (A).
Thus, we have analytically argued the equivalence between a
three node DV and a BN, provided the general assumptions
of DVs are followed during its creation.

We have also empirically confirmed equivalent probability
distributions and change impact propagation of a 14-nodes
BN (in NETICA), transformed from an arbitrarily chosen,
real DV. The empirical part involved three steps:

1) Transforming an existing DV to a BN by transforming QCFs
of leaf nodes (of DV) to prior probabilities of root nodes (of
BN) and EIs (of DV) to CPTs (of BN).

2) Confirming that node probability distributions of the BN’s
satisfaction states are equal to QCF values of all the corre-
sponding nodes of the DV. This was the case.

3) Applying a change on both the DV and BN and confirming
that the resulting propagations (i.e. QCFs and marginal
probability distributions) correspond. This was the case.

III. CONCLUSIONS

Our recent research indicates that DVs represent a valid
and efficient basis for initial parametrization of BNs. A DV
to BN transformation represents a springboard to practical
use of BNs and resolves some of the scalability issues
related to BNs. Users with minimal statistical knowledge
can build large scale realistic DVs for prediction analysis,
and extend the analysis with BN facilities. Our approach
shows the feasibility of a DV to BN transformation which
preserves all the properties of the DV and results in a
BN with a complete joint probability distribution. Further
analysis based on BNs allows for improved traceability and
adaptability of the models.
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